Contributors: 35
Author Tokens Token Proportion Commits Commit Proportion
Scott Feldman 6252 43.23% 21 13.55%
Govindarajulu Varadarajan 4072 28.16% 44 28.39%
Vasanthy Kolluri 1558 10.77% 19 12.26%
Roopa Prabhu 1125 7.78% 17 10.97%
Sujith Sankar 495 3.42% 2 1.29%
Alexander Duyck 267 1.85% 1 0.65%
Neel Patel 167 1.15% 3 1.94%
govindarajulu.v 100 0.69% 2 1.29%
Stephen Hemminger 81 0.56% 6 3.87%
Eric Dumazet 77 0.53% 4 2.58%
Dan Carpenter 52 0.36% 1 0.65%
David S. Miller 34 0.24% 3 1.94%
Michał Mirosław 19 0.13% 2 1.29%
Alexander Gordeev 18 0.12% 1 0.65%
Jiri Pirko 17 0.12% 4 2.58%
Yang Hongyang 14 0.10% 2 1.29%
Kees Cook 13 0.09% 1 0.65%
Jarod Wilson 13 0.09% 1 0.65%
Ian Campbell 12 0.08% 2 1.29%
Arnd Bergmann 9 0.06% 1 0.65%
Joe Perches 8 0.06% 2 1.29%
Tony Camuso 8 0.06% 1 0.65%
Patrick McHardy 8 0.06% 2 1.29%
Tom Herbert 7 0.05% 1 0.65%
Tejun Heo 7 0.05% 1 0.65%
Benoit Taine 6 0.04% 1 0.65%
Eric W. Biedermann 4 0.03% 2 1.29%
Alexey Dobriyan 3 0.02% 1 0.65%
Kamalesh Babulal 3 0.02% 1 0.65%
Allen Pais 3 0.02% 1 0.65%
Paul Gortmaker 3 0.02% 1 0.65%
Thomas Meyer 2 0.01% 1 0.65%
Lad Prabhakar 2 0.01% 1 0.65%
Florian Westphal 2 0.01% 1 0.65%
Danny Kukawka 1 0.01% 1 0.65%
Total 14462 155


/*
 * Copyright 2008-2010 Cisco Systems, Inc.  All rights reserved.
 * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/rtnetlink.h>
#include <linux/prefetch.h>
#include <net/ip6_checksum.h>
#include <linux/ktime.h>
#include <linux/numa.h>
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
#include <linux/crash_dump.h>
#include <net/busy_poll.h>
#include <net/vxlan.h>

#include "cq_enet_desc.h"
#include "vnic_dev.h"
#include "vnic_intr.h"
#include "vnic_stats.h"
#include "vnic_vic.h"
#include "enic_res.h"
#include "enic.h"
#include "enic_dev.h"
#include "enic_pp.h"
#include "enic_clsf.h"

#define ENIC_NOTIFY_TIMER_PERIOD	(2 * HZ)
#define WQ_ENET_MAX_DESC_LEN		(1 << WQ_ENET_LEN_BITS)
#define MAX_TSO				(1 << 16)
#define ENIC_DESC_MAX_SPLITS		(MAX_TSO / WQ_ENET_MAX_DESC_LEN + 1)

#define PCI_DEVICE_ID_CISCO_VIC_ENET         0x0043  /* ethernet vnic */
#define PCI_DEVICE_ID_CISCO_VIC_ENET_DYN     0x0044  /* enet dynamic vnic */
#define PCI_DEVICE_ID_CISCO_VIC_ENET_VF      0x0071  /* enet SRIOV VF */

#define RX_COPYBREAK_DEFAULT		256

/* Supported devices */
static const struct pci_device_id enic_id_table[] = {
	{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET) },
	{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_DYN) },
	{ PCI_VDEVICE(CISCO, PCI_DEVICE_ID_CISCO_VIC_ENET_VF) },
	{ 0, }	/* end of table */
};

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Scott Feldman <scofeldm@cisco.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, enic_id_table);

#define ENIC_LARGE_PKT_THRESHOLD		1000
#define ENIC_MAX_COALESCE_TIMERS		10
/*  Interrupt moderation table, which will be used to decide the
 *  coalescing timer values
 *  {rx_rate in Mbps, mapping percentage of the range}
 */
static struct enic_intr_mod_table mod_table[ENIC_MAX_COALESCE_TIMERS + 1] = {
	{4000,  0},
	{4400, 10},
	{5060, 20},
	{5230, 30},
	{5540, 40},
	{5820, 50},
	{6120, 60},
	{6435, 70},
	{6745, 80},
	{7000, 90},
	{0xFFFFFFFF, 100}
};

/* This table helps the driver to pick different ranges for rx coalescing
 * timer depending on the link speed.
 */
static struct enic_intr_mod_range mod_range[ENIC_MAX_LINK_SPEEDS] = {
	{0,  0}, /* 0  - 4  Gbps */
	{0,  3}, /* 4  - 10 Gbps */
	{3,  6}, /* 10 - 40 Gbps */
};

static void enic_init_affinity_hint(struct enic *enic)
{
	int numa_node = dev_to_node(&enic->pdev->dev);
	int i;

	for (i = 0; i < enic->intr_count; i++) {
		if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i) ||
		    (cpumask_available(enic->msix[i].affinity_mask) &&
		     !cpumask_empty(enic->msix[i].affinity_mask)))
			continue;
		if (zalloc_cpumask_var(&enic->msix[i].affinity_mask,
				       GFP_KERNEL))
			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
					enic->msix[i].affinity_mask);
	}
}

static void enic_free_affinity_hint(struct enic *enic)
{
	int i;

	for (i = 0; i < enic->intr_count; i++) {
		if (enic_is_err_intr(enic, i) || enic_is_notify_intr(enic, i))
			continue;
		free_cpumask_var(enic->msix[i].affinity_mask);
	}
}

static void enic_set_affinity_hint(struct enic *enic)
{
	int i;
	int err;

	for (i = 0; i < enic->intr_count; i++) {
		if (enic_is_err_intr(enic, i)		||
		    enic_is_notify_intr(enic, i)	||
		    !cpumask_available(enic->msix[i].affinity_mask) ||
		    cpumask_empty(enic->msix[i].affinity_mask))
			continue;
		err = irq_set_affinity_hint(enic->msix_entry[i].vector,
					    enic->msix[i].affinity_mask);
		if (err)
			netdev_warn(enic->netdev, "irq_set_affinity_hint failed, err %d\n",
				    err);
	}

	for (i = 0; i < enic->wq_count; i++) {
		int wq_intr = enic_msix_wq_intr(enic, i);

		if (cpumask_available(enic->msix[wq_intr].affinity_mask) &&
		    !cpumask_empty(enic->msix[wq_intr].affinity_mask))
			netif_set_xps_queue(enic->netdev,
					    enic->msix[wq_intr].affinity_mask,
					    i);
	}
}

static void enic_unset_affinity_hint(struct enic *enic)
{
	int i;

	for (i = 0; i < enic->intr_count; i++)
		irq_set_affinity_hint(enic->msix_entry[i].vector, NULL);
}

static void enic_udp_tunnel_add(struct net_device *netdev,
				struct udp_tunnel_info *ti)
{
	struct enic *enic = netdev_priv(netdev);
	__be16 port = ti->port;
	int err;

	spin_lock_bh(&enic->devcmd_lock);

	if (ti->type != UDP_TUNNEL_TYPE_VXLAN) {
		netdev_info(netdev, "udp_tnl: only vxlan tunnel offload supported");
		goto error;
	}

	switch (ti->sa_family) {
	case AF_INET6:
		if (!(enic->vxlan.flags & ENIC_VXLAN_OUTER_IPV6)) {
			netdev_info(netdev, "vxlan: only IPv4 offload supported");
			goto error;
		}
		/* Fall through */
	case AF_INET:
		break;
	default:
		goto error;
	}

	if (enic->vxlan.vxlan_udp_port_number) {
		if (ntohs(port) == enic->vxlan.vxlan_udp_port_number)
			netdev_warn(netdev, "vxlan: udp port already offloaded");
		else
			netdev_info(netdev, "vxlan: offload supported for only one UDP port");

		goto error;
	}
	if ((vnic_dev_get_res_count(enic->vdev, RES_TYPE_WQ) != 1) &&
	    !(enic->vxlan.flags & ENIC_VXLAN_MULTI_WQ)) {
		netdev_info(netdev, "vxlan: vxlan offload with multi wq not supported on this adapter");
		goto error;
	}

	err = vnic_dev_overlay_offload_cfg(enic->vdev,
					   OVERLAY_CFG_VXLAN_PORT_UPDATE,
					   ntohs(port));
	if (err)
		goto error;

	err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN,
					    enic->vxlan.patch_level);
	if (err)
		goto error;

	enic->vxlan.vxlan_udp_port_number = ntohs(port);

	netdev_info(netdev, "vxlan fw-vers-%d: offload enabled for udp port: %d, sa_family: %d ",
		    (int)enic->vxlan.patch_level, ntohs(port), ti->sa_family);

	goto unlock;

error:
	netdev_info(netdev, "failed to offload udp port: %d, sa_family: %d, type: %d",
		    ntohs(port), ti->sa_family, ti->type);
unlock:
	spin_unlock_bh(&enic->devcmd_lock);
}

static void enic_udp_tunnel_del(struct net_device *netdev,
				struct udp_tunnel_info *ti)
{
	struct enic *enic = netdev_priv(netdev);
	int err;

	spin_lock_bh(&enic->devcmd_lock);

	if ((ntohs(ti->port) != enic->vxlan.vxlan_udp_port_number) ||
	    ti->type != UDP_TUNNEL_TYPE_VXLAN) {
		netdev_info(netdev, "udp_tnl: port:%d, sa_family: %d, type: %d not offloaded",
			    ntohs(ti->port), ti->sa_family, ti->type);
		goto unlock;
	}

	err = vnic_dev_overlay_offload_ctrl(enic->vdev, OVERLAY_FEATURE_VXLAN,
					    OVERLAY_OFFLOAD_DISABLE);
	if (err) {
		netdev_err(netdev, "vxlan: del offload udp port: %d failed",
			   ntohs(ti->port));
		goto unlock;
	}

	enic->vxlan.vxlan_udp_port_number = 0;

	netdev_info(netdev, "vxlan: del offload udp port %d, family %d\n",
		    ntohs(ti->port), ti->sa_family);

unlock:
	spin_unlock_bh(&enic->devcmd_lock);
}

static netdev_features_t enic_features_check(struct sk_buff *skb,
					     struct net_device *dev,
					     netdev_features_t features)
{
	const struct ethhdr *eth = (struct ethhdr *)skb_inner_mac_header(skb);
	struct enic *enic = netdev_priv(dev);
	struct udphdr *udph;
	u16 port = 0;
	u8 proto;

	if (!skb->encapsulation)
		return features;

	features = vxlan_features_check(skb, features);

