Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Chan | 5746 | 88.95% | 35 | 74.47% |
Vasundhara Volam | 345 | 5.34% | 3 | 6.38% |
Eddie Wai | 222 | 3.44% | 1 | 2.13% |
Jeffrey Huang | 104 | 1.61% | 4 | 8.51% |
Sathya Perla | 25 | 0.39% | 1 | 2.13% |
Moshe Shemesh | 16 | 0.25% | 1 | 2.13% |
Yue haibing | 1 | 0.02% | 1 | 2.13% |
Venkat Duvvuru | 1 | 0.02% | 1 | 2.13% |
Total | 6460 | 47 |
/* Broadcom NetXtreme-C/E network driver. * * Copyright (c) 2014-2016 Broadcom Corporation * Copyright (c) 2016-2018 Broadcom Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <linux/interrupt.h> #include <linux/etherdevice.h> #include "bnxt_hsi.h" #include "bnxt.h" #include "bnxt_ulp.h" #include "bnxt_sriov.h" #include "bnxt_vfr.h" #include "bnxt_ethtool.h" #ifdef CONFIG_BNXT_SRIOV static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, struct bnxt_vf_info *vf, u16 event_id) { struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_fwd_async_event_cmpl_input req = {0}; struct hwrm_async_event_cmpl *async_cmpl; int rc = 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); if (vf) req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); else /* broadcast this async event to all VFs */ req.encap_async_event_target_id = cpu_to_le16(0xffff); async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); async_cmpl->event_id = cpu_to_le16(event_id); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", rc); goto fwd_async_event_cmpl_exit; } if (resp->error_code) { netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", resp->error_code); rc = -1; } fwd_async_event_cmpl_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) { if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { netdev_err(bp->dev, "vf ndo called though PF is down\n"); return -EINVAL; } if (!bp->pf.active_vfs) { netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); return -EINVAL; } if (vf_id >= bp->pf.active_vfs) { netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); return -EINVAL; } return 0; } int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) { struct hwrm_func_cfg_input req = {0}; struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; bool old_setting = false; u32 func_flags; int rc; if (bp->hwrm_spec_code < 0x10701) return -ENOTSUPP; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; vf = &bp->pf.vf[vf_id]; if (vf->flags & BNXT_VF_SPOOFCHK) old_setting = true; if (old_setting == setting) return 0; func_flags = vf->func_flags; if (setting) func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; else func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; /*TODO: if the driver supports VLAN filter on guest VLAN, * the spoof check should also include vlan anti-spoofing */ bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); req.flags = cpu_to_le32(func_flags); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { vf->func_flags = func_flags; if (setting) vf->flags |= BNXT_VF_SPOOFCHK; else vf->flags &= ~BNXT_VF_SPOOFCHK; } return rc; } static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) { struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_func_qcfg_input req = {0}; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { mutex_unlock(&bp->hwrm_cmd_lock); return -EIO; } vf->func_qcfg_flags = le16_to_cpu(resp->flags); mutex_unlock(&bp->hwrm_cmd_lock); return 0; } static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) { if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) return !!(vf->flags & BNXT_VF_TRUST); bnxt_hwrm_func_qcfg_flags(bp, vf); return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); } static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) { struct hwrm_func_cfg_input req = {0}; int rc; if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); if (vf->flags & BNXT_VF_TRUST) req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); else req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) return -EIO; return 0; } int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) { struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; if (bnxt_vf_ndo_prep(bp, vf_id)) return -EINVAL; vf = &bp->pf.vf[vf_id]; if (trusted) vf->flags |= BNXT_VF_TRUST; else vf->flags &= ~BNXT_VF_TRUST; bnxt_hwrm_set_trusted_vf(bp, vf); return 0; } int bnxt_get_vf_config(struct net_device *dev, int vf_id, struct ifla_vf_info *ivi) { struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; int rc; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; ivi->vf = vf_id; vf = &bp->pf.vf[vf_id]; if (is_valid_ether_addr(vf->mac_addr)) memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); else memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); ivi->max_tx_rate = vf->max_tx_rate; ivi->min_tx_rate = vf->min_tx_rate; ivi->vlan = vf->vlan; if (vf->flags & BNXT_VF_QOS) ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; else ivi->qos = 0; ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); ivi->trusted = bnxt_is_trusted_vf(bp, vf); if (!