Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 3981 | 22.26% | 8 | 4.88% |
Cyrille Pitchen | 3731 | 20.86% | 7 | 4.27% |
Tudor-Dan Ambarus | 3456 | 19.32% | 12 | 7.32% |
Huang Shijie | 3021 | 16.89% | 4 | 2.44% |
Brian Norris | 1415 | 7.91% | 27 | 16.46% |
Ricardo Ribalda Delgado | 270 | 1.51% | 2 | 1.22% |
Kamal Dasu | 156 | 0.87% | 3 | 1.83% |
Graham Moore | 137 | 0.77% | 1 | 0.61% |
Alexander Sverdlin | 104 | 0.58% | 4 | 2.44% |
Aaron Sierra | 100 | 0.56% | 1 | 0.61% |
Yogesh Gaur | 96 | 0.54% | 4 | 2.44% |
Liu Xiang | 81 | 0.45% | 1 | 0.61% |
Alexander Kurz | 75 | 0.42% | 2 | 1.22% |
Bean Huo | 68 | 0.38% | 1 | 0.61% |
Furquan Shaikh | 65 | 0.36% | 1 | 0.61% |
Rafał Miłecki | 55 | 0.31% | 5 | 3.05% |
Neil Brown | 52 | 0.29% | 1 | 0.61% |
Sean Nyekjaer | 46 | 0.26% | 3 | 1.83% |
Gabor Juhos | 46 | 0.26% | 3 | 1.83% |
Kimmo Rautkoski | 46 | 0.26% | 1 | 0.61% |
Mika Westerberg | 40 | 0.22% | 3 | 1.83% |
Hou Zhiqiang | 38 | 0.21% | 1 | 0.61% |
Frieder Schrempf | 38 | 0.21% | 2 | 1.22% |
Ahmet Celenk | 38 | 0.21% | 1 | 0.61% |
Robert Marko | 34 | 0.19% | 2 | 1.22% |
Rafael Gago | 31 | 0.17% | 1 | 0.61% |
Uwe Kleine-König | 30 | 0.17% | 1 | 0.61% |
Hauke Mehrtens | 30 | 0.17% | 1 | 0.61% |
Andy Yan | 28 | 0.16% | 2 | 1.22% |
Fabio Estevam | 25 | 0.14% | 1 | 0.61% |
Michal Suchanek | 22 | 0.12% | 4 | 2.44% |
Sergei Shtylyov | 21 | 0.12% | 2 | 1.22% |
Fabrizio Castro | 19 | 0.11% | 1 | 0.61% |
Roger Pueyo Centelles | 19 | 0.11% | 1 | 0.61% |
André Valentin | 19 | 0.11% | 1 | 0.61% |
Andrey Smirnov | 17 | 0.10% | 1 | 0.61% |
Marek Vašut | 16 | 0.09% | 2 | 1.22% |
Mar Krzeminski | 16 | 0.09% | 1 | 0.61% |
Romain Porte | 16 | 0.09% | 1 | 0.61% |
Cédric Le Goater | 15 | 0.08% | 1 | 0.61% |
Benjamin Herrenschmidt | 15 | 0.08% | 1 | 0.61% |
Thor Thayer | 15 | 0.08% | 1 | 0.61% |
Ash Benz | 15 | 0.08% | 1 | 0.61% |
Moritz Fischer | 15 | 0.08% | 1 | 0.61% |
Harry Chou | 15 | 0.08% | 1 | 0.61% |
Nobuhiro Iwamatsu | 15 | 0.08% | 1 | 0.61% |
Neil Armstrong | 15 | 0.08% | 1 | 0.61% |
Angelo Dureghello | 15 | 0.08% | 1 | 0.61% |
Knut Wohlrab | 15 | 0.08% | 1 | 0.61% |
P L Sai Krishna | 15 | 0.08% | 1 | 0.61% |
Thomas Petazzoni | 15 | 0.08% | 1 | 0.61% |
Sascha Hauer | 15 | 0.08% | 1 | 0.61% |
Aurelien Chanot | 15 | 0.08% | 1 | 0.61% |
Antony Pavlov | 15 | 0.08% | 1 | 0.61% |
Stephen Douthit | 14 | 0.08% | 1 | 0.61% |
Alexis Ballier | 14 | 0.08% | 1 | 0.61% |
Claudiu Beznea | 14 | 0.08% | 1 | 0.61% |
Chunhe Lan | 14 | 0.08% | 1 | 0.61% |
Joël Esponde | 13 | 0.07% | 1 | 0.61% |
Harini Katakam | 13 | 0.07% | 1 | 0.61% |
Ben Hutchings | 13 | 0.07% | 3 | 1.83% |
Yao Yuan | 12 | 0.07% | 1 | 0.61% |
L. D. Pinney | 7 | 0.04% | 1 | 0.61% |
Rostislav Lisovy | 6 | 0.03% | 1 | 0.61% |
Philipp Puschmann | 5 | 0.03% | 1 | 0.61% |
Klaus Goger | 4 | 0.02% | 1 | 0.61% |
YuheiOKAWA | 4 | 0.02% | 1 | 0.61% |
Dan Carpenter | 4 | 0.02% | 1 | 0.61% |
Jagan Teki | 3 | 0.02% | 2 | 1.22% |
Shengzhou Liu | 3 | 0.02% | 1 | 0.61% |
Geert Uytterhoeven | 3 | 0.02% | 2 | 1.22% |
Sergey Ryazanov | 3 | 0.02% | 1 | 0.61% |
huijin.park | 3 | 0.02% | 1 | 0.61% |
Ezequiel García | 2 | 0.01% | 1 | 0.61% |
Heiner Kallweit | 2 | 0.01% | 1 | 0.61% |
IWAMOTO Masahiko | 2 | 0.01% | 1 | 0.61% |
Flavio Suligoi | 1 | 0.01% | 1 | 0.61% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.61% |
Jonas Bonn | 1 | 0.01% | 1 | 0.61% |
Total | 17884 | 164 |
// SPDX-License-Identifier: GPL-2.0 /* * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c * * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include <linux/err.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/math64.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/mtd/mtd.h> #include <linux/of_platform.h> #include <linux/spi/flash.h> #include <linux/mtd/spi-nor.h> /* Define max times to check status register before we give up. */ /* * For everything but full-chip erase; probably could be much smaller, but kept * around for safety for now */ #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) /* * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up * for larger flash */ #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) #define SPI_NOR_MAX_ID_LEN 6 #define SPI_NOR_MAX_ADDR_WIDTH 4 struct spi_nor_read_command { u8 num_mode_clocks; u8 num_wait_states; u8 opcode; enum spi_nor_protocol proto; }; struct spi_nor_pp_command { u8 opcode; enum spi_nor_protocol proto; }; enum spi_nor_read_command_index { SNOR_CMD_READ, SNOR_CMD_READ_FAST, SNOR_CMD_READ_1_1_1_DTR, /* Dual SPI */ SNOR_CMD_READ_1_1_2, SNOR_CMD_READ_1_2_2, SNOR_CMD_READ_2_2_2, SNOR_CMD_READ_1_2_2_DTR, /* Quad SPI */ SNOR_CMD_READ_1_1_4, SNOR_CMD_READ_1_4_4, SNOR_CMD_READ_4_4_4, SNOR_CMD_READ_1_4_4_DTR, /* Octal SPI */ SNOR_CMD_READ_1_1_8, SNOR_CMD_READ_1_8_8, SNOR_CMD_READ_8_8_8, SNOR_CMD_READ_1_8_8_DTR, SNOR_CMD_READ_MAX }; enum spi_nor_pp_command_index { SNOR_CMD_PP, /* Quad SPI */ SNOR_CMD_PP_1_1_4, SNOR_CMD_PP_1_4_4, SNOR_CMD_PP_4_4_4, /* Octal SPI */ SNOR_CMD_PP_1_1_8, SNOR_CMD_PP_1_8_8, SNOR_CMD_PP_8_8_8, SNOR_CMD_PP_MAX }; struct spi_nor_flash_parameter { u64 size; u32 page_size; struct spi_nor_hwcaps hwcaps; struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; int (*quad_enable)(struct spi_nor *nor); }; struct sfdp_parameter_header { u8 id_lsb; u8 minor; u8 major; u8 length; /* in double words */ u8 parameter_table_pointer[3]; /* byte address */ u8 id_msb; }; #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) #define SFDP_PARAM_HEADER_PTP(p) \ (((p)->parameter_table_pointer[2] << 16) | \ ((p)->parameter_table_pointer[1] << 8) | \ ((p)->parameter_table_pointer[0] << 0)) #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ #define SFDP_SIGNATURE 0x50444653U #define SFDP_JESD216_MAJOR 1 #define SFDP_JESD216_MINOR 0 #define SFDP_JESD216A_MINOR 5 #define SFDP_JESD216B_MINOR 6 struct sfdp_header { u32 signature; /* Ox50444653U <=> "SFDP" */ u8 minor; u8 major; u8 nph; /* 0-base number of parameter headers */ u8 unused; /* Basic Flash Parameter Table. */ struct sfdp_parameter_header bfpt_header; }; /* Basic Flash Parameter Table */ /* * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs. * They are indexed from 1 but C arrays are indexed from 0. */ #define BFPT_DWORD(i) ((i) - 1) #define BFPT_DWORD_MAX 16 /* The first version of JESB216 defined only 9 DWORDs. */ #define BFPT_DWORD_MAX_JESD216 9 /* 1st DWORD. */ #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) #define BFPT_DWORD1_DTR BIT(19) #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) /* 5th DWORD. */ #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) /* 11th DWORD. */ #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) /* 15th DWORD. */ /* * (from JESD216 rev B) * Quad Enable Requirements (QER): * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 * reads based on instruction. DQ3/HOLD# functions are hold during * instruction phase. * - 001b: QE is bit 1 of status register 2. It is set via Write Status with * two data bytes where bit 1 of the second byte is one. * [...] * Writing only one byte to the status register has the side-effect of * clearing status register 2, including the QE bit. The 100b code is * used if writing one byte to the status register does not modify * status register 2. * - 010b: QE is bit 6 of status register 1. It is set via Write Status with * one data byte where bit 6 is one. * [...] * - 011b: QE is bit 7 of status register 2. It is set via Write status * register 2 instruction 3Eh with one data byte where bit 7 is one. * [...] * The status register 2 is read using instruction 3Fh. * - 100b: QE is bit 1 of status register 2. It is set via Write Status with * two data bytes where bit 1 of the second byte is one. * [...] * In contrast to the 001b code, writing one byte to the status * register does not modify status register 2. * - 101b: QE is bit 1 of status register 2. Status register 1 is read using * Read Status instruction 05h. Status register2 is read using * instruction 35h. QE is set via Write Status instruction 01h with * two data bytes where bit 1 of the second byte is one. * [...] */ #define BFPT_DWORD15_QER_MASK GENMASK(22, 20) #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ struct sfdp_bfpt { u32 dwords[BFPT_DWORD_MAX]; }; /** * struct spi_nor_fixups - SPI NOR fixup hooks * @post_bfpt: called after the BFPT table has been parsed * * Those hooks can be used to tweak the SPI NOR configuration when the SFDP * table is broken or not available. */ struct spi_nor_fixups { int (*post_bfpt)(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params); }; struct flash_info { char *name; /* * This array stores the ID bytes. * The first three bytes are the JEDIC ID. * JEDEC ID zero means "no ID" (mostly older chips). */ u8 id[SPI_NOR_MAX_ID_LEN]; u8 id_len; /* The size listed here is what works with SPINOR_OP_SE, which isn't * necessarily called a "sector" by the vendor. */ unsigned sector_size; u16 n_sectors; u16 page_size; u16 addr_width; u16 flags; #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ #define SST_WRITE BIT(2) /* use SST byte programming */ #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */ #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */ #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */ #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */ #define USE_FSR BIT(7) /* use flag status register */ #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */ #define SPI_NOR_HAS_TB BIT(9) /* * Flash SR has Top/Bottom (TB) protect * bit. Must be used with * SPI_NOR_HAS_LOCK. */ #define SPI_S3AN BIT(10) /* * Xilinx Spartan 3AN In-System Flash * (MFR cannot be used for probing * because it has the same value as * ATMEL flashes) */ #define SPI_NOR_4B_OPCODES BIT(11) /* * Use dedicated 4byte address op codes * to support memory size above 128Mib. */ #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */ #define USE_CLSR BIT(14) /* use CLSR command */ #define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */ /* Part specific fixup hooks. */ const struct spi_nor_fixups *fixups; int (*quad_enable)(struct spi_nor *nor); }; #define JEDEC_MFR(info) ((info)->id[0]) /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); if (ret < 0) { pr_err("error %d reading SR\n", (int) ret); return ret; } return val; } /* * Read the flag status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_fsr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); if (ret < 0) { pr_err("error %d reading FSR\n", ret); return ret; } return val; } /* * Read configuration register, returning its value in the * location. Return the configuration register value. * Returns negative if error occurred. */ static int read_cr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading CR\n", ret); return ret; } return val; } /* * Write status register 1 byte * Returns negative if error occurred. */ static int write_sr(struct spi_nor *nor, u8 val) { nor->cmd_buf[0] = val; return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); } /* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */ static int write_enable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); } /* * Send write disable instruction to the chip. */ static int write_disable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); } static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) { return mtd->priv; } static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == opcode) return table[i][1]; /* No conversion found, keep input op code. */ return opcode; } static u8 spi_nor_convert_3to4_read(u8 opcode) { static const u8 spi_nor_3to4_read[][2] = { { SPINOR_OP_READ, SPINOR_OP_READ_4B }, { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, ARRAY_SIZE(spi_nor_3to4_read)); } static u8 spi_nor_convert_3to4_program(u8 opcode) { static const u8 spi_nor_3to4_program[][2] = { { SPINOR_OP_PP, SPINOR_OP_PP_4B }, { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, ARRAY_SIZE(spi_nor_3to4_program)); } static u8 spi_nor_convert_3to4_erase(u8 opcode) { static const u8 spi_nor_3to4_erase[][2] = { { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, { SPINOR_OP_SE, SPINOR_OP_SE_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, ARRAY_SIZE(spi_nor_3to4_erase)); } static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) { /* Do some manufacturer fixups first */ switch (JEDEC_MFR(nor->info)) { case SNOR_MFR_SPANSION: /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = nor->info->sector_size; break; default: break; } nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); if (!spi_nor_has_uniform_erase(nor)) { struct spi_nor_erase_map *map = &nor->erase_map; struct spi_nor_erase_type *erase; int i; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { erase = &map->erase_type[i]; erase->opcode = spi_nor_convert_3to4_erase(erase->opcode); } } } /* Enable/disable 4-byte addressing mode. */ static int set_4byte(struct spi_nor *nor, bool enable) { int status; bool need_wren = false; u8 cmd; switch (JEDEC_MFR(nor->info)) { case SNOR_MFR_ST: case SNOR_MFR_MICRON: /* Some Micron need WREN command; all will accept it */ need_wren = true; /* fall through */ case SNOR_MFR_MACRONIX: case SNOR_MFR_WINBOND: if (need_wren) write_enable(nor); cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; status = nor->write_reg(nor, cmd, NULL, 0); if (need_wren) write_disable(nor); if (!status && !enable && JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) { /* * On Winbond W25Q256FV, leaving 4byte mode causes * the Extended Address Register to be set to 1, so all * 3-byte-address reads come from the second 16M. * We must clear the register to enable normal behavior. */ write_enable(nor); nor->cmd_buf[0] = 0; nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); write_disable(nor); } return status; default: /* Spansion style */ nor->cmd_buf[0] = enable << 7; return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); } } static int s3an_sr_ready(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); return ret; } return !!