	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IPV6):
		if (!(enic->vxlan.flags & ENIC_VXLAN_OUTER_IPV6))
			goto out;
		proto = ipv6_hdr(skb)->nexthdr;
		break;
	case htons(ETH_P_IP):
		proto = ip_hdr(skb)->protocol;
		break;
	default:
		goto out;
	}

	switch (eth->h_proto) {
	case ntohs(ETH_P_IPV6):
		if (!(enic->vxlan.flags & ENIC_VXLAN_INNER_IPV6))
			goto out;
		/* Fall through */
	case ntohs(ETH_P_IP):
		break;
	default:
		goto out;
	}


	if (proto == IPPROTO_UDP) {
		udph = udp_hdr(skb);
		port = be16_to_cpu(udph->dest);
	}

	/* HW supports offload of only one UDP port. Remove CSUM and GSO MASK
	 * for other UDP port tunnels
	 */
	if (port  != enic->vxlan.vxlan_udp_port_number)
		goto out;

	return features;

out:
	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}

int enic_is_dynamic(struct enic *enic)
{
	return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_DYN;
}

int enic_sriov_enabled(struct enic *enic)
{
	return (enic->priv_flags & ENIC_SRIOV_ENABLED) ? 1 : 0;
}

static int enic_is_sriov_vf(struct enic *enic)
{
	return enic->pdev->device == PCI_DEVICE_ID_CISCO_VIC_ENET_VF;
}

int enic_is_valid_vf(struct enic *enic, int vf)
{
#ifdef CONFIG_PCI_IOV
	return vf >= 0 && vf < enic->num_vfs;
#else
	return 0;
#endif
}

static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf)
{
	struct enic *enic = vnic_dev_priv(wq->vdev);

	if (buf->sop)
		pci_unmap_single(enic->pdev, buf->dma_addr,
			buf->len, PCI_DMA_TODEVICE);
	else
		pci_unmap_page(enic->pdev, buf->dma_addr,
			buf->len, PCI_DMA_TODEVICE);

	if (buf->os_buf)
		dev_kfree_skb_any(buf->os_buf);
}

static void enic_wq_free_buf(struct vnic_wq *wq,
	struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque)
{
	enic_free_wq_buf(wq, buf);
}

static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
	u8 type, u16 q_number, u16 completed_index, void *opaque)
{
	struct enic *enic = vnic_dev_priv(vdev);

	spin_lock(&enic->wq_lock[q_number]);

	vnic_wq_service(&enic->wq[q_number], cq_desc,
		completed_index, enic_wq_free_buf,
		opaque);

	if (netif_tx_queue_stopped(netdev_get_tx_queue(enic->netdev, q_number)) &&
	    vnic_wq_desc_avail(&enic->wq[q_number]) >=
	    (MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS))
		netif_wake_subqueue(enic->netdev, q_number);

	spin_unlock(&enic->wq_lock[q_number]);

	return 0;
}

static bool enic_log_q_error(struct enic *enic)
{
	unsigned int i;
	u32 error_status;
	bool err = false;

	for (i = 0; i < enic->wq_count; i++) {
		error_status = vnic_wq_error_status(&enic->wq[i]);
		err |= error_status;
		if (error_status)
			netdev_err(enic->netdev, "WQ[%d] error_status %d\n",
				i, error_status);
	}

	for (i = 0; i < enic->rq_count; i++) {
		error_status = vnic_rq_error_status(&enic->rq[i]);
		err |= error_status;
		if (error_status)
			netdev_err(enic->netdev, "RQ[%d] error_status %d\n",
				i, error_status);
	}

	return err;
}

static void enic_msglvl_check(struct enic *enic)
{
	u32 msg_enable = vnic_dev_msg_lvl(enic->vdev);

	if (msg_enable != enic->msg_enable) {
		netdev_info(enic->netdev, "msg lvl changed from 0x%x to 0x%x\n",
			enic->msg_enable, msg_enable);
		enic->msg_enable = msg_enable;
	}
}

static void enic_mtu_check(struct enic *enic)
{
	u32 mtu = vnic_dev_mtu(enic->vdev);
	struct net_device *netdev = enic->netdev;

	if (mtu && mtu != enic->port_mtu) {
		enic->port_mtu = mtu;
		if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) {
			mtu = max_t(int, ENIC_MIN_MTU,
				min_t(int, ENIC_MAX_MTU, mtu));
			if (mtu != netdev->mtu)
				schedule_work(&enic->change_mtu_work);
		} else {
			if (mtu < netdev->mtu)
				netdev_warn(netdev,
					"interface MTU (%d) set higher "
					"than switch port MTU (%d)\n",
					netdev->mtu, mtu);
		}
	}
}

static void enic_link_check(struct enic *enic)
{
	int link_status = vnic_dev_link_status(enic->vdev);
	int carrier_ok = netif_carrier_ok(enic->netdev);

	if (link_status && !carrier_ok) {
		netdev_info(enic->netdev, "Link UP\n");
		netif_carrier_on(enic->netdev);
	} else if (!link_status && carrier_ok) {
		netdev_info(enic->netdev, "Link DOWN\n");
		netif_carrier_off(enic->netdev);
	}
}

static void enic_notify_check(struct enic *enic)
{
	enic_msglvl_check(enic);
	enic_mtu_check(enic);
	enic_link_check(enic);
}

#define ENIC_TEST_INTR(pba, i) (pba & (1 << i))

static irqreturn_t enic_isr_legacy(int irq, void *data)
{
	struct net_device *netdev = data;
	struct enic *enic = netdev_priv(netdev);
	unsigned int io_intr = enic_legacy_io_intr();
	unsigned int err_intr = enic_legacy_err_intr();
	unsigned int notify_intr = enic_legacy_notify_intr();
	u32 pba;

	vnic_intr_mask(&enic->intr[io_intr]);

	pba = vnic_intr_legacy_pba(enic->legacy_pba);
	if (!pba) {
		vnic_intr_unmask(&enic->intr[io_intr]);
		return IRQ_NONE;	/* not our interrupt */
	}

	if (ENIC_TEST_INTR(pba, notify_intr)) {
		enic_notify_check(enic);
		vnic_intr_return_all_credits(&enic->intr[notify_intr]);
	}

	if (ENIC_TEST_INTR(pba, err_intr)) {
		vnic_intr_return_all_credits(&enic->intr[err_intr]);
		enic_log_q_error(enic);
		/* schedule recovery from WQ/RQ error */
		schedule_work(&enic->reset);
		return IRQ_HANDLED;
	}

	if (ENIC_TEST_INTR(pba, io_intr))
		napi_schedule_irqoff(&enic->napi[0]);
	else
		vnic_intr_unmask(&enic->intr[io_intr]);

	return IRQ_HANDLED;
}

static irqreturn_t enic_isr_msi(int irq, void *data)
{
	struct enic *enic = data;

	/* With MSI, there is no sharing of interrupts, so this is
	 * our interrupt and there is no need to ack it.  The device
	 * is not providing per-vector masking, so the OS will not
	 * write to PCI config space to mask/unmask the interrupt.
	 * We're using mask_on_assertion for MSI, so the device
	 * automatically masks the interrupt when the interrupt is
	 * generated.  Later, when exiting polling, the interrupt
	 * will be unmasked (see enic_poll).
	 *
	 * Also, the device uses the same PCIe Traffic Class (TC)
	 * for Memory Write data and MSI, so there are no ordering
	 * issues; the MSI will always arrive at the Root Complex
	 * _after_ corresponding Memory Writes (i.e. descriptor
	 * writes).
	 */

	napi_schedule_irqoff(&enic->napi[0]);

	return IRQ_HANDLED;
}

static irqreturn_t enic_isr_msix(int irq, void *data)
{
	struct napi_struct *napi = data;

	napi_schedule_irqoff(napi);

	return IRQ_HANDLED;
}

static irqreturn_t enic_isr_msix_err(int irq, void *data)
{
	struct enic *enic = data;
	unsigned int intr = enic_msix_err_intr(enic);

	vnic_intr_return_all_credits(&enic->intr[intr]);

	if (enic_log_q_error(enic))
		/* schedule recovery from WQ/RQ error */
		schedule_work(&enic->reset);

	return IRQ_HANDLED;
}

static irqreturn_t enic_isr_msix_notify(int irq, void *data)
{
	struct enic *enic = data;
	unsigned int intr = enic_msix_notify_intr(enic);

	enic_notify_check(enic);
	vnic_intr_return_all_credits(&enic->intr[intr]);

	return IRQ_HANDLED;
}

static int enic_queue_wq_skb_cont(struct enic *enic, struct vnic_wq *wq,
				  struct sk_buff *skb, unsigned int len_left,
				  int loopback)
{
	const skb_frag_t *frag;
	dma_addr_t dma_addr;

	/* Queue additional data fragments */
	for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
		len_left -= skb_frag_size(frag);
		dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag, 0,
					    skb_frag_size(frag),
					    DMA_TO_DEVICE);
		if (unlikely(enic_dma_map_check(enic, dma_addr)))
			return -ENOMEM;
		enic_queue_wq_desc_cont(wq, skb, dma_addr, skb_frag_size(frag),
					(len_left == 0),	/* EOP? */
					loopback);
	}

	return 0;
}

static int enic_queue_wq_skb_vlan(struct enic *enic, struct vnic_wq *wq,
				  struct sk_buff *skb, int vlan_tag_insert,
				  unsigned int vlan_tag, int loopback)
{
	unsigned int head_len = skb_headlen(skb);
	unsigned int len_left = skb->len - head_len;
	int eop = (len_left == 0);
	dma_addr_t dma_addr;
	int err = 0;

	dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
				  PCI_DMA_TODEVICE);
	if (unlikely(enic_dma_map_check(enic, dma_addr)))
		return -ENOMEM;

	/* Queue the main skb fragment. The fragments are no larger
	 * than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less
	 * than WQ_ENET_MAX_DESC_LEN length. So only one descriptor
	 * per fragment is queued.
	 */
	enic_queue_wq_desc(wq, skb, dma_addr, head_len,	vlan_tag_insert,
			   vlan_tag, eop, loopback);

	if (!eop)
		err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);

	return err;
}

static int enic_queue_wq_skb_csum_l4(struct enic *enic, struct vnic_wq *wq,
				     struct sk_buff *skb, int vlan_tag_insert,
				     unsigned int vlan_tag, int loopback)
{
	unsigned int head_len = skb_headlen(skb);
	unsigned int len_left = skb->len - head_len;
	unsigned int hdr_len = skb_checksum_start_offset(skb);
	unsigned int csum_offset = hdr_len + skb->csum_offset;
	int eop = (len_left == 0);
	dma_addr_t dma_addr;
	int err = 0;

	dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
				  PCI_DMA_TODEVICE);
	if (unlikely(enic_dma_map_check(enic, dma_addr)))
		return -ENOMEM;