(vf->flags & BNXT_VF_LINK_FORCED)) ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; else if (vf->flags & BNXT_VF_LINK_UP) ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; else ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; return 0; } int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) { struct hwrm_func_cfg_input req = {0}; struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; int rc; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; /* reject bc or mc mac addr, zero mac addr means allow * VF to use its own mac addr */ if (is_multicast_ether_addr(mac)) { netdev_err(dev, "Invalid VF ethernet address\n"); return -EINVAL; } vf = &bp->pf.vf[vf_id]; memcpy(vf->mac_addr, mac, ETH_ALEN); bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); req.flags = cpu_to_le32(vf->func_flags); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); memcpy(req.dflt_mac_addr, mac, ETH_ALEN); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, __be16 vlan_proto) { struct hwrm_func_cfg_input req = {0}; struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; u16 vlan_tag; int rc; if (bp->hwrm_spec_code < 0x10201) return -ENOTSUPP; if (vlan_proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; /* TODO: needed to implement proper handling of user priority, * currently fail the command if there is valid priority */ if (vlan_id > 4095 || qos) return -EINVAL; vf = &bp->pf.vf[vf_id]; vlan_tag = vlan_id; if (vlan_tag == vf->vlan) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); req.flags = cpu_to_le32(vf->func_flags); req.dflt_vlan = cpu_to_le16(vlan_tag); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) vf->vlan = vlan_tag; return rc; } int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, int max_tx_rate) { struct hwrm_func_cfg_input req = {0}; struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; u32 pf_link_speed; int rc; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; vf = &bp->pf.vf[vf_id]; pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); if (max_tx_rate > pf_link_speed) { netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", max_tx_rate, vf_id); return -EINVAL; } if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", min_tx_rate, vf_id); return -EINVAL; } if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) return 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); req.fid = cpu_to_le16(vf->fw_fid); req.flags = cpu_to_le32(vf->func_flags); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); req.max_bw = cpu_to_le32(max_tx_rate); req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); req.min_bw = cpu_to_le32(min_tx_rate); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { vf->min_tx_rate = min_tx_rate; vf->max_tx_rate = max_tx_rate; } return rc; } int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) { struct bnxt *bp = netdev_priv(dev); struct bnxt_vf_info *vf; int rc; rc = bnxt_vf_ndo_prep(bp, vf_id); if (rc) return rc; vf = &bp->pf.vf[vf_id]; vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); switch (link) { case IFLA_VF_LINK_STATE_AUTO: vf->flags |= BNXT_VF_LINK_UP; break; case IFLA_VF_LINK_STATE_DISABLE: vf->flags |= BNXT_VF_LINK_FORCED; break; case IFLA_VF_LINK_STATE_ENABLE: vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; break; default: netdev_err(bp->dev, "Invalid link option\n"); rc = -EINVAL; break; } if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); return rc; } static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) { int i; struct bnxt_vf_info *vf; for (i = 0; i < num_vfs; i++) { vf = &bp->pf.vf[i]; memset(vf, 0, sizeof(*vf)); } return 0; } static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) { int i, rc = 0; struct bnxt_pf_info *pf = &bp->pf; struct hwrm_func_vf_resc_free_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); mutex_lock(&bp->hwrm_cmd_lock); for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { req.vf_id = cpu_to_le16(i); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static void bnxt_free_vf_resources(struct bnxt *bp) { struct pci_dev *pdev = bp->pdev; int i; kfree(bp->pf.vf_event_bmap); bp->pf.vf_event_bmap = NULL; for (i = 0; i < 4; i++) { if (bp->pf.hwrm_cmd_req_addr[i]) { dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, bp->pf.hwrm_cmd_req_addr[i], bp->pf.hwrm_cmd_req_dma_addr[i]); bp->pf.hwrm_cmd_req_addr[i] = NULL; } } kfree(bp->pf.vf); bp->pf.vf = NULL; } static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) { struct pci_dev *pdev = bp->pdev; u32 nr_pages, size, i, j, k = 0; bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); if (!bp->pf.vf) return -ENOMEM; bnxt_set_vf_attr(bp, num_vfs); size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; nr_pages = size / BNXT_PAGE_SIZE; if (size & (BNXT_PAGE_SIZE - 1)) nr_pages++; for (i = 0; i < nr_pages; i++) { bp->pf.hwrm_cmd_req_addr[i] = dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, &bp->pf.hwrm_cmd_req_dma_addr[i], GFP_KERNEL); if (!bp->pf.hwrm_cmd_req_addr[i]) return -ENOMEM; for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { struct bnxt_vf_info *vf = &bp->pf.vf[k]; vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + j * BNXT_HWRM_REQ_MAX_SIZE; vf->hwrm_cmd_req_dma_addr = bp->pf.hwrm_cmd_req_dma_addr[i] + j * BNXT_HWRM_REQ_MAX_SIZE; k++; } } /* Max 128 VF's */ bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); if (!bp->pf.vf_event_bmap) return -ENOMEM; bp->pf.hwrm_cmd_req_pages = nr_pages; return 0; } static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) { struct hwrm_func_buf_rgtr_input req = {0}; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); } /* Only called by PF to reserve resources for VFs, returns actual number of * VFs configured, or < 0 on error. */ static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs) { struct hwrm_func_vf_resource_cfg_input req = {0}; struct bnxt_hw_resc *hw_resc = &bp->hw_resc; u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; u16 vf_stat_ctx, vf_vnics, vf_ring_grps; struct bnxt_pf_info *pf = &bp->pf; int i, rc = 0, min = 1; u16 vf_msix = 0; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); if (bp->flags & BNXT_FLAG_CHIP_P5) { vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); vf_ring_grps = 0; } else { vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; } vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); if (bp->flags & BNXT_FLAG_AGG_RINGS) vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; else vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; vf_vnics = hw_resc->max_vnics - bp->nr_vnics; vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { min = 0; req.min_rsscos_ctx = cpu_to_le16(min); } if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { req.min_cmpl_rings = cpu_to_le16(min); req.min_tx_rings = cpu_to_le16(min); req.min_rx_rings = cpu_to_le16(min); req.min_l2_ctxs = cpu_to_le16(min); req.min_vnics = cpu_to_le16(min); req.min_stat_ctx = cpu_to_le16(min); if (!(bp->flags & BNXT_FLAG_CHIP_P5)) req.min_hw_ring_grps = cpu_to_le16(min); } else { vf_cp_rings /= num_vfs; vf_tx_rings /= num_vfs; vf_rx_rings /= num_vfs; vf_vnics /= num_vfs; vf_stat_ctx /= num_vfs; vf_ring_grps /= num_vfs; req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); req.min_tx_rings = cpu_to_le16(vf_tx_rings); req.min_rx_rings = cpu_to_le16(vf_rx_rings); req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); req.min_vnics = cpu_to_le16(vf_vnics); req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); } req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); req.max_tx_rings = cpu_to_le16(vf_tx_rings); req.max_rx_rings = cpu_to_le16(vf_rx_rings); req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); req.max_vnics = cpu_to_le16(vf_vnics); req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); if (bp->flags & BNXT_FLAG_CHIP_P5) req.max_msix = cpu_to_le16(vf_msix / num_vfs); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < num_vfs; i++) { req.vf_id = cpu_to_le16(pf->first_vf_id + i); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { rc = -ENOMEM; break; } pf->active_vfs = i + 1; pf->vf[i].fw_fid = pf->first_vf_id + i; } mutex_unlock(&bp->hwrm_cmd_lock); if (pf->active_vfs) { u16 n = pf->active_vfs; hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * n; hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; hw_resc->max_rsscos_ctxs -= pf->active_vfs; hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; if (bp->flags & BNXT_FLAG_CHIP_P5) hw_resc->max_irqs -= vf_msix * n; rc = pf->active_vfs; } return rc; } /* Only called by PF to reserve resources for VFs, returns actual number of * VFs configured, or < 0 on error. */ static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) { u32 rc = 0, mtu, i; u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; struct bnxt_hw_resc *hw_resc = &bp->hw_resc; struct hwrm_func_cfg_input req = {0}; struct bnxt_pf_info *pf = &bp->pf; int total_vf_tx_rings = 0; u16 