(val & XSR_RDY); } static int spi_nor_sr_ready(struct spi_nor *nor) { int sr = read_sr(nor); if (sr < 0) return sr; if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { if (sr & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); return -EIO; } return !(sr & SR_WIP); } static int spi_nor_fsr_ready(struct spi_nor *nor) { int fsr = read_fsr(nor); if (fsr < 0) return fsr; if (fsr & (FSR_E_ERR | FSR_P_ERR)) { if (fsr & FSR_E_ERR) dev_err(nor->dev, "Erase operation failed.\n"); else dev_err(nor->dev, "Program operation failed.\n"); if (fsr & FSR_PT_ERR) dev_err(nor->dev, "Attempted to modify a protected sector.\n"); nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); return -EIO; } return fsr & FSR_READY; } static int spi_nor_ready(struct spi_nor *nor) { int sr, fsr; if (nor->flags & SNOR_F_READY_XSR_RDY) sr = s3an_sr_ready(nor); else sr = spi_nor_sr_ready(nor); if (sr < 0) return sr; fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; if (fsr < 0) return fsr; return sr && fsr; } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, unsigned long timeout_jiffies) { unsigned long deadline; int timeout = 0, ret; deadline = jiffies + timeout_jiffies; while (!timeout) { if (time_after_eq(jiffies, deadline)) timeout = 1; ret = spi_nor_ready(nor); if (ret < 0) return ret; if (ret) return 0; cond_resched(); } dev_err(nor->dev, "flash operation timed out\n"); return -ETIMEDOUT; } static int spi_nor_wait_till_ready(struct spi_nor *nor) { return spi_nor_wait_till_ready_with_timeout(nor, DEFAULT_READY_WAIT_JIFFIES); } /* * Erase the whole flash memory * * Returns 0 if successful, non-zero otherwise. */ static int erase_chip(struct spi_nor *nor) { dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); } static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) { int ret = 0; mutex_lock(&nor->lock); if (nor->prepare) { ret = nor->prepare(nor, ops); if (ret) { dev_err(nor->dev, "failed in the preparation.\n"); mutex_unlock(&nor->lock); return ret; } } return ret; } static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { if (nor->unprepare) nor->unprepare(nor, ops); mutex_unlock(&nor->lock); } /* * This code converts an address to the Default Address Mode, that has non * power of two page sizes. We must support this mode because it is the default * mode supported by Xilinx tools, it can access the whole flash area and * changing over to the Power-of-two mode is irreversible and corrupts the * original data. * Addr can safely be unsigned int, the biggest S3AN device is smaller than * 4 MiB. */ static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr) { unsigned int offset; unsigned int page; offset = addr % nor->page_size; page = addr / nor->page_size; page <<= (nor->page_size > 512) ? 10 : 9; return page | offset; } /* * Initiate the erasure of a single sector */ static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) { u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; int i; if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) addr = spi_nor_s3an_addr_convert(nor, addr); if (nor->erase) return nor->erase(nor, addr); /* * Default implementation, if driver doesn't have a specialized HW * control */ for (i = nor->addr_width - 1; i >= 0; i--) { buf[i] = addr & 0xff; addr >>= 8; } return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); } /** * spi_nor_div_by_erase_size() - calculate remainder and update new dividend * @erase: pointer to a structure that describes a SPI NOR erase type * @dividend: dividend value * @remainder: pointer to u32 remainder (will be updated) * * Return: the result of the division */ static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, u64 dividend, u32 *remainder) { /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ *remainder = (u32)dividend & erase->size_mask; return dividend >> erase->size_shift; } /** * spi_nor_find_best_erase_type() - find the best erase type for the given * offset in the serial flash memory and the * number of bytes to erase. The region in * which the address fits is expected to be * provided. * @map: the erase map of the SPI NOR * @region: pointer to a structure that describes a SPI NOR erase region * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Return: a pointer to the best fitted erase type, NULL otherwise. */ static const struct spi_nor_erase_type * spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, const struct spi_nor_erase_region *region, u64 addr, u32 len) { const struct spi_nor_erase_type *erase; u32 rem; int i; u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; /* * Erase types are ordered by size, with the smallest erase type at * index 0. */ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { /* Does the erase region support the tested erase type? */ if (!(erase_mask & BIT(i))) continue; erase = &map->erase_type[i]; /* Don't erase more than what the user has asked for. */ if (erase->size > len) continue; /* Alignment is not mandatory for overlaid regions */ if (region->offset & SNOR_OVERLAID_REGION) return erase; spi_nor_div_by_erase_size(erase, addr, &rem); if (rem) continue; else return erase; } return NULL; } /** * spi_nor_region_next() - get the next spi nor region * @region: pointer to a structure that describes a SPI NOR erase region * * Return: the next spi nor region or NULL if last region. */ static struct spi_nor_erase_region * spi_nor_region_next(struct spi_nor_erase_region *region) { if (spi_nor_region_is_last(region)) return NULL; region++; return region; } /** * spi_nor_find_erase_region() - find the region of the serial flash memory in * which the offset fits * @map: the erase map of the SPI NOR * @addr: offset in the serial flash memory * * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) * otherwise. */ static struct spi_nor_erase_region * spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) { struct spi_nor_erase_region *region = map->regions; u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; u64 region_end = region_start + region->size; while (addr < region_start || addr >= region_end) { region = spi_nor_region_next(region); if (!region) return ERR_PTR(-EINVAL); region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; region_end = region_start + region->size; } return region; } /** * spi_nor_init_erase_cmd() - initialize an erase command * @region: pointer to a structure that describes a SPI NOR erase region * @erase: pointer to a structure that describes a SPI NOR erase type * * Return: the pointer to the allocated erase command, ERR_PTR(-errno) * otherwise. */ static struct spi_nor_erase_command * spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, const struct spi_nor_erase_type *erase) { struct spi_nor_erase_command *cmd; cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&cmd->list); cmd->opcode = erase->opcode; cmd->count = 1; if (region->offset & SNOR_OVERLAID_REGION) cmd->size = region->size; else cmd->size = erase->size; return cmd; } /** * spi_nor_destroy_erase_cmd_list() - destroy erase command list * @erase_list: list of erase commands */ static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) { struct spi_nor_erase_command *cmd, *next; list_for_each_entry_safe(cmd, next, erase_list, list) { list_del(&cmd->list); kfree(cmd); } } /** * spi_nor_init_erase_cmd_list() - initialize erase command list * @nor: pointer to a 'struct spi_nor' * @erase_list: list of erase commands to be executed once we validate that the * erase can be performed * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Builds the list of best fitted erase commands and verifies if the erase can * be performed. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, struct list_head *erase_list, u64 addr, u32 len) { const struct spi_nor_erase_map *map = &nor->erase_map; const struct spi_nor_erase_type *erase, *prev_erase = NULL; struct spi_nor_erase_region *region; struct spi_nor_erase_command *cmd = NULL; u64 region_end; int ret = -EINVAL; region = spi_nor_find_erase_region(map, addr); if (IS_ERR(region)) return PTR_ERR(region); region_end = spi_nor_region_end(region); while (len) { erase = spi_nor_find_best_erase_type(map, region, addr, len); if (!erase) goto destroy_erase_cmd_list; if (prev_erase != erase || region->offset & SNOR_OVERLAID_REGION) { cmd = spi_nor_init_erase_cmd(region, erase); if (IS_ERR(cmd)) { ret = PTR_ERR(cmd); goto destroy_erase_cmd_list; } list_add_tail(&cmd->list, erase_list); } else { cmd->count++; } addr += cmd->size; len -= cmd->size; if (len && addr >= region_end) { region = spi_nor_region_next(region); if (!region) goto destroy_erase_cmd_list; region_end = spi_nor_region_end(region); } prev_erase = erase; } return 0; destroy_erase_cmd_list: spi_nor_destroy_erase_cmd_list(erase_list); return ret; } /** * spi_nor_erase_multi_sectors() - perform a non-uniform erase * @nor: pointer to a 'struct spi_nor' * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Build a list of best fitted erase commands and execute it once we validate * that the erase can be performed. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) { LIST_HEAD(erase_list); struct spi_nor_erase_command *cmd, *next; int ret; ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); if (ret) return ret; list_for_each_entry_safe(cmd, next, &erase_list, list) { nor->erase_opcode = cmd->opcode; while (cmd->count) { write_enable(nor); ret = spi_nor_erase_sector(nor, addr); if (ret) goto destroy_erase_cmd_list; addr += cmd->size; cmd->count--; ret = spi_nor_wait_till_ready(nor); if (ret) goto destroy_erase_cmd_list; } list_del(&cmd->list); kfree(cmd); } return 0; destroy_erase_cmd_list: spi_nor_destroy_erase_cmd_list(&erase_list); return ret; } /* * Erase an address range on the nor chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) { struct spi_nor *nor = mtd_to_spi_nor(mtd); u32 addr, len; uint32_t rem; int ret; dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, (long long)instr->len); if (spi_nor_has_uniform_erase(nor)) { div_u64_rem(instr->len, mtd->erasesize, &rem); if (rem) return -EINVAL; } addr = instr->addr; len = instr->len; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); if (ret) return ret; /* whole-chip erase? */ if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { unsigned long timeout; write_enable(nor); if (erase_chip(nor)) { ret = -EIO; goto erase_err; } /* * Scale the timeout linearly with the size of the flash, with * a minimum calibrated to an old 2MB flash. We could try to * pull these from CFI/SFDP, but these values should be good * enough for now. */ timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, CHIP_ERASE_2MB_READY_WAIT_JIFFIES * (unsigned long)(mtd->size / SZ_2M)); ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); if (ret) goto erase_err; /* REVISIT in some cases we could speed up erasing large regions * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up * to use "small sector erase", but that's not always optimal. */ /* "sector"-at-a-time erase */ } else if (spi_nor_has_uniform_erase(nor)) { while (len) { write_enable(nor); ret = spi_nor_erase_sector(nor, addr); if (ret) goto erase_err; addr += mtd->erasesize; len -= mtd->erasesize; ret = spi_nor_wait_till_ready(nor); if (ret) goto erase_err; } /* erase multiple sectors */ } else { ret = spi_nor_erase_multi_sectors(nor, addr, len); if (ret) goto erase_err; } write_disable(nor); erase_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); return ret; } /* Write status register and ensure bits in mask match written values */ static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) { int ret; write_enable(nor); ret = write_sr(nor, status_new); if (ret) return ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; ret = read_sr(nor); if (ret < 0) return ret; return ((ret & mask) != (status_new & mask)) ? -EIO : 0; } static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, uint64_t *len) { struct mtd_info *mtd = &nor->mtd; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; int shift = ffs(mask) - 1; int pow; if (!