	/* Queue the main skb fragment. The fragments are no larger
	 * than max MTU(9000)+ETH_HDR_LEN(14) bytes, which is less
	 * than WQ_ENET_MAX_DESC_LEN length. So only one descriptor
	 * per fragment is queued.
	 */
	enic_queue_wq_desc_csum_l4(wq, skb, dma_addr, head_len,	csum_offset,
				   hdr_len, vlan_tag_insert, vlan_tag, eop,
				   loopback);

	if (!eop)
		err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);

	return err;
}

static void enic_preload_tcp_csum_encap(struct sk_buff *skb)
{
	const struct ethhdr *eth = (struct ethhdr *)skb_inner_mac_header(skb);

	switch (eth->h_proto) {
	case ntohs(ETH_P_IP):
		inner_ip_hdr(skb)->check = 0;
		inner_tcp_hdr(skb)->check =
			~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr,
					   inner_ip_hdr(skb)->daddr, 0,
					   IPPROTO_TCP, 0);
		break;
	case ntohs(ETH_P_IPV6):
		inner_tcp_hdr(skb)->check =
			~csum_ipv6_magic(&inner_ipv6_hdr(skb)->saddr,
					 &inner_ipv6_hdr(skb)->daddr, 0,
					 IPPROTO_TCP, 0);
		break;
	default:
		WARN_ONCE(1, "Non ipv4/ipv6 inner pkt for encap offload");
		break;
	}
}

static void enic_preload_tcp_csum(struct sk_buff *skb)
{
	/* Preload TCP csum field with IP pseudo hdr calculated
	 * with IP length set to zero.  HW will later add in length
	 * to each TCP segment resulting from the TSO.
	 */

	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
			ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
			&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
}

static int enic_queue_wq_skb_tso(struct enic *enic, struct vnic_wq *wq,
				 struct sk_buff *skb, unsigned int mss,
				 int vlan_tag_insert, unsigned int vlan_tag,
				 int loopback)
{
	unsigned int frag_len_left = skb_headlen(skb);
	unsigned int len_left = skb->len - frag_len_left;
	int eop = (len_left == 0);
	unsigned int offset = 0;
	unsigned int hdr_len;
	dma_addr_t dma_addr;
	unsigned int len;
	skb_frag_t *frag;

	if (skb->encapsulation) {
		hdr_len = skb_inner_transport_header(skb) - skb->data;
		hdr_len += inner_tcp_hdrlen(skb);
		enic_preload_tcp_csum_encap(skb);
	} else {
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		enic_preload_tcp_csum(skb);
	}

	/* Queue WQ_ENET_MAX_DESC_LEN length descriptors
	 * for the main skb fragment
	 */
	while (frag_len_left) {
		len = min(frag_len_left, (unsigned int)WQ_ENET_MAX_DESC_LEN);
		dma_addr = pci_map_single(enic->pdev, skb->data + offset, len,
					  PCI_DMA_TODEVICE);
		if (unlikely(enic_dma_map_check(enic, dma_addr)))
			return -ENOMEM;
		enic_queue_wq_desc_tso(wq, skb, dma_addr, len, mss, hdr_len,
				       vlan_tag_insert, vlan_tag,
				       eop && (len == frag_len_left), loopback);
		frag_len_left -= len;
		offset += len;
	}

	if (eop)
		return 0;

	/* Queue WQ_ENET_MAX_DESC_LEN length descriptors
	 * for additional data fragments
	 */
	for (frag = skb_shinfo(skb)->frags; len_left; frag++) {
		len_left -= skb_frag_size(frag);
		frag_len_left = skb_frag_size(frag);
		offset = 0;

		while (frag_len_left) {
			len = min(frag_len_left,
				(unsigned int)WQ_ENET_MAX_DESC_LEN);
			dma_addr = skb_frag_dma_map(&enic->pdev->dev, frag,
						    offset, len,
						    DMA_TO_DEVICE);
			if (unlikely(enic_dma_map_check(enic, dma_addr)))
				return -ENOMEM;
			enic_queue_wq_desc_cont(wq, skb, dma_addr, len,
						(len_left == 0) &&
						 (len == frag_len_left),/*EOP*/
						loopback);
			frag_len_left -= len;
			offset += len;
		}
	}

	return 0;
}

static inline int enic_queue_wq_skb_encap(struct enic *enic, struct vnic_wq *wq,
					  struct sk_buff *skb,
					  int vlan_tag_insert,
					  unsigned int vlan_tag, int loopback)
{
	unsigned int head_len = skb_headlen(skb);
	unsigned int len_left = skb->len - head_len;
	/* Hardware will overwrite the checksum fields, calculating from
	 * scratch and ignoring the value placed by software.
	 * Offload mode = 00
	 * mss[2], mss[1], mss[0] bits are set
	 */
	unsigned int mss_or_csum = 7;
	int eop = (len_left == 0);
	dma_addr_t dma_addr;
	int err = 0;

	dma_addr = pci_map_single(enic->pdev, skb->data, head_len,
				  PCI_DMA_TODEVICE);
	if (unlikely(enic_dma_map_check(enic, dma_addr)))
		return -ENOMEM;

	enic_queue_wq_desc_ex(wq, skb, dma_addr, head_len, mss_or_csum, 0,
			      vlan_tag_insert, vlan_tag,
			      WQ_ENET_OFFLOAD_MODE_CSUM, eop, 1 /* SOP */, eop,
			      loopback);
	if (!eop)
		err = enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback);

	return err;
}

static inline void enic_queue_wq_skb(struct enic *enic,
	struct vnic_wq *wq, struct sk_buff *skb)
{
	unsigned int mss = skb_shinfo(skb)->gso_size;
	unsigned int vlan_tag = 0;
	int vlan_tag_insert = 0;
	int loopback = 0;
	int err;

	if (skb_vlan_tag_present(skb)) {
		/* VLAN tag from trunking driver */
		vlan_tag_insert = 1;
		vlan_tag = skb_vlan_tag_get(skb);
	} else if (enic->loop_enable) {
		vlan_tag = enic->loop_tag;
		loopback = 1;
	}

	if (mss)
		err = enic_queue_wq_skb_tso(enic, wq, skb, mss,
					    vlan_tag_insert, vlan_tag,
					    loopback);
	else if (skb->encapsulation)
		err = enic_queue_wq_skb_encap(enic, wq, skb, vlan_tag_insert,
					      vlan_tag, loopback);
	else if	(skb->ip_summed == CHECKSUM_PARTIAL)
		err = enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert,
						vlan_tag, loopback);
	else
		err = enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert,
					     vlan_tag, loopback);
	if (unlikely(err)) {
		struct vnic_wq_buf *buf;

		buf = wq->to_use->prev;
		/* while not EOP of previous pkt && queue not empty.
		 * For all non EOP bufs, os_buf is NULL.
		 */
		while (!buf->os_buf && (buf->next != wq->to_clean)) {
			enic_free_wq_buf(wq, buf);
			wq->ring.desc_avail++;
			buf = buf->prev;
		}
		wq->to_use = buf->next;
		dev_kfree_skb(skb);
	}
}

/* netif_tx_lock held, process context with BHs disabled, or BH */
static netdev_tx_t enic_hard_start_xmit(struct sk_buff *skb,
	struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	struct vnic_wq *wq;
	unsigned int txq_map;
	struct netdev_queue *txq;

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	txq_map = skb_get_queue_mapping(skb) % enic->wq_count;
	wq = &enic->wq[txq_map];
	txq = netdev_get_tx_queue(netdev, txq_map);

	/* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs,
	 * which is very likely.  In the off chance it's going to take
	 * more than * ENIC_NON_TSO_MAX_DESC, linearize the skb.
	 */

	if (skb_shinfo(skb)->gso_size == 0 &&
	    skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC &&
	    skb_linearize(skb)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	spin_lock(&enic->wq_lock[txq_map]);

	if (vnic_wq_desc_avail(wq) <
	    skb_shinfo(skb)->nr_frags + ENIC_DESC_MAX_SPLITS) {
		netif_tx_stop_queue(txq);
		/* This is a hard error, log it */
		netdev_err(netdev, "BUG! Tx ring full when queue awake!\n");
		spin_unlock(&enic->wq_lock[txq_map]);
		return NETDEV_TX_BUSY;
	}

	enic_queue_wq_skb(enic, wq, skb);

	if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + ENIC_DESC_MAX_SPLITS)
		netif_tx_stop_queue(txq);
	skb_tx_timestamp(skb);
	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
		vnic_wq_doorbell(wq);

	spin_unlock(&enic->wq_lock[txq_map]);

	return NETDEV_TX_OK;
}

/* dev_base_lock rwlock held, nominally process context */
static void enic_get_stats(struct net_device *netdev,
			   struct rtnl_link_stats64 *net_stats)
{
	struct enic *enic = netdev_priv(netdev);
	struct vnic_stats *stats;
	int err;

	err = enic_dev_stats_dump(enic, &stats);
	/* return only when pci_zalloc_consistent fails in vnic_dev_stats_dump
	 * For other failures, like devcmd failure, we return previously
	 * recorded stats.
	 */
	if (err == -ENOMEM)
		return;

	net_stats->tx_packets = stats->tx.tx_frames_ok;
	net_stats->tx_bytes = stats->tx.tx_bytes_ok;
	net_stats->tx_errors = stats->tx.tx_errors;
	net_stats->tx_dropped = stats->tx.tx_drops;

	net_stats->rx_packets = stats->rx.rx_frames_ok;
	net_stats->rx_bytes = stats->rx.rx_bytes_ok;
	net_stats->rx_errors = stats->rx.rx_errors;
	net_stats->multicast = stats->rx.rx_multicast_frames_ok;
	net_stats->rx_over_errors = enic->rq_truncated_pkts;
	net_stats->rx_crc_errors = enic->rq_bad_fcs;
	net_stats->rx_dropped = stats->rx.rx_no_bufs + stats->rx.rx_drop;
}

static int enic_mc_sync(struct net_device *netdev, const u8 *mc_addr)
{
	struct enic *enic = netdev_priv(netdev);

	if (enic->mc_count == ENIC_MULTICAST_PERFECT_FILTERS) {
		unsigned int mc_count = netdev_mc_count(netdev);

		netdev_warn(netdev, "Registering only %d out of %d multicast addresses\n",
			    ENIC_MULTICAST_PERFECT_FILTERS, mc_count);

		return -ENOSPC;
	}

	enic_dev_add_addr(enic, mc_addr);
	enic->mc_count++;

	return 0;
}

static int enic_mc_unsync(struct net_device *netdev, const u8 *mc_addr)
{
	struct enic *enic = netdev_priv(netdev);

	enic_dev_del_addr(enic, mc_addr);
	enic->mc_count--;

	return 0;
}

static int enic_uc_sync(struct net_device *netdev, const u8 *uc_addr)
{
	struct enic *enic = netdev_priv(netdev);

	if (enic->uc_count == ENIC_UNICAST_PERFECT_FILTERS) {
		unsigned int uc_count = netdev_uc_count(netdev);

		netdev_warn(netdev, "Registering only %d out of %d unicast addresses\n",
			    ENIC_UNICAST_PERFECT_FILTERS, uc_count);

		return -ENOSPC;
	}

	enic_dev_add_addr(enic, uc_addr);
	enic->uc_count++;

	return 0;
}

static int enic_uc_unsync(struct net_device *netdev, const u8 *uc_addr)
{
	struct enic *enic = netdev_priv(netdev);

	enic_dev_del_addr(enic, uc_addr);
	enic->uc_count--;

	return 0;
}

void enic_reset_addr_lists(struct enic *enic)
{
	struct net_device *netdev = enic->netdev;