vf_ring_grps; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); /* Remaining rings are distributed equally amongs VF's for now */ vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; if (bp->flags & BNXT_FLAG_AGG_RINGS) vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / num_vfs; else vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / num_vfs; vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | FUNC_CFG_REQ_ENABLES_MRU | FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | FUNC_CFG_REQ_ENABLES_NUM_VNICS | FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; req.mru = cpu_to_le16(mtu); req.mtu = cpu_to_le16(mtu); req.num_rsscos_ctxs = cpu_to_le16(1); req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); req.num_tx_rings = cpu_to_le16(vf_tx_rings); req.num_rx_rings = cpu_to_le16(vf_rx_rings); req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); req.num_l2_ctxs = cpu_to_le16(4); req.num_vnics = cpu_to_le16(vf_vnics); /* FIXME spec currently uses 1 bit for stats ctx */ req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); mutex_lock(&bp->hwrm_cmd_lock); for (i = 0; i < num_vfs; i++) { int vf_tx_rsvd = vf_tx_rings; req.fid = cpu_to_le16(pf->first_vf_id + i); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) break; pf->active_vfs = i + 1; pf->vf[i].fw_fid = le16_to_cpu(req.fid); rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, &vf_tx_rsvd); if (rc) break; total_vf_tx_rings += vf_tx_rsvd; } mutex_unlock(&bp->hwrm_cmd_lock); if (rc) rc = -ENOMEM; if (pf->active_vfs) { hw_resc->max_tx_rings -= total_vf_tx_rings; hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; hw_resc->max_rsscos_ctxs -= num_vfs; hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; hw_resc->max_vnics -= vf_vnics * num_vfs; rc = pf->active_vfs; } return rc; } static int bnxt_func_cfg(struct bnxt *bp, int num_vfs) { if (BNXT_NEW_RM(bp)) return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs); else return bnxt_hwrm_func_cfg(bp, num_vfs); } static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) { int rc = 0, vfs_supported; int min_rx_rings, min_tx_rings, min_rss_ctxs; struct bnxt_hw_resc *hw_resc = &bp->hw_resc; int tx_ok = 0, rx_ok = 0, rss_ok = 0; int avail_cp, avail_stat; /* Check if we can enable requested num of vf's. At a mininum * we require 1 RX 1 TX rings for each VF. In this minimum conf * features like TPA will not be available. */ vfs_supported = *num_vfs; avail_cp = bnxt_get_avail_cp_rings_for_en(bp); avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); avail_cp = min_t(int, avail_cp, avail_stat); while (vfs_supported) { min_rx_rings = vfs_supported; min_tx_rings = vfs_supported; min_rss_ctxs = vfs_supported; if (bp->flags & BNXT_FLAG_AGG_RINGS) { if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= min_rx_rings) rx_ok = 1; } else { if (hw_resc->max_rx_rings - bp->rx_nr_rings >= min_rx_rings) rx_ok = 1; } if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || avail_cp < min_rx_rings) rx_ok = 0; if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && avail_cp >= min_tx_rings) tx_ok = 1; if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs) rss_ok = 1; if (tx_ok && rx_ok && rss_ok) break; vfs_supported--; } if (!vfs_supported) { netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); return -EINVAL; } if (vfs_supported != *num_vfs) { netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", *num_vfs, vfs_supported); *num_vfs = vfs_supported; } rc = bnxt_alloc_vf_resources(bp, *num_vfs); if (rc) goto err_out1; /* Reserve resources for VFs */ rc = bnxt_func_cfg(bp, *num_vfs); if (rc != *num_vfs) { if (rc <= 0) { netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); *num_vfs = 0; goto err_out2; } netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc); *num_vfs = rc; } /* Register buffers for VFs */ rc = bnxt_hwrm_func_buf_rgtr(bp); if (rc) goto err_out2; bnxt_ulp_sriov_cfg(bp, *num_vfs); rc = pci_enable_sriov(bp->pdev, *num_vfs); if (rc) goto err_out2; return 0; err_out2: /* Free the resources reserved for various VF's */ bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); err_out1: bnxt_free_vf_resources(bp); return rc; } void bnxt_sriov_disable(struct bnxt *bp) { u16 num_vfs = pci_num_vf(bp->pdev); if (!num_vfs) return; /* synchronize VF and VF-rep create and destroy */ mutex_lock(&bp->sriov_lock); bnxt_vf_reps_destroy(bp); if (pci_vfs_assigned(bp->pdev)) { bnxt_hwrm_fwd_async_event_cmpl( bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", num_vfs); } else { pci_disable_sriov(bp->pdev); /* Free the HW resources reserved for various VF's */ bnxt_hwrm_func_vf_resource_free(bp, num_vfs); } mutex_unlock(&bp->sriov_lock); bnxt_free_vf_resources(bp); bp->pf.active_vfs = 0; /* Reclaim all resources for the PF. */ rtnl_lock(); bnxt_restore_pf_fw_resources(bp); rtnl_unlock(); bnxt_ulp_sriov_cfg(bp, 0); } int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct net_device *dev = pci_get_drvdata(pdev); struct bnxt *bp = netdev_priv(dev); if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); return 0; } rtnl_lock(); if (!netif_running(dev)) { netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); rtnl_unlock(); return 0; } bp->sriov_cfg = true; rtnl_unlock(); if (pci_vfs_assigned(bp->pdev)) { netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); num_vfs = 0; goto sriov_cfg_exit; } /* Check if enabled VFs is same as requested */ if (num_vfs && num_vfs == bp->pf.active_vfs) goto sriov_cfg_exit; /* if there are previous existing VFs, clean them up */ bnxt_sriov_disable(bp); if (!num_vfs) goto sriov_cfg_exit; bnxt_sriov_enable(bp, &num_vfs); sriov_cfg_exit: bp->sriov_cfg = false; wake_up(&bp->sriov_cfg_wait); return num_vfs; } static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, void *encap_resp, __le64 encap_resp_addr, __le16 encap_resp_cpr, u32 msg_size) { int rc = 0; struct hwrm_fwd_resp_input req = {0}; struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) return -EINVAL; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); /* Set the new target id */ req.target_id = cpu_to_le16(vf->fw_fid); req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); req.encap_resp_len = cpu_to_le16(msg_size); req.encap_resp_addr = encap_resp_addr; req.encap_resp_cmpl_ring = encap_resp_cpr; memcpy(req.encap_resp, encap_resp, msg_size); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); goto fwd_resp_exit; } if (resp->error_code) { netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", resp->error_code); rc = -1; } fwd_resp_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, u32 msg_size) { int rc = 0; struct hwrm_reject_fwd_resp_input req = {0}; struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) return -EINVAL; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); /* Set the new target id */ req.target_id = cpu_to_le16(vf->fw_fid); req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); goto fwd_err_resp_exit; } if (resp->error_code) { netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", resp->error_code); rc = -1; } fwd_err_resp_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, u32 msg_size) { int rc = 0; struct hwrm_exec_fwd_resp_input req = {0}; struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) return -EINVAL; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); /* Set the new target id */ req.target_id = cpu_to_le16(vf->fw_fid); req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) { netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); goto exec_fwd_resp_exit; } if (resp->error_code) { netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", resp->error_code); rc = -1; } exec_fwd_resp_exit: mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) { u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); struct hwrm_func_vf_cfg_input *req = (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; /* Allow VF to set a valid MAC address, if trust is set to on or * if the PF assigned MAC address is zero */ if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { bool trust = bnxt_is_trusted_vf(bp, vf); if (is_valid_ether_addr(req->dflt_mac_addr) && (trust || !is_valid_ether_addr(vf->mac_addr) || ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); } return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); } return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); } static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) { u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); struct hwrm_cfa_l2_filter_alloc_input *req = (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; bool mac_ok = false; if (!is_valid_ether_addr((const u8 *)req->l2_addr)) return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); /* Allow VF to set a valid MAC address, if trust is set to on. * Or VF MAC address must first match MAC address in PF's context. * Otherwise, it must match the VF MAC address if firmware spec >= * 1.2.2 */ if (bnxt_is_trusted_vf(bp, vf)) { mac_ok = true; } else if (is_valid_ether_addr(vf->mac_addr)) { if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) mac_ok = true; } else if (is_valid_ether_addr(vf->vf_mac_addr)) { if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) mac_ok = true; } else { /* There are two cases: * 1.If firmware spec < 0x10202,VF MAC address is not forwarded * to the PF and so it doesn't have to match * 2.Allow VF to modify it's own MAC when PF has not assigned a * valid MAC address and firmware spec >= 0x10202 */ mac_ok = true; } if (mac_ok) return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); } static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) { int rc = 0; if (!