(sr & mask)) { /* No protection */ *ofs = 0; *len = 0; } else { pow = ((sr & mask) ^ mask) >> shift; *len = mtd->size >> pow; if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) *ofs = 0; else *ofs = mtd->size - *len; } } /* * Return 1 if the entire region is locked (if @locked is true) or unlocked (if * @locked is false); 0 otherwise */ static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr, bool locked) { loff_t lock_offs; uint64_t lock_len; if (!len) return 1; stm_get_locked_range(nor, sr, &lock_offs, &lock_len); if (locked) /* Requested range is a sub-range of locked range */ return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); else /* Requested range does not overlap with locked range */ return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); } static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr) { return stm_check_lock_status_sr(nor, ofs, len, sr, true); } static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr) { return stm_check_lock_status_sr(nor, ofs, len, sr, false); } /* * Lock a region of the flash. Compatible with ST Micro and similar flash. * Supports the block protection bits BP{0,1,2} in the status register * (SR). Does not support these features found in newer SR bitfields: * - SEC: sector/block protect - only handle SEC=0 (block protect) * - CMP: complement protect - only support CMP=0 (range is not complemented) * * Support for the following is provided conditionally for some flash: * - TB: top/bottom protect * * Sample table portion for 8MB flash (Winbond w25q64fw): * * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion * -------------------------------------------------------------------------- * X | X | 0 | 0 | 0 | NONE | NONE * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 * X | X | 1 | 1 | 1 | 8 MB | ALL * ------|-------|-------|-------|-------|---------------|------------------- * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 * * Returns negative on errors, 0 on success. */ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; int status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; loff_t lock_len; bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; bool use_top; status_old = read_sr(nor); if (status_old < 0) return status_old; /* If nothing in our range is unlocked, we don't need to do anything */ if (stm_is_locked_sr(nor, ofs, len, status_old)) return 0; /* If anything below us is unlocked, we can't use 'bottom' protection */ if (!stm_is_locked_sr(nor, 0, ofs, status_old)) can_be_bottom = false; /* If anything above us is unlocked, we can't use 'top' protection */ if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), status_old)) can_be_top = false; if (!can_be_bottom && !can_be_top) return -EINVAL; /* Prefer top, if both are valid */ use_top = can_be_top; /* lock_len: length of region that should end up locked */ if (use_top) lock_len = mtd->size - ofs; else lock_len = ofs + len; /* * Need smallest pow such that: * * 1 / (2^pow) <= (len / size) * * so (assuming power-of-2 size) we do: * * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) */ pow = ilog2(mtd->size) - ilog2(lock_len); val = mask - (pow << shift); if (val & ~mask) return -EINVAL; /* Don't "lock" with no region! */ if (!(val & mask)) return -EINVAL; status_new = (status_old & ~mask & ~SR_TB) | val; /* Disallow further writes if WP pin is asserted */ status_new |= SR_SRWD; if (!use_top) status_new |= SR_TB; /* Don't bother if they're the same */ if (status_new == status_old) return 0; /* Only modify protection if it will not unlock other areas */ if ((status_new & mask) < (status_old & mask)) return -EINVAL; return write_sr_and_check(nor, status_new, mask); } /* * Unlock a region of the flash. See stm_lock() for more info * * Returns negative on errors, 0 on success. */ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; int status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; loff_t lock_len; bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; bool use_top; status_old = read_sr(nor); if (status_old < 0) return status_old; /* If nothing in our range is locked, we don't need to do anything */ if (stm_is_unlocked_sr(nor, ofs, len, status_old)) return 0; /* If anything below us is locked, we can't use 'top' protection */ if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) can_be_top = false; /* If anything above us is locked, we can't use 'bottom' protection */ if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), status_old)) can_be_bottom = false; if (!can_be_bottom && !can_be_top) return -EINVAL; /* Prefer top, if both are valid */ use_top = can_be_top; /* lock_len: length of region that should remain locked */ if (use_top) lock_len = mtd->size - (ofs + len); else lock_len = ofs; /* * Need largest pow such that: * * 1 / (2^pow) >= (len / size) * * so (assuming power-of-2 size) we do: * * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) */ pow = ilog2(mtd->size) - order_base_2(lock_len); if (lock_len == 0) { val = 0; /* fully unlocked */ } else { val = mask - (pow << shift); /* Some power-of-two sizes are not supported */ if (val & ~mask) return -EINVAL; } status_new = (status_old & ~mask & ~SR_TB) | val; /* Don't protect status register if we're fully unlocked */ if (lock_len == 0) status_new &= ~SR_SRWD; if (!use_top) status_new |= SR_TB; /* Don't bother if they're the same */ if (status_new == status_old) return 0; /* Only modify protection if it will not lock other areas */ if ((status_new & mask) > (status_old & mask)) return -EINVAL; return write_sr_and_check(nor, status_new, mask); } /* * Check if a region of the flash is (completely) locked. See stm_lock() for * more info. * * Returns 1 if entire region is locked, 0 if any portion is unlocked, and * negative on errors. */ static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) { int status; status = read_sr(nor); if (status < 0) return status; return stm_is_locked_sr(nor, ofs, len, status); } static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); if (ret) return ret; ret = nor->flash_lock(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); return ret; } static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); if (ret) return ret; ret = nor->flash_unlock(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); return ret; } static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); if (ret) return ret; ret = nor->flash_is_locked(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); return ret; } /* * Write status Register and configuration register with 2 bytes * The first byte will be written to the status register, while the * second byte will be written to the configuration register. * Return negative if error occurred. */ static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) { int ret; write_enable(nor); ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); if (ret < 0) { dev_err(nor->dev, "error while writing configuration register\n"); return -EINVAL; } ret = spi_nor_wait_till_ready(nor); if (ret) { dev_err(nor->dev, "timeout while writing configuration register\n"); return ret; } return 0; } /** * macronix_quad_enable() - set QE bit in Status Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Status Register. * * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. * * Return: 0 on success, -errno otherwise. */ static int macronix_quad_enable(struct spi_nor *nor) { int ret, val; val = read_sr(nor); if (val < 0) return val; if (val & SR_QUAD_EN_MX) return 0; write_enable(nor); write_sr(nor, val | SR_QUAD_EN_MX); ret = spi_nor_wait_till_ready(nor); if (ret) return ret; ret = read_sr(nor); if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { dev_err(nor->dev, "Macronix Quad bit not set\n"); return -EINVAL; } return 0; } /** * spansion_quad_enable() - set QE bit in Configuraiton Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Configuration Register. * This function is kept for legacy purpose because it has been used for a * long time without anybody complaining but it should be considered as * deprecated and maybe buggy. * First, this function doesn't care about the previous values of the Status * and Configuration Registers when it sets the QE bit (bit 1) in the * Configuration Register: all other bits are cleared, which may have unwanted * side effects like removing some block protections. * Secondly, it uses the Read Configuration Register (35h) instruction though * some very old and few memories don't support this instruction. If a pull-up * resistor is present on the MISO/IO1 line, we might still be able to pass the * "read back" test because the QSPI memory doesn't recognize the command, * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF. * * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI * memories. * * Return: 0 on success, -errno otherwise. */ static int spansion_quad_enable(struct spi_nor *nor) { u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN}; int ret; ret = write_sr_cr(nor, sr_cr); if (ret) return ret; /* read back and check it */ ret = read_cr(nor); if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { dev_err(nor->dev, "Spansion Quad bit not set\n"); return -EINVAL; } return 0; } /** * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Configuration Register. * This function should be used with QSPI memories not supporting the Read * Configuration Register (35h) instruction. * * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI * memories. * * Return: 0 on success, -errno otherwise. */ static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) { u8 sr_cr[2]; int ret; /* Keep the current value of the Status Register. */ ret = read_sr(nor); if (ret < 0) { dev_err(nor->dev, "error while reading status register\n"); return -EINVAL; } sr_cr[0] = ret; sr_cr[1] = CR_QUAD_EN_SPAN; return write_sr_cr(nor, sr_cr); } /** * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Configuration Register. * This function should be used with QSPI memories supporting the Read * Configuration Register (35h) instruction. * * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI * memories. * * Return: 0 on success, -errno otherwise. */ static int spansion_read_cr_quad_enable(struct spi_nor *nor) { struct device *dev = nor->dev; u8 sr_cr[2]; int ret; /* Check current Quad Enable bit value. */ ret = read_cr(nor); if (ret < 0) { dev_err(dev, "error while reading configuration register\n"); return -EINVAL; } if (ret & CR_QUAD_EN_SPAN) return 0; sr_cr[1] = ret | CR_QUAD_EN_SPAN; /* Keep the current value of the Status Register. */ ret = read_sr(nor); if (ret < 0) { dev_err(dev, "error while reading status register\n"); return -EINVAL; } sr_cr[0] = ret; ret = write_sr_cr(nor, sr_cr); if (ret) return ret; /* Read back and check it. */ ret = read_cr(nor); if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { dev_err(nor->dev, "Spansion Quad bit not set\n"); return -EINVAL; } return 0; } /** * sr2_bit7_quad_enable() - set QE bit in Status Register 2. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Status Register 2. * * This is one of the procedures to set the QE bit described in the SFDP * (JESD216 rev B) specification but no manufacturer using this procedure has * been identified yet, hence the name of the function. * * Return: 0 on success, -errno otherwise. */ static int sr2_bit7_quad_enable(struct spi_nor *nor) { u8 sr2; int ret; /* Check current Quad Enable bit value. */ ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); if (ret) return ret; if (sr2 & SR2_QUAD_EN_BIT7) return 0; /* Update the Quad Enable bit. */ sr2 |= SR2_QUAD_EN_BIT7; write_enable(nor); ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1); if (ret < 0) { dev_err(nor->dev, "error while writing status register 2\n"); return -EINVAL; } ret = spi_nor_wait_till_ready(nor); if (ret < 0) { dev_err(nor->dev, "timeout while writing status register 2\n"); return ret; } /* Read back and check it. */ ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1); if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) { dev_err(nor->dev, "SR2 Quad bit not set\n"); return -EINVAL; } return 0; } /** * spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits. * @nor: pointer to a 'struct spi_nor' * * Read-modify-write function that clears the Block Protection bits from the * Status Register without affecting other bits. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_clear_sr_bp(struct spi_nor *nor) { int ret; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; ret = read_sr(nor); if (ret < 0) { dev_err(nor->dev, "error while reading status register\n"); return ret; } write_enable(nor); ret = write_sr(nor, ret & ~mask); if (ret) { dev_err(nor->dev, "write to status register failed\n"); return ret; } ret = spi_nor_wait_till_ready(nor); if (ret) dev_err(nor->dev, "timeout while writing status register\n"); return ret; } /** * spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection * bits on spansion flashes. * @nor: pointer to a 'struct spi_nor' * * Read-modify-write function that clears the Block Protection bits from the * Status Register without affecting other bits. The function is tightly * coupled with the spansion_quad_enable() function. Both assume that the Write * Register with 16 bits, together with the Read Configuration Register (35h) * instructions are supported. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor) { int ret; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 sr_cr[2] = {0}; /* Check current Quad Enable bit value. */ ret = read_cr(nor); if (ret < 0) { dev_err(nor->dev, "error while reading configuration register\n"); return ret; } /* * When the configuration register Quad Enable bit is one, only the * Write Status (01h) command with two data bytes may be used. */ if (ret & CR_QUAD_EN_SPAN) { sr_cr[1] = ret; ret = read_sr(nor); if (ret < 0) { dev_err(nor->dev, "error while reading status register\n"); return ret; } sr_cr[0] = ret & ~mask; ret = write_sr_cr(nor, sr_cr); if (ret) dev_err(nor->dev, "16-bit write register failed\n"); return ret; } /* * If the Quad Enable bit is zero, use the Write Status (01h) command * with one data byte. */ return spi_nor_clear_sr_bp(nor); } /* Used when the "_ext_id" is two bytes at most */ #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ (_jedec_id) & 0xff, \ ((_ext_id) >> 8) & 0xff, \ (_ext_id) & 0xff, \ }, \ .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ (_jedec_id) & 0xff, \ ((_ext_id) >> 16) & 0xff, \ ((_ext_id) >> 8) & 0xff, \ (_ext_id) & 0xff, \ }, \ .id_len = 6, \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .addr_width = (_addr_width), \ .flags = (_flags), #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ (_jedec_id) & 0xff \ }, \ .id_len = 3, \ .sector_size = (8*_page_size), \ .n_sectors = (_n_sectors), \ .page_size = _page_size, \ .addr_width = 3, \ .flags = SPI_NOR_NO_FR | SPI_S3AN, static int is25lp256_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { /* * IS25LP256 supports 4B opcodes, but the BFPT advertises a * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width. * Overwrite the address width advertised by the BFPT. */ if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) == BFPT_DWORD1_ADDRESS_BYTES_3_ONLY) nor->addr_width = 4; return 0; } static struct spi_nor_fixups is25lp256_fixups = { .post_bfpt = is25lp256_post_bfpt_fixups, }; static int mx25l25635_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { /* * MX25L25635F supports 4B opcodes but MX25L25635E does not. * Unfortunately, Macronix has re-used the same JEDEC ID for both * variants which prevents us from defining a new entry in the parts * table. * We need a way to differentiate MX25L25635E and MX25L25635F, and it * seems that the F version advertises support for Fast Read 4-4-4 in * its BFPT table. */ if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4) nor->flags |= SNOR_F_4B_OPCODES; return 0; } static struct spi_nor_fixups mx25l25635_fixups = { .post_bfpt = mx25l25635_post_bfpt_fixups, }; /* NOTE: double check command sets and memory organization when you add * more nor chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. * * All newly added entries should describe *hardware* and should use SECT_4K * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage * scenarios excluding small sectors there is config option that can be * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. * For historical (and compatibility) reasons (before we got above config) some * old entries may be missing 4K flag. */ static const struct flash_info spi_nor_ids[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, /* EON -- en25xxx */ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, { "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) }, { "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) }, { "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ) }, { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, /* ESMT */ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) }, /* Everspin */ { "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, /* Fujitsu */ { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, /* GigaDevice */ { "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "gd25q256", INFO(0xc84019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) .quad_enable = macronix_quad_enable, }, /* Intel/Numonyx -- xxxs33b */ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, /* ISSI */ { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, { "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ) }, { "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ) }, { "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ) }, { "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) .fixups = &is25lp256_fixups }, { "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, /* Macronix */ { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) }, { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) }, { "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) }, { "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) }, { "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) }, { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, { "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) .fixups = &mx25l25635_fixups }, { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) }, { "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, { "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, { "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, /* Micron <--> ST Micro */ { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, /* Micron */ { "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512, SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ | SPI_NOR_4B_OPCODES) }, /* PMC */ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, /* Spansion/Cypress -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) }, { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | USE_CLSR) }, { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) }, { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, { "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, /* ST Microelectronics -- newer production may have feature updates */ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) }, { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) }, { "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) }, { "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) }, { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) }, /* Catalyst / On Semiconductor -- non-JEDEC */ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, /* Xilinx S3AN Internal Flash */ { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) }, { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) }, { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) }, { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) }, { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) }, /* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */ { "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { }, }; static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) { int tmp; u8 id[SPI_NOR_MAX_ID_LEN]; const struct flash_info *info; tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); if (tmp < 0) { dev_err(nor->dev, "error %d reading JEDEC ID\n", tmp); return ERR_PTR(tmp); } for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { info = &spi_nor_ids[tmp]; if (info->id_len) { if (!memcmp(info->id, id, info->id_len)) return &spi_nor_ids[tmp]; } } dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", SPI_NOR_MAX_ID_LEN, id); return ERR_PTR(-ENODEV); } static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); if (ret) return ret; while (len) { loff_t addr = from; if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) addr = spi_nor_s3an_addr_convert(nor, addr); ret = nor->read(nor, addr, len, buf); if (ret == 0) { /* We shouldn't see 0-length reads */ ret = -EIO; goto read_err; } if (ret < 0) goto read_err; WARN_ON(ret > len); *retlen += ret; buf += ret; from += ret; len -= ret; } ret = 0; read_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); return ret; } static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); size_t actual; int ret; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); if (ret) return ret; write_enable(nor); nor->sst_write_second = false; actual = to % 2; /* Start write from odd address. */ if (actual) { nor->program_opcode = SPINOR_OP_BP; /* write one byte. */ ret = nor->write(nor, to, 1, buf); if (ret < 0) goto sst_write_err; WARN(ret != 1, "While writing 1 byte written %i bytes\n", (int)ret); ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; } to += actual; /* Write out most of the data here. */ for (; actual < len - 1; actual += 2) { nor->program_opcode = SPINOR_OP_AAI_WP; /* write two bytes. */ ret = nor->write(nor, to, 2, buf + actual); if (ret < 0) goto sst_write_err; WARN(ret != 2, "While writing 2 bytes written %i bytes\n", (int)ret); ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; to += 2; nor->sst_write_second = true; } nor->sst_write_second = false; write_disable(nor); ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; /* Write out trailing byte if it exists. */ if (actual != len) { write_enable(nor); nor->program_opcode = SPINOR_OP_BP; ret = nor->write(nor, to, 1, buf + actual); if (ret < 0) goto sst_write_err; WARN(ret != 1, "While writing 1 byte written %i bytes\n", (int)ret); ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; write_disable(nor); actual += 1; } sst_write_err: *retlen += actual; spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); return ret; } /* * Write an address range to the nor chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); size_t page_offset, page_remain, i; ssize_t ret; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); if (ret) return ret; for (i = 0; i < len; ) { ssize_t written; loff_t addr = to + i; /* * If page_size is a power of two, the offset can be quickly * calculated with an AND operation. On the other cases we * need to do a modulus operation (more expensive). * Power of two numbers have only one bit set and we can use * the instruction hweight32 to detect if we need to do a * modulus (do_div()) or not. */ if (hweight32(nor->page_size) == 1) { page_offset = addr & (nor->page_size - 1); } else { uint64_t aux = addr; page_offset = do_div(aux, nor->page_size); } /* the size of data remaining on the first page */ page_remain = min_t(size_t, nor->page_size - page_offset, len - i); if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) addr = spi_nor_s3an_addr_convert(nor, addr); write_enable(nor); ret = nor->write(nor, addr, page_remain, buf + i); if (ret < 0) goto write_err; written = ret; ret = spi_nor_wait_till_ready(nor); if (ret) goto write_err; *retlen += written; i += written; } write_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); return ret; } static int spi_nor_check(struct spi_nor *nor) { if (!nor->dev || !nor->read || !nor->write || !nor->read_reg || !nor->write_reg) { pr_err("spi-nor: please fill all the necessary fields!