	__dev_uc_unsync(netdev, NULL);
	__dev_mc_unsync(netdev, NULL);

	enic->mc_count = 0;
	enic->uc_count = 0;
	enic->flags = 0;
}

static int enic_set_mac_addr(struct net_device *netdev, char *addr)
{
	struct enic *enic = netdev_priv(netdev);

	if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic)) {
		if (!is_valid_ether_addr(addr) && !is_zero_ether_addr(addr))
			return -EADDRNOTAVAIL;
	} else {
		if (!is_valid_ether_addr(addr))
			return -EADDRNOTAVAIL;
	}

	memcpy(netdev->dev_addr, addr, netdev->addr_len);

	return 0;
}

static int enic_set_mac_address_dynamic(struct net_device *netdev, void *p)
{
	struct enic *enic = netdev_priv(netdev);
	struct sockaddr *saddr = p;
	char *addr = saddr->sa_data;
	int err;

	if (netif_running(enic->netdev)) {
		err = enic_dev_del_station_addr(enic);
		if (err)
			return err;
	}

	err = enic_set_mac_addr(netdev, addr);
	if (err)
		return err;

	if (netif_running(enic->netdev)) {
		err = enic_dev_add_station_addr(enic);
		if (err)
			return err;
	}

	return err;
}

static int enic_set_mac_address(struct net_device *netdev, void *p)
{
	struct sockaddr *saddr = p;
	char *addr = saddr->sa_data;
	struct enic *enic = netdev_priv(netdev);
	int err;

	err = enic_dev_del_station_addr(enic);
	if (err)
		return err;

	err = enic_set_mac_addr(netdev, addr);
	if (err)
		return err;

	return enic_dev_add_station_addr(enic);
}

/* netif_tx_lock held, BHs disabled */
static void enic_set_rx_mode(struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	int directed = 1;
	int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0;
	int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0;
	int promisc = (netdev->flags & IFF_PROMISC) ||
		netdev_uc_count(netdev) > ENIC_UNICAST_PERFECT_FILTERS;
	int allmulti = (netdev->flags & IFF_ALLMULTI) ||
		netdev_mc_count(netdev) > ENIC_MULTICAST_PERFECT_FILTERS;
	unsigned int flags = netdev->flags |
		(allmulti ? IFF_ALLMULTI : 0) |
		(promisc ? IFF_PROMISC : 0);

	if (enic->flags != flags) {
		enic->flags = flags;
		enic_dev_packet_filter(enic, directed,
			multicast, broadcast, promisc, allmulti);
	}

	if (!promisc) {
		__dev_uc_sync(netdev, enic_uc_sync, enic_uc_unsync);
		if (!allmulti)
			__dev_mc_sync(netdev, enic_mc_sync, enic_mc_unsync);
	}
}

/* netif_tx_lock held, BHs disabled */
static void enic_tx_timeout(struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	schedule_work(&enic->tx_hang_reset);
}

static int enic_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct enic *enic = netdev_priv(netdev);
	struct enic_port_profile *pp;
	int err;

	ENIC_PP_BY_INDEX(enic, vf, pp, &err);
	if (err)
		return err;

	if (is_valid_ether_addr(mac) || is_zero_ether_addr(mac)) {
		if (vf == PORT_SELF_VF) {
			memcpy(pp->vf_mac, mac, ETH_ALEN);
			return 0;
		} else {
			/*
			 * For sriov vf's set the mac in hw
			 */
			ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic,
				vnic_dev_set_mac_addr, mac);
			return enic_dev_status_to_errno(err);
		}
	} else
		return -EINVAL;
}

static int enic_set_vf_port(struct net_device *netdev, int vf,
	struct nlattr *port[])
{
	struct enic *enic = netdev_priv(netdev);
	struct enic_port_profile prev_pp;
	struct enic_port_profile *pp;
	int err = 0, restore_pp = 1;

	ENIC_PP_BY_INDEX(enic, vf, pp, &err);
	if (err)
		return err;

	if (!port[IFLA_PORT_REQUEST])
		return -EOPNOTSUPP;

	memcpy(&prev_pp, pp, sizeof(*enic->pp));
	memset(pp, 0, sizeof(*enic->pp));

	pp->set |= ENIC_SET_REQUEST;
	pp->request = nla_get_u8(port[IFLA_PORT_REQUEST]);

	if (port[IFLA_PORT_PROFILE]) {
		pp->set |= ENIC_SET_NAME;
		memcpy(pp->name, nla_data(port[IFLA_PORT_PROFILE]),
			PORT_PROFILE_MAX);
	}

	if (port[IFLA_PORT_INSTANCE_UUID]) {
		pp->set |= ENIC_SET_INSTANCE;
		memcpy(pp->instance_uuid,
			nla_data(port[IFLA_PORT_INSTANCE_UUID]), PORT_UUID_MAX);
	}

	if (port[IFLA_PORT_HOST_UUID]) {
		pp->set |= ENIC_SET_HOST;
		memcpy(pp->host_uuid,
			nla_data(port[IFLA_PORT_HOST_UUID]), PORT_UUID_MAX);
	}

	if (vf == PORT_SELF_VF) {
		/* Special case handling: mac came from IFLA_VF_MAC */
		if (!is_zero_ether_addr(prev_pp.vf_mac))
			memcpy(pp->mac_addr, prev_pp.vf_mac, ETH_ALEN);

		if (is_zero_ether_addr(netdev->dev_addr))
			eth_hw_addr_random(netdev);
	} else {
		/* SR-IOV VF: get mac from adapter */
		ENIC_DEVCMD_PROXY_BY_INDEX(vf, err, enic,
			vnic_dev_get_mac_addr, pp->mac_addr);
		if (err) {
			netdev_err(netdev, "Error getting mac for vf %d\n", vf);
			memcpy(pp, &prev_pp, sizeof(*pp));
			return enic_dev_status_to_errno(err);
		}
	}

	err = enic_process_set_pp_request(enic, vf, &prev_pp, &restore_pp);
	if (err) {
		if (restore_pp) {
			/* Things are still the way they were: Implicit
			 * DISASSOCIATE failed
			 */
			memcpy(pp, &prev_pp, sizeof(*pp));
		} else {
			memset(pp, 0, sizeof(*pp));
			if (vf == PORT_SELF_VF)
				eth_zero_addr(netdev->dev_addr);
		}
	} else {
		/* Set flag to indicate that the port assoc/disassoc
		 * request has been sent out to fw
		 */
		pp->set |= ENIC_PORT_REQUEST_APPLIED;

		/* If DISASSOCIATE, clean up all assigned/saved macaddresses */
		if (pp->request == PORT_REQUEST_DISASSOCIATE) {
			eth_zero_addr(pp->mac_addr);
			if (vf == PORT_SELF_VF)
				eth_zero_addr(netdev->dev_addr);
		}
	}

	if (vf == PORT_SELF_VF)
		eth_zero_addr(pp->vf_mac);

	return err;
}

static int enic_get_vf_port(struct net_device *netdev, int vf,
	struct sk_buff *skb)
{
	struct enic *enic = netdev_priv(netdev);
	u16 response = PORT_PROFILE_RESPONSE_SUCCESS;
	struct enic_port_profile *pp;
	int err;

	ENIC_PP_BY_INDEX(enic, vf, pp, &err);
	if (err)
		return err;

	if (!(pp->set & ENIC_PORT_REQUEST_APPLIED))
		return -ENODATA;

	err = enic_process_get_pp_request(enic, vf, pp->request, &response);
	if (err)
		return err;

	if (nla_put_u16(skb, IFLA_PORT_REQUEST, pp->request) ||
	    nla_put_u16(skb, IFLA_PORT_RESPONSE, response) ||
	    ((pp->set & ENIC_SET_NAME) &&
	     nla_put(skb, IFLA_PORT_PROFILE, PORT_PROFILE_MAX, pp->name)) ||
	    ((pp->set & ENIC_SET_INSTANCE) &&
	     nla_put(skb, IFLA_PORT_INSTANCE_UUID, PORT_UUID_MAX,
		     pp->instance_uuid)) ||
	    ((pp->set & ENIC_SET_HOST) &&
	     nla_put(skb, IFLA_PORT_HOST_UUID, PORT_UUID_MAX, pp->host_uuid)))
		goto nla_put_failure;
	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
	struct enic *enic = vnic_dev_priv(rq->vdev);

	if (!buf->os_buf)
		return;

	pci_unmap_single(enic->pdev, buf->dma_addr,
		buf->len, PCI_DMA_FROMDEVICE);
	dev_kfree_skb_any(buf->os_buf);
	buf->os_buf = NULL;
}

static int enic_rq_alloc_buf(struct vnic_rq *rq)
{
	struct enic *enic = vnic_dev_priv(rq->vdev);
	struct net_device *netdev = enic->netdev;
	struct sk_buff *skb;
	unsigned int len = netdev->mtu + VLAN_ETH_HLEN;
	unsigned int os_buf_index = 0;
	dma_addr_t dma_addr;
	struct vnic_rq_buf *buf = rq->to_use;

	if (buf->os_buf) {
		enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr,
				   buf->len);

		return 0;
	}
	skb = netdev_alloc_skb_ip_align(netdev, len);
	if (!skb)
		return -ENOMEM;

	dma_addr = pci_map_single(enic->pdev, skb->data, len,
				  PCI_DMA_FROMDEVICE);
	if (unlikely(enic_dma_map_check(enic, dma_addr))) {
		dev_kfree_skb(skb);
		return -ENOMEM;
	}

	enic_queue_rq_desc(rq, skb, os_buf_index,
		dma_addr, len);

	return 0;
}

static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size,
				      u32 pkt_len)
{
	if (ENIC_LARGE_PKT_THRESHOLD <= pkt_len)
		pkt_size->large_pkt_bytes_cnt += pkt_len;
	else
		pkt_size->small_pkt_bytes_cnt += pkt_len;
}

static bool enic_rxcopybreak(struct net_device *netdev, struct sk_buff **skb,
			     struct vnic_rq_buf *buf, u16 len)
{
	struct enic *enic = netdev_priv(netdev);
	struct sk_buff *new_skb;

	if (len > enic->rx_copybreak)
		return false;
	new_skb = netdev_alloc_skb_ip_align(netdev, len);
	if (!new_skb)
		return false;
	pci_dma_sync_single_for_cpu(enic->pdev, buf->dma_addr, len,
				    DMA_FROM_DEVICE);
	memcpy(new_skb->data, (*skb)->data, len);
	*skb = new_skb;