(vf->flags & BNXT_VF_LINK_FORCED)) { /* real link */ rc = bnxt_hwrm_exec_fwd_resp( bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); } else { struct hwrm_port_phy_qcfg_output phy_qcfg_resp; struct hwrm_port_phy_qcfg_input *phy_qcfg_req; phy_qcfg_req = (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; mutex_lock(&bp->hwrm_cmd_lock); memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, sizeof(phy_qcfg_resp)); mutex_unlock(&bp->hwrm_cmd_lock); phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; phy_qcfg_resp.valid = 1; if (vf->flags & BNXT_VF_LINK_UP) { /* if physical link is down, force link up on VF */ if (phy_qcfg_resp.link != PORT_PHY_QCFG_RESP_LINK_LINK) { phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_LINK; phy_qcfg_resp.link_speed = cpu_to_le16( PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); phy_qcfg_resp.duplex_cfg = PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; phy_qcfg_resp.duplex_state = PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; phy_qcfg_resp.pause = (PORT_PHY_QCFG_RESP_PAUSE_TX | PORT_PHY_QCFG_RESP_PAUSE_RX); } } else { /* force link down */ phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; phy_qcfg_resp.link_speed = 0; phy_qcfg_resp.duplex_state = PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; phy_qcfg_resp.pause = 0; } rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, phy_qcfg_req->resp_addr, phy_qcfg_req->cmpl_ring, sizeof(phy_qcfg_resp)); } return rc; } static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) { int rc = 0; struct input *encap_req = vf->hwrm_cmd_req_addr; u32 req_type = le16_to_cpu(encap_req->req_type); switch (req_type) { case HWRM_FUNC_VF_CFG: rc = bnxt_vf_configure_mac(bp, vf); break; case HWRM_CFA_L2_FILTER_ALLOC: rc = bnxt_vf_validate_set_mac(bp, vf); break; case HWRM_FUNC_CFG: /* TODO Validate if VF is allowed to change mac address, * mtu, num of rings etc */ rc = bnxt_hwrm_exec_fwd_resp( bp, vf, sizeof(struct hwrm_func_cfg_input)); break; case HWRM_PORT_PHY_QCFG: rc = bnxt_vf_set_link(bp, vf); break; default: break; } return rc; } void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) { u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; /* Scan through VF's and process commands */ while (1) { vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); if (vf_id >= active_vfs) break; clear_bit(vf_id, bp->pf.vf_event_bmap); bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); i = vf_id + 1; } } void bnxt_update_vf_mac(struct bnxt *bp) { struct hwrm_func_qcaps_input req = {0}; struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); req.fid = cpu_to_le16(0xffff); mutex_lock(&bp->hwrm_cmd_lock); if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) goto update_vf_mac_exit; /* Store MAC address from the firmware. There are 2 cases: * 1. MAC address is valid. It is assigned from the PF and we * need to override the current VF MAC address with it. * 2. MAC address is zero. The VF will use a random MAC address by * default but the stored zero MAC will allow the VF user to change * the random MAC address using ndo_set_mac_address() if he wants. */ if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); /* overwrite netdev dev_addr with admin VF MAC */ if (is_valid_ether_addr(bp->vf.mac_addr)) memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); update_vf_mac_exit: mutex_unlock(&bp->hwrm_cmd_lock); } int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) { struct hwrm_func_vf_cfg_input req = {0}; int rc = 0; if (!BNXT_VF(bp)) return 0; if (bp->hwrm_spec_code < 0x10202) { if (is_valid_ether_addr(bp->vf.mac_addr)) rc = -EADDRNOTAVAIL; goto mac_done; } bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); memcpy(req.dflt_mac_addr, mac, ETH_ALEN); rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); mac_done: if (rc && strict) { rc = -EADDRNOTAVAIL; netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", mac); return rc; } return 0; } #else void bnxt_sriov_disable(struct bnxt *bp) { } void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) { netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); } void bnxt_update_vf_mac(struct bnxt *bp) { } int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) { return 0; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1