\n"); return -EINVAL; } return 0; } static int s3an_nor_scan(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); return ret; } nor->erase_opcode = SPINOR_OP_XSE; nor->program_opcode = SPINOR_OP_XPP; nor->read_opcode = SPINOR_OP_READ; nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; /* * This flashes have a page size of 264 or 528 bytes (known as * Default addressing mode). It can be changed to a more standard * Power of two mode where the page size is 256/512. This comes * with a price: there is 3% less of space, the data is corrupted * and the page size cannot be changed back to default addressing * mode. * * The current addressing mode can be read from the XRDSR register * and should not be changed, because is a destructive operation. */ if (val & XSR_PAGESIZE) { /* Flash in Power of 2 mode */ nor->page_size = (nor->page_size == 264) ? 256 : 512; nor->mtd.writebufsize = nor->page_size; nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors; nor->mtd.erasesize = 8 * nor->page_size; } else { /* Flash in Default addressing mode */ nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT; } return 0; } static void spi_nor_set_read_settings(struct spi_nor_read_command *read, u8 num_mode_clocks, u8 num_wait_states, u8 opcode, enum spi_nor_protocol proto) { read->num_mode_clocks = num_mode_clocks; read->num_wait_states = num_wait_states; read->opcode = opcode; read->proto = proto; } static void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, enum spi_nor_protocol proto) { pp->opcode = opcode; pp->proto = proto; } static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == (int)hwcaps) return table[i][1]; return -EINVAL; } static int spi_nor_hwcaps_read2cmd(u32 hwcaps) { static const int hwcaps_read2cmd[][2] = { { SNOR_HWCAPS_READ, SNOR_CMD_READ }, { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, ARRAY_SIZE(hwcaps_read2cmd)); } static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) { static const int hwcaps_pp2cmd[][2] = { { SNOR_HWCAPS_PP, SNOR_CMD_PP }, { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, ARRAY_SIZE(hwcaps_pp2cmd)); } /* * Serial Flash Discoverable Parameters (SFDP) parsing. */ /** * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, * addr_width and read_dummy members of the struct spi_nor * should be previously * set. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the serial flash memory * @len: number of bytes to read * @buf: buffer where the data is copied into (dma-safe memory) * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) { int ret; while (len) { ret = nor->read(nor, addr, len, buf); if (!ret || ret > len) return -EIO; if (ret < 0) return ret; buf += ret; addr += ret; len -= ret; } return 0; } /** * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the SFDP area to start reading data from * @len: number of bytes to read * @buf: buffer where the SFDP data are copied into (dma-safe memory) * * Whatever the actual numbers of bytes for address and dummy cycles are * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always * followed by a 3-byte address and 8 dummy clock cycles. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, size_t len, void *buf) { u8 addr_width, read_opcode, read_dummy; int ret; read_opcode = nor->read_opcode; addr_width = nor->addr_width; read_dummy = nor->read_dummy; nor->read_opcode = SPINOR_OP_RDSFDP; nor->addr_width = 3; nor->read_dummy = 8; ret = spi_nor_read_raw(nor, addr, len, buf); nor->read_opcode = read_opcode; nor->addr_width = addr_width; nor->read_dummy = read_dummy; return ret; } /** * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the SFDP area to start reading data from * @len: number of bytes to read * @buf: buffer where the SFDP data are copied into * * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not * guaranteed to be dma-safe. * * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() * otherwise. */ static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, size_t len, void *buf) { void *dma_safe_buf; int ret; dma_safe_buf = kmalloc(len, GFP_KERNEL); if (!dma_safe_buf) return -ENOMEM; ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); memcpy(buf, dma_safe_buf, len); kfree(dma_safe_buf); return ret; } /* Fast Read settings. */ static void spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, u16 half, enum spi_nor_protocol proto) { read->num_mode_clocks = (half >> 5) & 0x07; read->num_wait_states = (half >> 0) & 0x1f; read->opcode = (half >> 8) & 0xff; read->proto = proto; } struct sfdp_bfpt_read { /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ u32 hwcaps; /* * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us * whether the Fast Read x-y-z command is supported. */ u32 supported_dword; u32 supported_bit; /* * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD * encodes the op code, the number of mode clocks and the number of wait * states to be used by Fast Read x-y-z command. */ u32 settings_dword; u32 settings_shift; /* The SPI protocol for this Fast Read x-y-z command. */ enum spi_nor_protocol proto; }; static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { /* Fast Read 1-1-2 */ { SNOR_HWCAPS_READ_1_1_2, BFPT_DWORD(1), BIT(16), /* Supported bit */ BFPT_DWORD(4), 0, /* Settings */ SNOR_PROTO_1_1_2, }, /* Fast Read 1-2-2 */ { SNOR_HWCAPS_READ_1_2_2, BFPT_DWORD(1), BIT(20), /* Supported bit */ BFPT_DWORD(4), 16, /* Settings */ SNOR_PROTO_1_2_2, }, /* Fast Read 2-2-2 */ { SNOR_HWCAPS_READ_2_2_2, BFPT_DWORD(5), BIT(0), /* Supported bit */ BFPT_DWORD(6), 16, /* Settings */ SNOR_PROTO_2_2_2, }, /* Fast Read 1-1-4 */ { SNOR_HWCAPS_READ_1_1_4, BFPT_DWORD(1), BIT(22), /* Supported bit */ BFPT_DWORD(3), 16, /* Settings */ SNOR_PROTO_1_1_4, }, /* Fast Read 1-4-4 */ { SNOR_HWCAPS_READ_1_4_4, BFPT_DWORD(1), BIT(21), /* Supported bit */ BFPT_DWORD(3), 0, /* Settings */ SNOR_PROTO_1_4_4, }, /* Fast Read 4-4-4 */ { SNOR_HWCAPS_READ_4_4_4, BFPT_DWORD(5), BIT(4), /* Supported bit */ BFPT_DWORD(7), 16, /* Settings */ SNOR_PROTO_4_4_4, }, }; struct sfdp_bfpt_erase { /* * The half-word at offset <shift> in DWORD <dwoard> encodes the * op code and erase sector size to be used by Sector Erase commands. */ u32 dword; u32 shift; }; static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { /* Erase Type 1 in DWORD8 bits[15:0] */ {BFPT_DWORD(8), 0}, /* Erase Type 2 in DWORD8 bits[31:16] */ {BFPT_DWORD(8), 16}, /* Erase Type 3 in DWORD9 bits[15:0] */ {BFPT_DWORD(9), 0}, /* Erase Type 4 in DWORD9 bits[31:16] */ {BFPT_DWORD(9), 16}, }; /** * spi_nor_set_erase_type() - set a SPI NOR erase type * @erase: pointer to a structure that describes a SPI NOR erase type * @size: the size of the sector/block erased by the erase type * @opcode: the SPI command op code to erase the sector/block */ static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, u8 opcode) { erase->size = size; erase->opcode = opcode; /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ erase->size_shift = ffs(erase->size) - 1; erase->size_mask = (1 << erase->size_shift) - 1; } /** * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT * @erase: pointer to a structure that describes a SPI NOR erase type * @size: the size of the sector/block erased by the erase type * @opcode: the SPI command op code to erase the sector/block * @i: erase type index as sorted in the Basic Flash Parameter Table * * The supported Erase Types will be sorted at init in ascending order, with * the smallest Erase Type size being the first member in the erase_type array * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in * the Basic Flash Parameter Table since it will be used later on to * synchronize with the supported Erase Types defined in SFDP optional tables. */ static void spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, u32 size, u8 opcode, u8 i) { erase->idx = i; spi_nor_set_erase_type(erase, size, opcode); } /** * spi_nor_map_cmp_erase_type() - compare the map's erase types by size * @l: member in the left half of the map's erase_type array * @r: member in the right half of the map's erase_type array * * Comparison function used in the sort() call to sort in ascending order the * map's erase types, the smallest erase type size being the first member in the * sorted erase_type array. * * Return: the result of @l->size - @r->size */ static int spi_nor_map_cmp_erase_type(const void *l, const void *r) { const struct spi_nor_erase_type *left = l, *right = r; return left->size - right->size; } /** * spi_nor_sort_erase_mask() - sort erase mask * @map: the erase map of the SPI NOR * @erase_mask: the erase type mask to be sorted * * Replicate the sort done for the map's erase types in BFPT: sort the erase * mask in ascending order with the smallest erase type size starting from * BIT(0) in the sorted erase mask. * * Return: sorted erase mask. */ static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) { struct spi_nor_erase_type *erase_type = map->erase_type; int i; u8 sorted_erase_mask = 0; if (!erase_mask) return 0; /* Replicate the sort done for the map's erase types. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) sorted_erase_mask |= BIT(i); return sorted_erase_mask; } /** * spi_nor_regions_sort_erase_types() - sort erase types in each region * @map: the erase map of the SPI NOR * * Function assumes that the erase types defined in the erase map are already * sorted in ascending order, with the smallest erase type size being the first * member in the erase_type array. It replicates the sort done for the map's * erase types. Each region's erase bitmask will indicate which erase types are * supported from the sorted erase types defined in the erase map. * Sort the all region's erase type at init in order to speed up the process of * finding the best erase command at runtime. */ static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) { struct spi_nor_erase_region *region = map->regions; u8 region_erase_mask, sorted_erase_mask; while (region) { region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; sorted_erase_mask = spi_nor_sort_erase_mask(map, region_erase_mask); /* Overwrite erase mask. */ region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | sorted_erase_mask; region = spi_nor_region_next(region); } } /** * spi_nor_init_uniform_erase_map() - Initialize uniform erase map * @map: the erase map of the SPI NOR * @erase_mask: bitmask encoding erase types that can erase the entire * flash memory * @flash_size: the spi nor flash memory size */ static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, u8 erase_mask, u64 flash_size) { /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | SNOR_LAST_REGION; map->uniform_region.size = flash_size; map->regions = &map->uniform_region; map->uniform_erase_type = erase_mask; } static int spi_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { if (nor->info->fixups && nor->info->fixups->post_bfpt) return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt, params); return 0; } /** * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. * @nor: pointer to a 'struct spi_nor' * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing * the Basic Flash Parameter Table length and version * @params: pointer to the 'struct spi_nor_flash_parameter' to be * filled * * The Basic Flash Parameter Table is the main and only mandatory table as * defined by the SFDP (JESD216) specification. * It provides us with the total size (memory density) of the data array and * the number of address bytes for Fast Read, Page Program and Sector Erase * commands. * For Fast READ commands, it also gives the number of mode clock cycles and * wait states (regrouped in the number of dummy clock cycles) for each * supported instruction op code. * For Page Program, the page size is now available since JESD216 rev A, however * the supported instruction op codes are still not provided. * For Sector Erase commands, this table stores the supported instruction op * codes and the associated sector sizes. * Finally, the Quad Enable Requirements (QER) are also available since JESD216 * rev A. The QER bits encode the manufacturer dependent procedure to be * executed to set the Quad Enable (QE) bit in some internal register of the * Quad SPI memory. Indeed the QE bit, when it exists, must be set before * sending any Quad SPI command to the memory. Actually, setting the QE bit * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 * and IO3 hence enabling 4 (Quad) I/O lines. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_bfpt(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, struct spi_nor_flash_parameter *params) { struct spi_nor_erase_map *map = &nor->erase_map; struct spi_nor_erase_type *erase_type = map->erase_type; struct sfdp_bfpt bfpt; size_t len; int i, cmd, err; u32 addr; u16 half; u8 erase_mask; /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) return -EINVAL; /* Read the Basic Flash Parameter Table. */ len = min_t(size_t, sizeof(bfpt), bfpt_header->length * sizeof(u32)); addr = SFDP_PARAM_HEADER_PTP(bfpt_header); memset(&bfpt, 0, sizeof(bfpt)); err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); if (err < 0) return err; /* Fix endianness of the BFPT DWORDs. */ for (i = 0; i < BFPT_DWORD_MAX; i++) bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); /* Number of address bytes. */ switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: nor->addr_width = 3; break; case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: nor->addr_width = 4; break; default: break; } /* Flash Memory Density (in bits). */ params->size = bfpt.dwords[BFPT_DWORD(2)]; if (params->size & BIT(31)) { params->size &= ~BIT(31); /* * Prevent overflows on params->size. Anyway, a NOR of 2^64 * bits is unlikely to exist so this error probably means * the BFPT we are reading is corrupted/wrong. */ if (params->size > 63) return -EINVAL; params->size = 1ULL << params->size; } else { params->size++; } params->size >>= 3; /* Convert to bytes. */ /* Fast Read settings. */ for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; struct spi_nor_read_command *read; if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { params->hwcaps.mask &= ~rd->hwcaps; continue; } params->hwcaps.mask |= rd->hwcaps; cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); read = ¶ms->reads[cmd]; half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); } /* * Sector Erase settings. Reinitialize the uniform erase map using the * Erase Types defined in the bfpt table. */ erase_mask = 0; memset(&nor->erase_map, 0, sizeof(nor->erase_map)); for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; u32 erasesize; u8 opcode; half = bfpt.dwords[er->dword] >> er->shift; erasesize = half & 0xff; /* erasesize == 0 means this Erase Type is not supported. */ if (!erasesize) continue; erasesize = 1U << erasesize; opcode = (half >> 8) & 0xff; erase_mask |= BIT(i); spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, opcode, i); } spi_nor_init_uniform_erase_map(map, erase_mask, params->size); /* * Sort all the map's Erase Types in ascending order with the smallest * erase size being the first member in the erase_type array. */ sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), spi_nor_map_cmp_erase_type, NULL); /* * Sort the erase types in the uniform region in order to update the * uniform_erase_type bitmask. The bitmask will be used later on when * selecting the uniform erase. */ spi_nor_regions_sort_erase_types(map); map->uniform_erase_type = map->uniform_region.offset & SNOR_ERASE_TYPE_MASK; /* Stop here if not JESD216 rev A or later. */ if (bfpt_header->length < BFPT_DWORD_MAX) return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ params->page_size = bfpt.dwords[BFPT_DWORD(11)]; params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; params->page_size = 1U << params->page_size; /* Quad Enable Requirements. */ switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { case BFPT_DWORD15_QER_NONE: params->quad_enable = NULL; break; case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: params->quad_enable = spansion_no_read_cr_quad_enable; break; case BFPT_DWORD15_QER_SR1_BIT6: params->quad_enable = macronix_quad_enable; break; case BFPT_DWORD15_QER_SR2_BIT7: params->quad_enable = sr2_bit7_quad_enable; break; case BFPT_DWORD15_QER_SR2_BIT1: params->quad_enable = spansion_read_cr_quad_enable; break; default: return -EINVAL; } return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); } #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) #define SMPT_CMD_READ_DUMMY_SHIFT 16 #define SMPT_CMD_READ_DUMMY(_cmd) \ (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) #define SMPT_CMD_READ_DATA_SHIFT 24 #define SMPT_CMD_READ_DATA(_cmd) \ (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) #define SMPT_CMD_OPCODE_SHIFT 8 #define SMPT_CMD_OPCODE(_cmd) \ (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) #define SMPT_MAP_REGION_COUNT_SHIFT 16 #define SMPT_MAP_REGION_COUNT(_header) \ ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ SMPT_MAP_REGION_COUNT_SHIFT) + 1) #define SMPT_MAP_ID_MASK GENMASK(15, 8) #define SMPT_MAP_ID_SHIFT 8 #define SMPT_MAP_ID(_header) \ (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) #define SMPT_MAP_REGION_SIZE_SHIFT 8 #define SMPT_MAP_REGION_SIZE(_region) \ (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) #define SMPT_DESC_TYPE_MAP BIT(1) #define SMPT_DESC_END BIT(0) /** * spi_nor_smpt_addr_width() - return the address width used in the * configuration detection command. * @nor: pointer to a 'struct spi_nor' * @settings: configuration detection command descriptor, dword1 */ static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings) { switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { case SMPT_CMD_ADDRESS_LEN_0: return 0; case SMPT_CMD_ADDRESS_LEN_3: return 3; case SMPT_CMD_ADDRESS_LEN_4: return 4; case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: /* fall through */ default: return nor->addr_width; } } /** * spi_nor_smpt_read_dummy() - return the configuration detection command read * latency, in clock cycles. * @nor: pointer to a 'struct spi_nor' * @settings: configuration detection command descriptor, dword1 * * Return: the number of dummy cycles for an SMPT read */ static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) { u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) return nor->read_dummy; return read_dummy; } /** * spi_nor_get_map_in_use() - get the configuration map in use * @nor: pointer to a 'struct spi_nor' * @smpt: pointer to the sector map parameter table * @smpt_len: sector map parameter table length * * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. */ static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, u8 smpt_len) { const u32 *ret; u8 *buf; u32 addr; int err; u8 i; u8 addr_width, read_opcode, read_dummy; u8 read_data_mask, map_id; /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ buf = kmalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return ERR_PTR(-ENOMEM); addr_width = nor->addr_width; read_dummy = nor->read_dummy; read_opcode = nor->read_opcode; map_id = 0; /* Determine if there are any optional Detection Command Descriptors */ for (i = 0; i < smpt_len; i += 2) { if (smpt[i] & SMPT_DESC_TYPE_MAP) break; read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]); nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); addr = smpt[i + 1]; err = spi_nor_read_raw(nor, addr, 1, buf); if (err) { ret = ERR_PTR(err); goto out; } /* * Build an index value that is used to select the Sector Map * Configuration that is currently in use. */ map_id = map_id << 1 | !!(*buf & read_data_mask); } /* * If command descriptors are provided, they always precede map * descriptors in the table. There is no need to start the iteration * over smpt array all over again. * * Find the matching configuration map. */ ret = ERR_PTR(-EINVAL); while (i < smpt_len) { if (SMPT_MAP_ID(smpt[i]) == map_id) { ret = smpt + i; break; } /* * If there are no more configuration map descriptors and no * configuration ID matched the configuration identifier, the * sector address map is unknown. */ if (smpt[i] & SMPT_DESC_END) break; /* increment the table index to the next map */ i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; } /* fall through */ out: kfree(buf); nor->addr_width = addr_width; nor->read_dummy = read_dummy; nor->read_opcode = read_opcode; return ret; } /** * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid * @region: pointer to a structure that describes a SPI NOR erase region * @erase: pointer to a structure that describes a SPI NOR erase type * @erase_type: erase type bitmask */ static void spi_nor_region_check_overlay(struct spi_nor_erase_region *region, const struct spi_nor_erase_type *erase, const u8 erase_type) { int i; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { if (!(erase_type & BIT(i))) continue; if (region->size & erase[i].size_mask) { spi_nor_region_mark_overlay(region); return; } } } /** * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map * @nor: pointer to a 'struct spi_nor' * @smpt: pointer to the sector map parameter table * * Return: 0 on success, -errno otherwise. */ static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, const u32 *smpt) { struct spi_nor_erase_map *map = &nor->erase_map; struct spi_nor_erase_type *erase = map->erase_type; struct spi_nor_erase_region *region; u64 offset; u32 region_count; int i, j; u8 uniform_erase_type, save_uniform_erase_type; u8 erase_type, regions_erase_type; region_count = SMPT_MAP_REGION_COUNT(*smpt); /* * The regions will be freed when the driver detaches from the * device. */ region = devm_kcalloc(nor->dev, region_count, sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; map->regions = region; uniform_erase_type = 0xff; regions_erase_type = 0; offset = 0; /* Populate regions. */ for (i = 0; i < region_count; i++) { j = i + 1; /* index for the region dword */ region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); region[i].offset = offset | erase_type; spi_nor_region_check_overlay(®ion[i], erase, erase_type); /* * Save the erase types that are supported in all regions and * can erase the entire flash memory. */ uniform_erase_type &= erase_type; /* * regions_erase_type mask will indicate all the erase types * supported in this configuration map. */ regions_erase_type |= erase_type; offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + region[i].size; } save_uniform_erase_type = map->uniform_erase_type; map->uniform_erase_type = spi_nor_sort_erase_mask(map, uniform_erase_type); if (!regions_erase_type) { /* * Roll back to the previous uniform_erase_type mask, SMPT is * broken. */ map->uniform_erase_type = save_uniform_erase_type; return -EINVAL; } /* * BFPT advertises all the erase types supported by all the possible * map configurations. Mask out the erase types that are not supported * by the current map configuration. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) if (!(regions_erase_type & BIT(erase[i].idx))) spi_nor_set_erase_type(&erase[i], 0, 0xFF); spi_nor_region_mark_end(®ion[i - 1]); return 0; } /** * spi_nor_parse_smpt() - parse Sector Map Parameter Table * @nor: pointer to a 'struct spi_nor' * @smpt_header: sector map parameter table header * * This table is optional, but when available, we parse it to identify the * location and size of sectors within the main data array of the flash memory * device and to identify which Erase Types are supported by each sector. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_smpt(struct spi_nor *nor, const struct sfdp_parameter_header *smpt_header) { const u32 *sector_map; u32 *smpt; size_t len; u32 addr; int i, ret; /* Read the Sector Map Parameter Table. */ len = smpt_header->length * sizeof(*smpt); smpt = kmalloc(len, GFP_KERNEL); if (!smpt) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(smpt_header); ret = spi_nor_read_sfdp(nor, addr, len, smpt); if (ret) goto out; /* Fix endianness of the SMPT DWORDs. */ for (i = 0; i < smpt_header->length; i++) smpt[i] = le32_to_cpu(smpt[i]); sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); if (IS_ERR(sector_map)) { ret = PTR_ERR(sector_map); goto out; } ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); if (ret) goto out; spi_nor_regions_sort_erase_types(&nor->erase_map); /* fall through */ out: kfree(smpt); return ret; } #define SFDP_4BAIT_DWORD_MAX 2 struct sfdp_4bait { /* The hardware capability. */ u32 hwcaps; /* * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether * the associated 4-byte address op code is supported. */ u32 supported_bit; }; /** * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table * @nor: pointer to a 'struct spi_nor'. * @param_header: pointer to the 'struct sfdp_parameter_header' describing * the 4-Byte Address Instruction Table length and version. * @params: pointer to the 'struct spi_nor_flash_parameter' to be. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_4bait(struct spi_nor *nor, const struct sfdp_parameter_header *param_header, struct spi_nor_flash_parameter *params) { static const struct sfdp_4bait reads[] = { { SNOR_HWCAPS_READ, BIT(0) }, { SNOR_HWCAPS_READ_FAST, BIT(1) }, { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, }; static const struct sfdp_4bait programs[] = { { SNOR_HWCAPS_PP, BIT(6) }, { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, }; static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { { 0u /* not used */, BIT(9) }, { 0u /* not used */, BIT(10) }, { 0u /* not used */, BIT(11) }, { 0u /* not used */, BIT(12) }, }; struct spi_nor_pp_command *params_pp = params->page_programs; struct spi_nor_erase_map *map = &nor->erase_map; struct spi_nor_erase_type *erase_type = map->erase_type; u32 *dwords; size_t len; u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; int i, ret; if (param_header->major != SFDP_JESD216_MAJOR || param_header->length < SFDP_4BAIT_DWORD_MAX) return -EINVAL; /* Read the 4-byte Address Instruction Table. */ len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ dwords = kmalloc(len, GFP_KERNEL); if (!dwords) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(param_header); ret = spi_nor_read_sfdp(nor, addr, len, dwords); if (ret) return ret; /* Fix endianness of the 4BAIT DWORDs. */ for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++) dwords[i] = le32_to_cpu(dwords[i]); /* * Compute the subset of (Fast) Read commands for which the 4-byte * version is supported. */ discard_hwcaps = 0; read_hwcaps = 0; for (i = 0; i < ARRAY_SIZE(reads); i++) { const struct sfdp_4bait *read = &reads[i]; discard_hwcaps |= read->hwcaps; if ((params->hwcaps.mask & read->hwcaps) && (dwords[0] & read->supported_bit)) read_hwcaps |= read->hwcaps; } /* * Compute the subset of Page Program commands for which the 4-byte * version is supported. */ pp_hwcaps = 0; for (i = 0; i < ARRAY_SIZE(programs); i++) { const struct sfdp_4bait *program = &programs[i]; /* * The 4 Byte Address Instruction (Optional) Table is the only * SFDP table that indicates support for Page Program Commands. * Bypass the params->hwcaps.mask and consider 4BAIT the biggest * authority for specifying Page Program support. */ discard_hwcaps |= program->hwcaps; if (dwords[0] & program->supported_bit) pp_hwcaps |= program->hwcaps; } /* * Compute the subset of Sector Erase commands for which the 4-byte * version is supported. */ erase_mask = 0; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { const struct sfdp_4bait *erase = &erases[i]; if (dwords[0] & erase->supported_bit) erase_mask |= BIT(i); } /* Replicate the sort done for the map's erase types in BFPT. */ erase_mask = spi_nor_sort_erase_mask(map, erase_mask); /* * We need at least one 4-byte op code per read, program and erase * operation; the .read(), .write() and .erase() hooks share the * nor->addr_width value. */ if (!read_hwcaps || !pp_hwcaps || !erase_mask) goto out; /* * Discard all operations from the 4-byte instruction set which are * not supported by this memory. */ params->hwcaps.mask &= ~discard_hwcaps; params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); /* Use the 4-byte address instruction set. */ for (i = 0; i < SNOR_CMD_READ_MAX; i++) { struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); } /* 4BAIT is the only SFDP table that indicates page program support. */ if (pp_hwcaps & SNOR_HWCAPS_PP) spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4_4B, SNOR_PROTO_1_1_4); if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], SPINOR_OP_PP_1_4_4_4B, SNOR_PROTO_1_4_4); for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { if (erase_mask & BIT(i)) erase_type[i].opcode = (dwords[1] >> erase_type[i].idx * 8) & 0xFF; else spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); } /* * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() * later because we already did the conversion to 4byte opcodes. Also, * this latest function implements a legacy quirk for the erase size of * Spansion memory. However this quirk is no longer needed with new * SFDP compliant memories. */ nor->addr_width = 4; nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; /* fall through */ out: kfree(dwords); return ret; } /** * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @params: pointer to the 'struct spi_nor_flash_parameter' to be * filled * * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 * specification. This is a standard which tends to supported by almost all * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at * runtime the main parameters needed to perform basic SPI flash operations such * as Fast Read, Page Program or Sector Erase commands. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_sfdp(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { const struct sfdp_parameter_header *param_header, *bfpt_header; struct sfdp_parameter_header *param_headers = NULL; struct sfdp_header header; struct device *dev = nor->dev; size_t psize; int i, err; /* Get the SFDP header. */ err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); if (err < 0) return err; /* Check the SFDP header version. */ if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || header.major != SFDP_JESD216_MAJOR) return -EINVAL; /* * Verify that the first and only mandatory parameter header is a * Basic Flash Parameter Table header as specified in JESD216. */ bfpt_header = &header.bfpt_header; if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || bfpt_header->major != SFDP_JESD216_MAJOR) return -EINVAL; /* * Allocate memory then read all parameter headers with a single * Read SFDP command. These parameter headers will actually be parsed * twice: a first time to get the latest revision of the basic flash * parameter table, then a second time to handle the supported optional * tables. * Hence we read the parameter headers once for all to reduce the * processing time. Also we use kmalloc() instead of devm_kmalloc() * because we don't need to keep these parameter headers: the allocated * memory is always released with kfree() before exiting this function. */ if (header.nph) { psize = header.nph * sizeof(*param_headers); param_headers = kmalloc(psize, GFP_KERNEL); if (!param_headers) return -ENOMEM; err = spi_nor_read_sfdp(nor, sizeof(header), psize, param_headers); if (err < 0) { dev_err(dev, "failed to read SFDP parameter headers\n"); goto exit; } } /* * Check other parameter headers to get the latest revision of * the basic flash parameter table. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && param_header->major == SFDP_JESD216_MAJOR && (param_header->minor > bfpt_header->minor || (param_header->minor == bfpt_header->minor && param_header->length > bfpt_header->length))) bfpt_header = param_header; } err = spi_nor_parse_bfpt(nor, bfpt_header, params); if (err) goto exit; /* Parse optional parameter tables. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; switch (SFDP_PARAM_HEADER_ID(param_header)) { case SFDP_SECTOR_MAP_ID: err = spi_nor_parse_smpt(nor, param_header); break; case SFDP_4BAIT_ID: err = spi_nor_parse_4bait(nor, param_header, params); break; default: break; } if (err) { dev_warn(dev, "Failed to parse optional parameter table: %04x\n", SFDP_PARAM_HEADER_ID(param_header)); /* * Let's not drop all information we extracted so far * if optional table parsers fail. In case of failing, * each optional parser is responsible to roll back to * the previously known spi_nor data. */ err = 0; } } exit: kfree(param_headers); return err; } static int spi_nor_init_params(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { struct spi_nor_erase_map *map = &nor->erase_map; const struct flash_info *info = nor->info; u8 i, erase_mask; /* Set legacy flash parameters as default. */ memset(params, 0, sizeof(*params)); /* Set SPI NOR sizes. */ params->size = (u64)info->sector_size * info->n_sectors; params->page_size = info->page_size; /* (Fast) Read settings. */ params->hwcaps.mask |= SNOR_HWCAPS_READ; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 0, 0, SPINOR_OP_READ, SNOR_PROTO_1_1_1); if (!(info->flags & SPI_NOR_NO_FR)) { params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 0, 8, SPINOR_OP_READ_FAST, SNOR_PROTO_1_1_1); } if (info->flags & SPI_NOR_DUAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 0, 8, SPINOR_OP_READ_1_1_2, SNOR_PROTO_1_1_2); } if (info->flags & SPI_NOR_QUAD_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 0, 8, SPINOR_OP_READ_1_1_4, SNOR_PROTO_1_1_4); } if (info->flags & SPI_NOR_OCTAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 0, 8, SPINOR_OP_READ_1_1_8, SNOR_PROTO_1_1_8); } /* Page Program settings. */ params->hwcaps.mask |= SNOR_HWCAPS_PP; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP, SNOR_PROTO_1_1_1); /* * Sector Erase settings. Sort Erase Types in ascending order, with the * smallest erase size starting at BIT(0). */ erase_mask = 0; i = 0; if (info->flags & SECT_4K_PMC) { erase_mask |= BIT(i); spi_nor_set_erase_type(&map->erase_type[i], 4096u, SPINOR_OP_BE_4K_PMC); i++; } else if (info->flags & SECT_4K) { erase_mask |= BIT(i); spi_nor_set_erase_type(&map->erase_type[i], 4096u, SPINOR_OP_BE_4K); i++; } erase_mask |= BIT(i); spi_nor_set_erase_type(&map->erase_type[i], info->sector_size, SPINOR_OP_SE); spi_nor_init_uniform_erase_map(map, erase_mask, params->size); /* Select the procedure to set the Quad Enable bit. */ if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | SNOR_HWCAPS_PP_QUAD)) { switch (JEDEC_MFR(info)) { case SNOR_MFR_MACRONIX: params->quad_enable = macronix_quad_enable; break; case SNOR_MFR_ST: case SNOR_MFR_MICRON: break; default: /* Kept only for backward compatibility purpose. */ params->quad_enable = spansion_quad_enable; break; } /* * Some manufacturer like GigaDevice may use different * bit to set QE on different memories, so the MFR can't * indicate the quad_enable method for this case, we need * set it in flash info list. */ if (info->quad_enable) params->quad_enable = info->quad_enable; } if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && !(info->flags & SPI_NOR_SKIP_SFDP)) { struct spi_nor_flash_parameter sfdp_params; struct spi_nor_erase_map prev_map; memcpy(&sfdp_params, params, sizeof(sfdp_params)); memcpy(&prev_map, &nor->erase_map, sizeof(prev_map)); if (spi_nor_parse_sfdp(nor, &sfdp_params)) { nor->addr_width = 0; nor->flags &= ~SNOR_F_4B_OPCODES; /* restore previous erase map */ memcpy(&nor->erase_map, &prev_map, sizeof(nor->erase_map)); } else { memcpy(params, &sfdp_params, sizeof(*params)); } } return 0; } static int spi_nor_select_read(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; const struct spi_nor_read_command *read; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; read = ¶ms->reads[cmd]; nor->read_opcode = read->opcode; nor->read_proto = read->proto; /* * In the spi-nor framework, we don't need to make the difference * between mode clock cycles and wait state clock cycles. * Indeed, the value of the mode clock cycles is used by a QSPI * flash memory to know whether it should enter or leave its 0-4-4 * (Continuous Read / XIP) mode. * eXecution In Place is out of the scope of the mtd sub-system. * Hence we choose to merge both mode and wait state clock cycles * into the so called dummy clock cycles. */ nor->read_dummy = read->num_mode_clocks + read->num_wait_states; return 0; } static int spi_nor_select_pp(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; const struct spi_nor_pp_command *pp; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; pp = ¶ms->page_programs[cmd]; nor->program_opcode = pp->opcode; nor->write_proto = pp->proto; return 0; } /** * spi_nor_select_uniform_erase() - select optimum uniform erase type * @map: the erase map of the SPI NOR * @wanted_size: the erase type size to search for. Contains the value of * info->sector_size or of the "small sector" size in case * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined. * * Once the optimum uniform sector erase command is found, disable all the * other. * * Return: pointer to erase type on success, NULL otherwise. */ static const struct spi_nor_erase_type * spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, const u32 wanted_size) { const struct spi_nor_erase_type *tested_erase, *erase = NULL; int i; u8 uniform_erase_type = map->uniform_erase_type; for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { if (!(uniform_erase_type & BIT(i))) continue; tested_erase = &map->erase_type[i]; /* * If the current erase size is the one, stop here: * we have found the right uniform Sector Erase command. */ if (tested_erase->size == wanted_size) { erase = tested_erase; break; } /* * Otherwise, the current erase size is still a valid canditate. * Select the biggest valid candidate. */ if (!erase && tested_erase->size) erase = tested_erase; /* keep iterating to find the wanted_size */ } if (!erase) return NULL; /* Disable all other Sector Erase commands. */ map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; map->uniform_erase_type |= BIT(erase - map->erase_type); return erase; } static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size) { struct spi_nor_erase_map *map = &nor->erase_map; const struct spi_nor_erase_type *erase = NULL; struct mtd_info *mtd = &nor->mtd; int i; /* * The previous implementation handling Sector Erase commands assumed * that the SPI flash memory has an uniform layout then used only one * of the supported erase sizes for all Sector Erase commands. * So to be backward compatible, the new implementation also tries to * manage the SPI flash memory as uniform with a single erase sector * size, when possible. */ #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS /* prefer "small sector" erase if possible */ wanted_size = 4096u; #endif if (spi_nor_has_uniform_erase(nor)) { erase = spi_nor_select_uniform_erase(map, wanted_size); if (!erase) return -EINVAL; nor->erase_opcode = erase->opcode; mtd->erasesize = erase->size; return 0; } /* * For non-uniform SPI flash memory, set mtd->erasesize to the * maximum erase sector size. No need to set nor->erase_opcode. */ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { if (map->erase_type[i].size) { erase = &map->erase_type[i]; break; } } if (!erase) return -EINVAL; mtd->erasesize = erase->size; return 0; } static int spi_nor_setup(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, const struct spi_nor_hwcaps *hwcaps) { u32 ignored_mask, shared_mask; bool enable_quad_io; int err; /* * Keep only the hardware capabilities supported by both the SPI * controller and the SPI flash memory. */ shared_mask = hwcaps->mask & params->hwcaps.mask; /* SPI n-n-n protocols are not supported yet. */ ignored_mask = (SNOR_HWCAPS_READ_2_2_2 | SNOR_HWCAPS_READ_4_4_4 | SNOR_HWCAPS_READ_8_8_8 | SNOR_HWCAPS_PP_4_4_4 | SNOR_HWCAPS_PP_8_8_8); if (shared_mask & ignored_mask) { dev_dbg(nor->dev, "SPI n-n-n protocols are not supported yet.\n"); shared_mask &= ~ignored_mask; } /* Select the (Fast) Read command. */ err = spi_nor_select_read(nor, params, shared_mask); if (err) { dev_err(nor->dev, "can't select read settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Page Program command. */ err = spi_nor_select_pp(nor, params, shared_mask); if (err) { dev_err(nor->dev, "can't select write settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Sector Erase command. */ err = spi_nor_select_erase(nor, nor->info->sector_size); if (err) { dev_err(nor->dev, "can't select erase settings supported by both the SPI controller and memory.\n"); return err; } /* Enable Quad I/O if needed. */ enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || spi_nor_get_protocol_width(nor->write_proto) == 4); if (enable_quad_io && params->quad_enable) nor->quad_enable = params->quad_enable; else nor->quad_enable = NULL; return 0; } static int spi_nor_init(struct spi_nor *nor) { int err; if (nor->clear_sr_bp) { if (nor->quad_enable == spansion_quad_enable) nor->clear_sr_bp = spi_nor_spansion_clear_sr_bp; err = nor->clear_sr_bp(nor); if (err) { dev_err(nor->dev, "fail to clear block protection bits\n"); return err; } } if (nor->quad_enable) { err = nor->quad_enable(nor); if (err) { dev_err(nor->dev, "quad mode not supported\n"); return err; } } if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) { /* * If the RESET# pin isn't hooked up properly, or the system * otherwise doesn't perform a reset command in the boot * sequence, it's impossible to 100% protect against unexpected * reboots (e.g., crashes). Warn the user (or hopefully, system * designer) that this is bad. */ WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, "enabling reset hack; may not recover from unexpected reboots\n"); set_4byte(nor, true); } return 0; } /* mtd resume handler */ static void spi_nor_resume(struct mtd_info *mtd) { struct spi_nor *nor = mtd_to_spi_nor(mtd); struct device *dev = nor->dev; int ret; /* re-initialize the nor chip */ ret = spi_nor_init(nor); if (ret) dev_err(dev, "resume() failed\n"); } void spi_nor_restore(struct spi_nor *nor) { /* restore the addressing mode */ if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && nor->flags & SNOR_F_BROKEN_RESET) set_4byte(nor, false); } EXPORT_SYMBOL_GPL(spi_nor_restore); static const struct flash_info *spi_nor_match_id(const char *name) { const struct flash_info *id = spi_nor_ids; while (id->name) { if (!strcmp(name, id->name)) return id; id++; } return NULL; } int spi_nor_scan(struct spi_nor *nor, const char *name, const struct spi_nor_hwcaps *hwcaps) { struct spi_nor_flash_parameter params; const struct flash_info *info = NULL; struct device *dev = nor->dev; struct mtd_info *mtd = &nor->mtd; struct device_node *np = spi_nor_get_flash_node(nor); int ret; int i; ret = spi_nor_check(nor); if (ret) return ret; /* Reset SPI protocol for all commands. */ nor->reg_proto = SNOR_PROTO_1_1_1; nor->read_proto = SNOR_PROTO_1_1_1; nor->write_proto = SNOR_PROTO_1_1_1; if (name) info = spi_nor_match_id(name); /* Try to auto-detect if chip name wasn't specified or not found */ if (!info) info = spi_nor_read_id(nor); if (IS_ERR_OR_NULL(info)) return -ENOENT; /* * If caller has specified name of flash model that can normally be * detected using JEDEC, let's verify it. */ if (name && info->id_len) { const struct flash_info *jinfo; jinfo = spi_nor_read_id(nor); if (IS_ERR(jinfo)) { return PTR_ERR(jinfo); } else if (jinfo != info) { /* * JEDEC knows better, so overwrite platform ID. We * can't trust partitions any longer, but we'll let * mtd apply them anyway, since some partitions may be * marked read-only, and we don't want to lose that * information, even if it's not 100% accurate. */ dev_warn(dev, "found %s, expected %s\n", jinfo->name, info->name); info = jinfo; } } nor->info = info; mutex_init(&nor->lock); /* * Make sure the XSR_RDY flag is set before calling * spi_nor_wait_till_ready(). Xilinx S3AN share MFR * with Atmel spi-nor */ if (info->flags & SPI_S3AN) nor->flags |= SNOR_F_READY_XSR_RDY; /* * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up * with the software protection bits set. */ if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || JEDEC_MFR(nor->info) == SNOR_MFR_SST || nor->info->flags & SPI_NOR_HAS_LOCK) nor->clear_sr_bp = spi_nor_clear_sr_bp; /* Parse the Serial Flash Discoverable Parameters table. */ ret = spi_nor_init_params(nor, ¶ms); if (ret) return ret; if (!mtd->name) mtd->name = dev_name(dev); mtd->priv = nor; mtd->type = MTD_NORFLASH; mtd->writesize = 1; mtd->flags = MTD_CAP_NORFLASH; mtd->size = params.size; mtd->_erase = spi_nor_erase; mtd->_read = spi_nor_read; mtd->_resume = spi_nor_resume; /* NOR protection support for STmicro/Micron chips and similar */ if (JEDEC_MFR(info) == SNOR_MFR_ST || JEDEC_MFR(info) == SNOR_MFR_MICRON || info->flags & SPI_NOR_HAS_LOCK) { nor->flash_lock = stm_lock; nor->flash_unlock = stm_unlock; nor->flash_is_locked = stm_is_locked; } if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { mtd->_lock = spi_nor_lock; mtd->_unlock = spi_nor_unlock; mtd->_is_locked = spi_nor_is_locked; } /* sst nor chips use AAI word program */ if (info->flags & SST_WRITE) mtd->_write = sst_write; else mtd->_write = spi_nor_write; if (info->flags & USE_FSR) nor->flags |= SNOR_F_USE_FSR; if (info->flags & SPI_NOR_HAS_TB) nor->flags |= SNOR_F_HAS_SR_TB; if (info->flags & NO_CHIP_ERASE) nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; if (info->flags & USE_CLSR) nor->flags |= SNOR_F_USE_CLSR; if (info->flags & SPI_NOR_NO_ERASE) mtd->flags |= MTD_NO_ERASE; mtd->dev.parent = dev; nor->page_size = params.page_size; mtd->writebufsize = nor->page_size; if (np) { /* If we were instantiated by DT, use it */ if (of_property_read_bool(np, "m25p,fast-read")) params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; else params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; } else { /* If we weren't instantiated by DT, default to fast-read */ params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST; } if (of_property_read_bool(np, "broken-flash-reset")) nor->flags |= SNOR_F_BROKEN_RESET; /* Some devices cannot do fast-read, no matter what DT tells us */ if (info->flags & SPI_NOR_NO_FR) params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; /* * Configure the SPI memory: * - select op codes for (Fast) Read, Page Program and Sector Erase. * - set the number of dummy cycles (mode cycles + wait states). * - set the SPI protocols for register and memory accesses. * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). */ ret = spi_nor_setup(nor, ¶ms, hwcaps); if (ret) return ret; if (nor->addr_width) { /* already configured from SFDP */ } else if (info->addr_width) { nor->addr_width = info->addr_width; } else if (mtd->size > 0x1000000) { /* enable 4-byte addressing if the device exceeds 16MiB */ nor->addr_width = 4; } else { nor->addr_width = 3; } if (info->flags & SPI_NOR_4B_OPCODES || (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M)) nor->flags |= SNOR_F_4B_OPCODES; if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES && !(nor->flags & SNOR_F_HAS_4BAIT)) spi_nor_set_4byte_opcodes(nor); if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { dev_err(dev, "address width is too large: %u\n", nor->addr_width); return -EINVAL; } if (info->flags & SPI_S3AN) { ret = s3an_nor_scan(nor); if (ret) return ret; } /* Send all the required SPI flash commands to initialize device */ ret = spi_nor_init(nor); if (ret) return ret; dev_info(dev, "%s (%lld Kbytes)\n", info->name, (long long)mtd->size >> 10); dev_dbg(dev, "mtd .name = %s, .size = 0x%llx (%lldMiB), " ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); if (mtd->numeraseregions) for (i = 0; i < mtd->numeraseregions; i++) dev_dbg(dev, "mtd.eraseregions[%d] = { .offset = 0x%llx, " ".erasesize = 0x%.8x (%uKiB), " ".numblocks = %d }\n", i, (long long)mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].erasesize / 1024, mtd->eraseregions[i].numblocks); return 0; } EXPORT_SYMBOL_GPL(spi_nor_scan); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("framework for SPI NOR");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1