	return true;
}

static void enic_rq_indicate_buf(struct vnic_rq *rq,
	struct cq_desc *cq_desc, struct vnic_rq_buf *buf,
	int skipped, void *opaque)
{
	struct enic *enic = vnic_dev_priv(rq->vdev);
	struct net_device *netdev = enic->netdev;
	struct sk_buff *skb;
	struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];

	u8 type, color, eop, sop, ingress_port, vlan_stripped;
	u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
	u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
	u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
	u8 packet_error;
	u16 q_number, completed_index, bytes_written, vlan_tci, checksum;
	u32 rss_hash;
	bool outer_csum_ok = true, encap = false;

	if (skipped)
		return;

	skb = buf->os_buf;

	cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc,
		&type, &color, &q_number, &completed_index,
		&ingress_port, &fcoe, &eop, &sop, &rss_type,
		&csum_not_calc, &rss_hash, &bytes_written,
		&packet_error, &vlan_stripped, &vlan_tci, &checksum,
		&fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error,
		&fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp,
		&ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment,
		&fcs_ok);

	if (packet_error) {

		if (!fcs_ok) {
			if (bytes_written > 0)
				enic->rq_bad_fcs++;
			else if (bytes_written == 0)
				enic->rq_truncated_pkts++;
		}

		pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
				 PCI_DMA_FROMDEVICE);
		dev_kfree_skb_any(skb);
		buf->os_buf = NULL;

		return;
	}

	if (eop && bytes_written > 0) {

		/* Good receive
		 */

		if (!enic_rxcopybreak(netdev, &skb, buf, bytes_written)) {
			buf->os_buf = NULL;
			pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
					 PCI_DMA_FROMDEVICE);
		}
		prefetch(skb->data - NET_IP_ALIGN);

		skb_put(skb, bytes_written);
		skb->protocol = eth_type_trans(skb, netdev);
		skb_record_rx_queue(skb, q_number);
		if ((netdev->features & NETIF_F_RXHASH) && rss_hash &&
		    (type == 3)) {
			switch (rss_type) {
			case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4:
			case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6:
			case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX:
				skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L4);
				break;
			case CQ_ENET_RQ_DESC_RSS_TYPE_IPv4:
			case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6:
			case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX:
				skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L3);
				break;
			}
		}
		if (enic->vxlan.vxlan_udp_port_number) {
			switch (enic->vxlan.patch_level) {
			case 0:
				if (fcoe) {
					encap = true;
					outer_csum_ok = fcoe_fc_crc_ok;
				}
				break;
			case 2:
				if ((type == 7) &&
				    (rss_hash & BIT(0))) {
					encap = true;
					outer_csum_ok = (rss_hash & BIT(1)) &&
							(rss_hash & BIT(2));
				}
				break;
			}
		}

		/* Hardware does not provide whole packet checksum. It only
		 * provides pseudo checksum. Since hw validates the packet
		 * checksum but not provide us the checksum value. use
		 * CHECSUM_UNNECESSARY.
		 *
		 * In case of encap pkt tcp_udp_csum_ok/tcp_udp_csum_ok is
		 * inner csum_ok. outer_csum_ok is set by hw when outer udp
		 * csum is correct or is zero.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) && !csum_not_calc &&
		    tcp_udp_csum_ok && outer_csum_ok &&
		    (ipv4_csum_ok || ipv6)) {
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			skb->csum_level = encap;
		}

		if (vlan_stripped)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);

		skb_mark_napi_id(skb, &enic->napi[rq->index]);
		if (!(netdev->features & NETIF_F_GRO))
			netif_receive_skb(skb);
		else
			napi_gro_receive(&enic->napi[q_number], skb);
		if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
			enic_intr_update_pkt_size(&cq->pkt_size_counter,
						  bytes_written);
	} else {

		/* Buffer overflow
		 */

		pci_unmap_single(enic->pdev, buf->dma_addr, buf->len,
				 PCI_DMA_FROMDEVICE);
		dev_kfree_skb_any(skb);
		buf->os_buf = NULL;
	}
}

static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc,
	u8 type, u16 q_number, u16 completed_index, void *opaque)
{
	struct enic *enic = vnic_dev_priv(vdev);

	vnic_rq_service(&enic->rq[q_number], cq_desc,
		completed_index, VNIC_RQ_RETURN_DESC,
		enic_rq_indicate_buf, opaque);

	return 0;
}

static void enic_set_int_moderation(struct enic *enic, struct vnic_rq *rq)
{
	unsigned int intr = enic_msix_rq_intr(enic, rq->index);
	struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
	u32 timer = cq->tobe_rx_coal_timeval;

	if (cq->tobe_rx_coal_timeval != cq->cur_rx_coal_timeval) {
		vnic_intr_coalescing_timer_set(&enic->intr[intr], timer);
		cq->cur_rx_coal_timeval = cq->tobe_rx_coal_timeval;
	}
}

static void enic_calc_int_moderation(struct enic *enic, struct vnic_rq *rq)
{
	struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting;
	struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
	struct vnic_rx_bytes_counter *pkt_size_counter = &cq->pkt_size_counter;
	int index;
	u32 timer;
	u32 range_start;
	u32 traffic;
	u64 delta;
	ktime_t now = ktime_get();

	delta = ktime_us_delta(now, cq->prev_ts);
	if (delta < ENIC_AIC_TS_BREAK)
		return;
	cq->prev_ts = now;

	traffic = pkt_size_counter->large_pkt_bytes_cnt +
		  pkt_size_counter->small_pkt_bytes_cnt;
	/* The table takes Mbps
	 * traffic *= 8    => bits
	 * traffic *= (10^6 / delta)    => bps
	 * traffic /= 10^6     => Mbps
	 *
	 * Combining, traffic *= (8 / delta)
	 */

	traffic <<= 3;
	traffic = delta > UINT_MAX ? 0 : traffic / (u32)delta;

	for (index = 0; index < ENIC_MAX_COALESCE_TIMERS; index++)
		if (traffic < mod_table[index].rx_rate)
			break;
	range_start = (pkt_size_counter->small_pkt_bytes_cnt >
		       pkt_size_counter->large_pkt_bytes_cnt << 1) ?
		      rx_coal->small_pkt_range_start :
		      rx_coal->large_pkt_range_start;
	timer = range_start + ((rx_coal->range_end - range_start) *
			       mod_table[index].range_percent / 100);
	/* Damping */
	cq->tobe_rx_coal_timeval = (timer + cq->tobe_rx_coal_timeval) >> 1;

	pkt_size_counter->large_pkt_bytes_cnt = 0;
	pkt_size_counter->small_pkt_bytes_cnt = 0;
}

static int enic_poll(struct napi_struct *napi, int budget)
{
	struct net_device *netdev = napi->dev;
	struct enic *enic = netdev_priv(netdev);
	unsigned int cq_rq = enic_cq_rq(enic, 0);
	unsigned int cq_wq = enic_cq_wq(enic, 0);
	unsigned int intr = enic_legacy_io_intr();
	unsigned int rq_work_to_do = budget;
	unsigned int wq_work_to_do = ENIC_WQ_NAPI_BUDGET;
	unsigned int  work_done, rq_work_done = 0, wq_work_done;
	int err;

	wq_work_done = vnic_cq_service(&enic->cq[cq_wq], wq_work_to_do,
				       enic_wq_service, NULL);

	if (budget > 0)
		rq_work_done = vnic_cq_service(&enic->cq[cq_rq],
			rq_work_to_do, enic_rq_service, NULL);

	/* Accumulate intr event credits for this polling
	 * cycle.  An intr event is the completion of a
	 * a WQ or RQ packet.
	 */

	work_done = rq_work_done + wq_work_done;

	if (work_done > 0)
		vnic_intr_return_credits(&enic->intr[intr],
			work_done,
			0 /* don't unmask intr */,
			0 /* don't reset intr timer */);

	err = vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf);

	/* Buffer allocation failed. Stay in polling
	 * mode so we can try to fill the ring again.
	 */

	if (err)
		rq_work_done = rq_work_to_do;
	if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
		/* Call the function which refreshes the intr coalescing timer
		 * value based on the traffic.
		 */
		enic_calc_int_moderation(enic, &enic->rq[0]);

	if ((rq_work_done < budget) && napi_complete_done(napi, rq_work_done)) {

		/* Some work done, but not enough to stay in polling,
		 * exit polling
		 */

		if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
			enic_set_int_moderation(enic, &enic->rq[0]);
		vnic_intr_unmask(&enic->intr[intr]);
	}

	return rq_work_done;
}

#ifdef CONFIG_RFS_ACCEL
static void enic_free_rx_cpu_rmap(struct enic *enic)
{
	free_irq_cpu_rmap(enic->netdev->rx_cpu_rmap);
	enic->netdev->rx_cpu_rmap = NULL;
}

static void enic_set_rx_cpu_rmap(struct enic *enic)
{
	int i, res;

	if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX) {
		enic->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(enic->rq_count);
		if (unlikely(!enic->netdev->rx_cpu_rmap))
			return;
		for (i = 0; i < enic->rq_count; i++) {
			res = irq_cpu_rmap_add(enic->netdev->rx_cpu_rmap,
					       enic->msix_entry[i].vector);
			if (unlikely(res)) {
				enic_free_rx_cpu_rmap(enic);
				return;
			}
		}
	}
}

#else

static void enic_free_rx_cpu_rmap(struct enic *enic)
{
}

static void enic_set_rx_cpu_rmap(struct enic *enic)
{
}

#endif /* CONFIG_RFS_ACCEL */

static int enic_poll_msix_wq(struct napi_struct *napi, int budget)
{
	struct net_device *netdev = napi->dev;
	struct enic *enic = netdev_priv(netdev);
	unsigned int wq_index = (napi - &enic->napi[0]) - enic->rq_count;
	struct vnic_wq *wq = &enic->wq[wq_index];
	unsigned int cq;
	unsigned int intr;
	unsigned int wq_work_to_do = ENIC_WQ_NAPI_BUDGET;
	unsigned int wq_work_done;
	unsigned int wq_irq;

	wq_irq = wq->index;
	cq = enic_cq_wq(enic, wq_irq);
	intr = enic_msix_wq_intr(enic, wq_irq);
	wq_work_done = vnic_cq_service(&enic->cq[cq], wq_work_to_do,
				       enic_wq_service, NULL);

	vnic_intr_return_credits(&enic->intr[intr], wq_work_done,
				 0 /* don't unmask intr */,
				 1 /* reset intr timer */);
	if (!wq_work_done) {
		napi_complete(napi);
		vnic_intr_unmask(&enic->intr[intr]);
		return 0;
	}

	return budget;
}

static int enic_poll_msix_rq(struct napi_struct *napi, int budget)
{
	struct net_device *netdev = napi->dev;
	struct enic *enic = netdev_priv(netdev);
	unsigned int rq = (napi - &enic->napi[0]);
	unsigned int cq = enic_cq_rq(enic, rq);
	unsigned int intr = enic_msix_rq_intr(enic, rq);
	unsigned int work_to_do = budget;
	unsigned int work_done = 0;
	int err;

	/* Service RQ
	 */

	if (budget > 0)
		work_done = vnic_cq_service(&enic->cq[cq],
			work_to_do, enic_rq_service, NULL);

	/* Return intr event credits for this polling
	 * cycle.  An intr event is the completion of a
	 * RQ packet.
	 */

	if (work_done > 0)
		vnic_intr_return_credits(&enic->intr[intr],
			work_done,
			0 /* don't unmask intr */,
			0 /* don't reset intr timer */);

	err = vnic_rq_fill(&enic->rq[rq], enic_rq_alloc_buf);

	/* Buffer allocation failed. Stay in polling mode
	 * so we can try to fill the ring again.
	 */

	if (err)
		work_done = work_to_do;
	if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
		/* Call the function which refreshes the intr coalescing timer
		 * value based on the traffic.
		 */
		enic_calc_int_moderation(enic, &enic->rq[rq]);

	if ((work_done < budget) && napi_complete_done(napi, work_done)) {

		/* Some work done, but not enough to stay in polling,
		 * exit polling
		 */

		if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
			enic_set_int_moderation(enic, &enic->rq[rq]);
		vnic_intr_unmask(&enic->intr[intr]);
	}

	return work_done;
}

static void enic_notify_timer(struct timer_list *t)
{
	struct enic *enic = from_timer(enic, t, notify_timer);

	enic_notify_check(enic);

	mod_timer(&enic->notify_timer,
		round_jiffies(jiffies + ENIC_NOTIFY_TIMER_PERIOD));
}

static void enic_free_intr(struct enic *enic)
{
	struct net_device *netdev = enic->netdev;
	unsigned int i;

	enic_free_rx_cpu_rmap(enic);
	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	case VNIC_DEV_INTR_MODE_INTX:
		free_irq(enic->pdev->irq, netdev);
		break;
	case VNIC_DEV_INTR_MODE_MSI:
		free_irq(enic->pdev->irq, enic);
		break;
	case VNIC_DEV_INTR_MODE_MSIX:
		for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
			if (enic->msix[i].requested)
				free_irq(enic->msix_entry[i].vector,
					enic->msix[i].devid);
		break;
	default:
		break;
	}
}

static int enic_request_intr(struct enic *enic)
{
	struct net_device *netdev = enic->netdev;
	unsigned int i, intr;
	int err = 0;

	enic_set_rx_cpu_rmap(enic);
	switch (vnic_dev_get_intr_mode(enic->vdev)) {

	case VNIC_DEV_INTR_MODE_INTX:

		err = request_irq(enic->pdev->irq, enic_isr_legacy,
			IRQF_SHARED, netdev->name, netdev);
		break;

	case VNIC_DEV_INTR_MODE_MSI:

		err = request_irq(enic->pdev->irq, enic_isr_msi,
			0, netdev->name, enic);
		break;

	case VNIC_DEV_INTR_MODE_MSIX:

		for (i = 0; i < enic->rq_count; i++) {
			intr = enic_msix_rq_intr(enic, i);
			snprintf(enic->msix[intr].devname,
				sizeof(enic->msix[intr].devname),
				"%s-rx-%u", netdev->name, i);
			enic->msix[intr].isr = enic_isr_msix;
			enic->msix[intr].devid = &enic->napi[i];
		}

		for (i = 0; i < enic->wq_count; i++) {
			int wq = enic_cq_wq(enic, i);

			intr = enic_msix_wq_intr(enic, i);
			snprintf(enic->msix[intr].devname,
				sizeof(enic->msix[intr].devname),
				"%s-tx-%u", netdev->name, i);
			enic->msix[intr].isr = enic_isr_msix;
			enic->msix[intr].devid = &enic->napi[wq];
		}

		intr = enic_msix_err_intr(enic);
		snprintf(enic->msix[intr].devname,
			sizeof(enic->msix[intr].devname),
			"%s-err", netdev->name);
		enic->msix[intr].isr = enic_isr_msix_err;
		enic->msix[intr].devid = enic;

		intr = enic_msix_notify_intr(enic);
		snprintf(enic->msix[intr].devname,
			sizeof(enic->msix[intr].devname),
			"%s-notify", netdev->name);
		enic->msix[intr].isr = enic_isr_msix_notify;
		enic->msix[intr].devid = enic;

		for (i = 0; i < ARRAY_SIZE(enic->msix); i++)
			enic->msix[i].requested = 0;

		for (i = 0; i < enic->intr_count; i++) {
			err = request_irq(enic->msix_entry[i].vector,
				enic->msix[i].isr, 0,
				enic->msix[i].devname,
				enic->msix[i].devid);
			if (err) {
				enic_free_intr(enic);
				break;
			}
			enic->msix[i].requested = 1;
		}

		break;

	default:
		break;
	}

	return err;
}

static void enic_synchronize_irqs(struct enic *enic)
{
	unsigned int i;

	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	case VNIC_DEV_INTR_MODE_INTX:
	case VNIC_DEV_INTR_MODE_MSI:
		synchronize_irq(enic->pdev->irq);
		break;
	case VNIC_DEV_INTR_MODE_MSIX:
		for (i = 0; i < enic->intr_count; i++)
			synchronize_irq(enic->msix_entry[i].vector);
		break;
	default:
		break;
	}
}

static void enic_set_rx_coal_setting(struct enic *enic)
{
	unsigned int speed;
	int index = -1;
	struct enic_rx_coal *rx_coal = &enic->rx_coalesce_setting;

	/* 1. Read the link speed from fw
	 * 2. Pick the default range for the speed
	 * 3. Update it in enic->rx_coalesce_setting
	 */
	speed = vnic_dev_port_speed(enic->vdev);
	if (ENIC_LINK_SPEED_10G < speed)
		index = ENIC_LINK_40G_INDEX;
	else if (ENIC_LINK_SPEED_4G < speed)
		index = ENIC_LINK_10G_INDEX;
	else
		index = ENIC_LINK_4G_INDEX;

	rx_coal->small_pkt_range_start = mod_range[index].small_pkt_range_start;
	rx_coal->large_pkt_range_start = mod_range[index].large_pkt_range_start;
	rx_coal->range_end = ENIC_RX_COALESCE_RANGE_END;

	/* Start with the value provided by UCSM */
	for (index = 0; index < enic->rq_count; index++)
		enic->cq[index].cur_rx_coal_timeval =
				enic->config.intr_timer_usec;

	rx_coal->use_adaptive_rx_coalesce = 1;
}

static int enic_dev_notify_set(struct enic *enic)
{
	int err;

	spin_lock_bh(&enic->devcmd_lock);
	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	case VNIC_DEV_INTR_MODE_INTX:
		err = vnic_dev_notify_set(enic->vdev,
			enic_legacy_notify_intr());
		break;
	case VNIC_DEV_INTR_MODE_MSIX:
		err = vnic_dev_notify_set(enic->vdev,
			enic_msix_notify_intr(enic));
		break;
	default:
		err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */);
		break;
	}
	spin_unlock_bh(&enic->devcmd_lock);

	return err;
}

static void enic_notify_timer_start(struct enic *enic)
{
	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	case VNIC_DEV_INTR_MODE_MSI:
		mod_timer(&enic->notify_timer, jiffies);
		break;
	default:
		/* Using intr for notification for INTx/MSI-X */
		break;
	}
}

/* rtnl lock is held, process context */
static int enic_open(struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	unsigned int i;
	int err, ret;

	err = enic_request_intr(enic);
	if (err) {
		netdev_err(netdev, "Unable to request irq.\n");
		return err;
	}
	enic_init_affinity_hint(enic);
	enic_set_affinity_hint(enic);

	err = enic_dev_notify_set(enic);
	if (err) {
		netdev_err(netdev,
			"Failed to alloc notify buffer, aborting.\n");
		goto err_out_free_intr;
	}

	for (i = 0; i < enic->rq_count; i++) {
		/* enable rq before updating rq desc */
		vnic_rq_enable(&enic->rq[i]);
		vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf);
		/* Need at least one buffer on ring to get going */
		if (vnic_rq_desc_used(&enic->rq[i]) == 0) {
			netdev_err(netdev, "Unable to alloc receive buffers\n");
			err = -ENOMEM;
			goto err_out_free_rq;
		}
	}

	for (i = 0; i < enic->wq_count; i++)
		vnic_wq_enable(&enic->wq[i]);

	if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic))
		enic_dev_add_station_addr(enic);

	enic_set_rx_mode(netdev);

	netif_tx_wake_all_queues(netdev);

	for (i = 0; i < enic->rq_count; i++)
		napi_enable(&enic->napi[i]);

	if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
		for (i = 0; i < enic->wq_count; i++)
			napi_enable(&enic->napi[enic_cq_wq(enic, i)]);
	enic_dev_enable(enic);

	for (i = 0; i < enic->intr_count; i++)
		vnic_intr_unmask(&enic->intr[i]);

	enic_notify_timer_start(enic);
	enic_rfs_timer_start(enic);

	return 0;

err_out_free_rq:
	for (i = 0; i < enic->rq_count; i++) {
		ret = vnic_rq_disable(&enic->rq[i]);
		if (!ret)
			vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
	}
	enic_dev_notify_unset(enic);
err_out_free_intr:
	enic_unset_affinity_hint(enic);
	enic_free_intr(enic);

	return err;
}

/* rtnl lock is held, process context */
static int enic_stop(struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	unsigned int i;
	int err;

	for (i = 0; i < enic->intr_count; i++) {
		vnic_intr_mask(&enic->intr[i]);
		(void)vnic_intr_masked(&enic->intr[i]); /* flush write */
	}

	enic_synchronize_irqs(enic);

	del_timer_sync(&enic->notify_timer);
	enic_rfs_flw_tbl_free(enic);

	enic_dev_disable(enic);

	for (i = 0; i < enic->rq_count; i++)
		napi_disable(&enic->napi[i]);

	netif_carrier_off(netdev);
	netif_tx_disable(netdev);
	if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
		for (i = 0; i < enic->wq_count; i++)
			napi_disable(&enic->napi[enic_cq_wq(enic, i)]);

	if (!enic_is_dynamic(enic) && !enic_is_sriov_vf(enic))
		enic_dev_del_station_addr(enic);

	for (i = 0; i < enic->wq_count; i++) {
		err = vnic_wq_disable(&enic->wq[i]);
		if (err)
			return err;
	}
	for (i = 0; i < enic->rq_count; i++) {
		err = vnic_rq_disable(&enic->rq[i]);
		if (err)
			return err;
	}

	enic_dev_notify_unset(enic);
	enic_unset_affinity_hint(enic);
	enic_free_intr(enic);

	for (i = 0; i < enic->wq_count; i++)
		vnic_wq_clean(&enic->wq[i], enic_free_wq_buf);
	for (i = 0; i < enic->rq_count; i++)
		vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
	for (i = 0; i < enic->cq_count; i++)
		vnic_cq_clean(&enic->cq[i]);
	for (i = 0; i < enic->intr_count; i++)
		vnic_intr_clean(&enic->intr[i]);

	return 0;
}

static int _enic_change_mtu(struct net_device *netdev, int new_mtu)
{
	bool running = netif_running(netdev);
	int err = 0;

	ASSERT_RTNL();
	if (running) {
		err = enic_stop(netdev);
		if (err)
			return err;
	}

	netdev->mtu = new_mtu;

	if (running) {
		err = enic_open(netdev);
		if (err)
			return err;
	}

	return 0;
}

static int enic_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct enic *enic = netdev_priv(netdev);

	if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic))
		return -EOPNOTSUPP;

	if (netdev->mtu > enic->port_mtu)
		netdev_warn(netdev,
			    "interface MTU (%d) set higher than port MTU (%d)\n",
			    netdev->mtu, enic->port_mtu);

	return _enic_change_mtu(netdev, new_mtu);
}

static void enic_change_mtu_work(struct work_struct *work)
{
	struct enic *enic = container_of(work, struct enic, change_mtu_work);
	struct net_device *netdev = enic->netdev;
	int new_mtu = vnic_dev_mtu(enic->vdev);

	rtnl_lock();
	(void)_enic_change_mtu(netdev, new_mtu);
	rtnl_unlock();

	netdev_info(netdev, "interface MTU set as %d\n", netdev->mtu);
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void enic_poll_controller(struct net_device *netdev)
{
	struct enic *enic = netdev_priv(netdev);
	struct vnic_dev *vdev = enic->vdev;
	unsigned int i, intr;

	switch (vnic_dev_get_intr_mode(vdev)) {
	case VNIC_DEV_INTR_MODE_MSIX:
		for (i = 0; i < enic->rq_count; i++) {
			intr = enic_msix_rq_intr(enic, i);
			enic_isr_msix(enic->msix_entry[intr].vector,
				      &enic->napi[i]);
		}

		for (i = 0; i < enic->wq_count; i++) {
			intr = enic_msix_wq_intr(enic, i);
			enic_isr_msix(enic->msix_entry[intr].vector,
				      &enic->napi[enic_cq_wq(enic, i)]);
		}

		break;
	case VNIC_DEV_INTR_MODE_MSI:
		enic_isr_msi(enic->pdev->irq, enic);
		break;
	case VNIC_DEV_INTR_MODE_INTX:
		enic_isr_legacy(enic->pdev->irq, netdev);
		break;
	default:
		break;
	}
}
#endif

static int enic_dev_wait(struct vnic_dev *vdev,
	int (*start)(struct vnic_dev *, int),
	int (*finished)(struct vnic_dev *, int *),
	int arg)
{
	unsigned long time;
	int done;
	int err;

	BUG_ON(in_interrupt());

	err = start(vdev, arg);
	if (err)
		return err;

	/* Wait for func to complete...2 seconds max
	 */

	time = jiffies + (HZ * 2);
	do {

		err = finished(vdev, &done);
		if (err)
			return err;

		if (done)
			return 0;

		schedule_timeout_uninterruptible(HZ / 10);

	} while (time_after(time, jiffies));

	return -ETIMEDOUT;
}

static int enic_dev_open(struct enic *enic)
{
	int err;
	u32 flags = CMD_OPENF_IG_DESCCACHE;

	err = enic_dev_wait(enic->vdev, vnic_dev_open,
		vnic_dev_open_done, flags);
	if (err)
		dev_err(enic_get_dev(enic), "vNIC device open failed, err %d\n",
			err);

	return err;
}

static int enic_dev_soft_reset(struct enic *enic)
{
	int err;

	err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset,
			    vnic_dev_soft_reset_done, 0);
	if (err)
		netdev_err(enic->netdev, "vNIC soft reset failed, err %d\n",
			   err);

	return err;
}

static int enic_dev_hang_reset(struct enic *enic)
{
	int err;

	err = enic_dev_wait(enic->vdev, vnic_dev_hang_reset,
		vnic_dev_hang_reset_done, 0);
	if (err)
		netdev_err(enic->netdev, "vNIC hang reset failed, err %d\n",
			err);

	return err;
}

int __enic_set_rsskey(struct enic *enic)
{
	union vnic_rss_key *rss_key_buf_va;
	dma_addr_t rss_key_buf_pa;
	int i, kidx, bidx, err;

	rss_key_buf_va = pci_zalloc_consistent(enic->pdev,
					       sizeof(union vnic_rss_key),
					       &rss_key_buf_pa);
	if (!rss_key_buf_va)
		return -ENOMEM;

	for (i = 0; i < ENIC_RSS_LEN; i++) {
		kidx = i / ENIC_RSS_BYTES_PER_KEY;
		bidx = i % ENIC_RSS_BYTES_PER_KEY;
		rss_key_buf_va->key[kidx].b[bidx] = enic->rss_key[i];
	}
	spin_lock_bh(&enic->devcmd_lock);
	err = enic_set_rss_key(enic,
		rss_key_buf_pa,
		sizeof(union vnic_rss_key));
	spin_unlock_bh(&enic->devcmd_lock);

	pci_free_consistent(enic->pdev, sizeof(union vnic_rss_key),
		rss_key_buf_va, rss_key_buf_pa);

	return err;
}

static int enic_set_rsskey(struct enic *enic)
{
	netdev_rss_key_fill(enic->rss_key, ENIC_RSS_LEN);

	return __enic_set_rsskey(enic);
}

static int enic_set_rsscpu(struct enic *enic, u8 rss_hash_bits)
{
	dma_addr_t rss_cpu_buf_pa;
	union vnic_rss_cpu *rss_cpu_buf_va = NULL;
	unsigned int i;
	int err;

	rss_cpu_buf_va = pci_alloc_consistent(enic->pdev,
		sizeof(union vnic_rss_cpu), &rss_cpu_buf_pa);
	if (!rss_cpu_buf_va)
		return -ENOMEM;

	for (i = 0; i < (1 << rss_hash_bits); i++)
		(*rss_cpu_buf_va).cpu[i/4].b[i%4] = i % enic->rq_count;

	spin_lock_bh(&enic->devcmd_lock);
	err = enic_set_rss_cpu(enic,
		rss_cpu_buf_pa,
		sizeof(union vnic_rss_cpu));
	spin_unlock_bh(&enic->devcmd_lock);

	pci_free_consistent(enic->pdev, sizeof(union vnic_rss_cpu),
		rss_cpu_buf_va, rss_cpu_buf_pa);

	return err;
}

static int enic_set_niccfg(struct enic *enic, u8 rss_default_cpu,
	u8 rss_hash_type, u8 rss_hash_bits, u8 rss_base_cpu, u8 rss_enable)
{
	const u8 tso_ipid_split_en = 0;
	const u8 ig_vlan_strip_en = 1;
	int err;

	/* Enable VLAN tag stripping.
	*/

	spin_lock_bh(&enic->devcmd_lock);
	err = enic_set_nic_cfg(enic,
		rss_default_cpu, rss_hash_type,
		rss_hash_bits, rss_base_cpu,
		rss_enable, tso_ipid_split_en,
		ig_vlan_strip_en);
	spin_unlock_bh(&enic->devcmd_lock);

	return err;
}

static int enic_set_rss_nic_cfg(struct enic *enic)
{
	struct device *dev = enic_get_dev(enic);
	const u8 rss_default_cpu = 0;
	const u8 rss_hash_bits = 7;
	const u8 rss_base_cpu = 0;
	u8 rss_hash_type;
	int res;
	u8 rss_enable = ENIC_SETTING(enic, RSS) && (enic->rq_count > 1);

	spin_lock_bh(&enic->devcmd_lock);
	res = vnic_dev_capable_rss_hash_type(enic->vdev, &rss_hash_type);
	spin_unlock_bh(&enic->devcmd_lock);
	if (res) {
		/* defaults for old adapters
		 */
		rss_hash_type = NIC_CFG_RSS_HASH_TYPE_IPV4	|
				NIC_CFG_RSS_HASH_TYPE_TCP_IPV4	|
				NIC_CFG_RSS_HASH_TYPE_IPV6	|
				NIC_CFG_RSS_HASH_TYPE_TCP_IPV6;
	}

	if (rss_enable) {
		if (!enic_set_rsskey(enic)) {
			if (enic_set_rsscpu(enic, rss_hash_bits)) {
				rss_enable = 0;
				dev_warn(dev, "RSS disabled, "
					"Failed to set RSS cpu indirection table.");
			}
		} else {
			rss_enable = 0;
			dev_warn(dev, "RSS disabled, Failed to set RSS key.\n");
		}
	}

	return enic_set_niccfg(enic, rss_default_cpu, rss_hash_type,
		rss_hash_bits, rss_base_cpu, rss_enable);
}

static void enic_reset(struct work_struct *work)
{
	struct enic *enic = container_of(work, struct enic, reset);

	if (!netif_running(enic->netdev))
		return;

	rtnl_lock();

	spin_lock(&enic->enic_api_lock);
	enic_stop(enic->netdev);
	enic_dev_soft_reset(enic);
	enic_reset_addr_lists(enic);
	enic_init_vnic_resources(enic);
	enic_set_rss_nic_cfg(enic);
	enic_dev_set_ig_vlan_rewrite_mode(enic);
	enic_open(enic->netdev);
	spin_unlock(&enic->enic_api_lock);
	call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev);

	rtnl_unlock();
}

static void enic_tx_hang_reset(struct work_struct *work)
{
	struct enic *enic = container_of(work, struct enic, tx_hang_reset);

	rtnl_lock();

	spin_lock(&enic->enic_api_lock);
	enic_dev_hang_notify(enic);
	enic_stop(enic->netdev);
	enic_dev_hang_reset(enic);
	enic_reset_addr_lists(enic);
	enic_init_vnic_resources(enic);
	enic_set_rss_nic_cfg(enic);
	enic_dev_set_ig_vlan_rewrite_mode(enic);
	enic_open(enic->netdev);
	spin_unlock(&enic->enic_api_lock);
	call_netdevice_notifiers(NETDEV_REBOOT, enic->netdev);

	rtnl_unlock();
}

static int enic_set_intr_mode(struct enic *enic)
{
	unsigned int n = min_t(unsigned int, enic->rq_count, ENIC_RQ_MAX);
	unsigned int m = min_t(unsigned int, enic->wq_count, ENIC_WQ_MAX);
	unsigned int i;

	/* Set interrupt mode (INTx, MSI, MSI-X) depending
	 * on system capabilities.
	 *
	 * Try MSI-X first
	 *
	 * We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs
	 * (the second to last INTR is used for WQ/RQ errors)
	 * (the last INTR is used for notifications)
	 */

	BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2);
	for (i = 0; i < n + m + 2; i++)
		enic->msix_entry[i].entry = i;

	/* Use multiple RQs if RSS is enabled
	 */

	if (ENIC_SETTING(enic, RSS) &&
	    enic->config.intr_mode < 1 &&
	    enic->rq_count >= n &&
	    enic->wq_count >= m &&
	    enic->cq_count >= n + m &&
	    enic->intr_count >= n + m + 2) {

		if (pci_enable_msix_range(enic->pdev, enic->msix_entry,
					  n + m + 2, n + m + 2) > 0) {

			enic->rq_count = n;
			enic->wq_count = m;
			enic->cq_count = n + m;
			enic->intr_count = n + m + 2;

			vnic_dev_set_intr_mode(enic->vdev,
				VNIC_DEV_INTR_MODE_MSIX);

			return 0;
		}
	}

	if (enic->config.intr_mode < 1 &&
	    enic->rq_count >= 1 &&
	    enic->wq_count >= m &&
	    enic->cq_count >= 1 + m &&
	    enic->intr_count >= 1 + m + 2) {
		if (pci_enable_msix_range(enic->pdev, enic->msix_entry,
					  1 + m + 2, 1 + m + 2) > 0) {

			enic->rq_count = 1;
			enic->wq_count = m;
			enic->cq_count = 1 + m;
			enic->intr_count = 1 + m + 2;

			vnic_dev_set_intr_mode(enic->vdev,
				VNIC_DEV_INTR_MODE_MSIX);

			return 0;
		}
	}

	/* Next try MSI
	 *
	 * We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR
	 */

	if (enic->config.intr_mode < 2 &&
	    enic->rq_count >= 1 &&
	    enic->wq_count >= 1 &&
	    enic->cq_count >= 2 &&
	    enic->intr_count >= 1 &&
	    !pci_enable_msi(enic->pdev)) {

		enic->rq_count = 1;
		enic->wq_count = 1;
		enic->cq_count = 2;
		enic->intr_count = 1;

		vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI);

		return 0;
	}

	/* Next try INTx
	 *
	 * We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs
	 * (the first INTR is used for WQ/RQ)
	 * (the second INTR is used for WQ/RQ errors)
	 * (the last INTR is used for notifications)
	 */

	if (enic->config.intr_mode < 3 &&
	    enic->rq_count >= 1 &&
	    enic->wq_count >= 1 &&
	    enic->cq_count >= 2 &&
	    enic->intr_count >= 3) {

		enic->rq_count = 1;
		enic->wq_count = 1;
		enic->cq_count = 2;
		enic->intr_count = 3;

		vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX);

		return 0;
	}

	vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);

	return -EINVAL;
}

static void enic_clear_intr_mode(struct enic *enic)
{
	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	case VNIC_DEV_INTR_MODE_MSIX:
		pci_disable_msix(enic->pdev);
		break;
	case VNIC_DEV_INTR_MODE_MSI:
		pci_disable_msi(enic->pdev);
		break;
	default:
		break;
	}

	vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN);
}

static const struct net_device_ops enic_netdev_dynamic_ops = {
	.ndo_open		= enic_open,
	.ndo_stop		= enic_stop,
	.ndo_start_xmit		= enic_hard_start_xmit,
	.ndo_get_stats64	= enic_get_stats,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_rx_mode	= enic_set_rx_mode,
	.ndo_set_mac_address	= enic_set_mac_address_dynamic,
	.ndo_change_mtu		= enic_change_mtu,
	.ndo_vlan_rx_add_vid	= enic_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= enic_vlan_rx_kill_vid,
	.ndo_tx_timeout		= enic_tx_timeout,
	.ndo_set_vf_port	= enic_set_vf_port,
	.ndo_get_vf_port	= enic_get_vf_port,
	.ndo_set_vf_mac		= enic_set_vf_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= enic_poll_controller,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= enic_rx_flow_steer,
#endif
	.ndo_udp_tunnel_add	= enic_udp_tunnel_add,
	.ndo_udp_tunnel_del	= enic_udp_tunnel_del,
	.ndo_features_check	= enic_features_check,
};

static const struct net_device_ops enic_netdev_ops = {
	.ndo_open		= enic_open,
	.ndo_stop		= enic_stop,
	.ndo_start_xmit		= enic_hard_start_xmit,
	.ndo_get_stats64	= enic_get_stats,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= enic_set_mac_address,
	.ndo_set_rx_mode	= enic_set_rx_mode,
	.ndo_change_mtu		= enic_change_mtu,
	.ndo_vlan_rx_add_vid	= enic_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= enic_vlan_rx_kill_vid,
	.ndo_tx_timeout		= enic_tx_timeout,
	.ndo_set_vf_port	= enic_set_vf_port,
	.ndo_get_vf_port	= enic_get_vf_port,
	.ndo_set_vf_mac		= enic_set_vf_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= enic_poll_controller,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= enic_rx_flow_steer,
#endif
	.ndo_udp_tunnel_add	= enic_udp_tunnel_add,
	.ndo_udp_tunnel_del	= enic_udp_tunnel_del,
	.ndo_features_check	= enic_features_check,
};

static void enic_dev_deinit(struct enic *enic)
{
	unsigned int i;

	for (i = 0; i < enic->rq_count; i++) {
		napi_hash_del(&enic->napi[i]);
		netif_napi_del(&enic->napi[i]);
	}
	if (vnic_dev_get_intr_mode(enic->vdev) == VNIC_DEV_INTR_MODE_MSIX)
		for (i = 0; i < enic->wq_count; i++)
			netif_napi_del(&enic->napi[enic_cq_wq(enic, i)]);

	enic_free_vnic_resources(enic);
	enic_clear_intr_mode(enic);
	enic_free_affinity_hint(enic);
}

static void enic_kdump_kernel_config(struct enic *enic)
{
	if (is_kdump_kernel()) {
		dev_info(enic_get_dev(enic), "Running from within kdump kernel. Using minimal resources\n");
		enic->rq_count = 1;
		enic->wq_count = 1;
		enic->config.rq_desc_count = ENIC_MIN_RQ_DESCS;
		enic->config.wq_desc_count = ENIC_MIN_WQ_DESCS;
		enic->config.mtu = min_t(u16, 1500, enic->config.mtu);
	}
}

static int enic_dev_init(struct enic *enic)
{
	struct device *dev = enic_get_dev(enic);
	struct net_device *netdev = enic->netdev;
	unsigned int i;
	int err;

	/* Get interrupt coalesce timer info */
	err = enic_dev_intr_coal_timer_info(enic);
	if (err) {
		dev_warn(dev, "Using default conversion factor for "
			"interrupt coalesce timer\n");
		vnic_dev_intr_coal_timer_info_default(enic->vdev);
	}

	/* Get vNIC configuration
	 */

	err = enic_get_vnic_config(enic);
	if (err) {
		dev_err(dev, "Get vNIC configuration failed, aborting\n");
		return err;
	}

	/* Get available resource counts
	 */

	enic_get_res_counts(enic);

	/* modify resource count if we are in kdump_kernel
	 */
	enic_kdump_kernel_config(enic);

	/* Set interrupt mode based on resource counts and system
	 * capabilities
	 */

	err = enic_set_intr_mode(enic);
	if (err) {
		dev_err(dev, "Failed to set intr mode based on resource "
			"counts and system capabilities, aborting\n");
		return err;
	}

	/* Allocate and configure vNIC resources
	 */

	err = enic_alloc_vnic_resources(enic);
	if (err) {
		dev_err(dev, "Failed to alloc vNIC resources, aborting\n");
		goto err_out_free_vnic_resources;
	}

	enic_init_vnic_resources(enic);

	err = enic_set_rss_nic_cfg(enic);
	if (err) {
		dev_err(dev, "Failed to config nic, aborting\n");
		goto err_out_free_vnic_resources;
	}

	switch (vnic_dev_get_intr_mode(enic->vdev)) {
	default:
		netif_napi_add(netdev, &enic->napi[0], enic_poll, 64);
		break;
	case VNIC_DEV_INTR_MODE_MSIX:
		for (i = 0; i < enic->rq_count; i++) {
			netif_napi_add(netdev, &enic->napi[i],
				enic_poll_msix_rq, NAPI_POLL_WEIGHT);
		}
		for (i = 0; i < enic->wq_count; i++)
			netif_napi_add(netdev, &enic->napi[enic_cq_wq(enic, i)],
				       enic_poll_msix_wq, NAPI_POLL_WEIGHT);
		break;
	}

	return 0;

err_out_free_vnic_resources:
	enic_free_affinity_hint(enic);
	enic_clear_intr_mode(enic);
	enic_free_vnic_resources(enic);

	return err;
}

static void enic_iounmap(struct enic *enic)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(enic->bar); i++)
		if (enic->bar[i].vaddr)
			iounmap(enic->bar[i].vaddr);
}

static int enic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct device *dev = &pdev->dev;
	struct net_device *netdev;
	struct enic *enic;
	int using_dac = 0;
	unsigned int i;
	int err;
#ifdef CONFIG_PCI_IOV
	int pos = 0;
#endif
	int num_pps = 1;

	/* Allocate net device structure and initialize.  Private
	 * instance data is initialized to zero.
	 */

	netdev = alloc_etherdev_mqs(sizeof(struct enic),
				    ENIC_RQ_MAX, ENIC_WQ_MAX);
	if (!netdev)
		return -ENOMEM;

	pci_set_drvdata(pdev, netdev);

	SET_NETDEV_DEV(netdev, &pdev->dev);

	enic = netdev_priv(netdev);
	enic->netdev = netdev;
	enic->pdev = pdev;

	/* Setup PCI resources
	 */

	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(dev, "Cannot enable PCI device, aborting\n");
		goto err_out_free_netdev;
	}

	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
		dev_err(dev, "Cannot request PCI regions, aborting\n");
		goto err_out_disable_device;
	}

	pci_set_master(pdev);

	/* Query PCI controller on system for DMA addressing
	 * limitation for the device.  Try 47-bit first, and
	 * fail to 32-bit.
	 */

	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(47));
	if (err) {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(dev, "No usable DMA configuration, aborting\n");
			goto err_out_release_regions;
		}
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(dev, "Unable to obtain %u-bit DMA "
				"for consistent allocations, aborting\n", 32);
			goto err_out_release_regions;
		}
	} else {
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(47));
		if (err) {
			dev_err(dev, "Unable to obtain %u-bit DMA "
				"for consistent allocations, aborting\n", 47);
			goto err_out_release_regions;
		}
		using_dac = 1;
	}

	/* Map vNIC resources from BAR0-5
	 */

	for (i = 0; i < ARRAY_SIZE(enic->bar); i++) {
		if (!(pci_resource_flags(pdev, i) & IORESOURCE_MEM))
			continue;
		enic->bar[i].len = pci_resource_len(pdev, i);
		enic->bar[i].vaddr = pci_iomap(pdev, i, enic->bar[i].len);
		if (!enic->bar[i].vaddr) {
			dev_err(dev, "Cannot memory-map BAR %d, aborting\n", i);
			err = -ENODEV;
			goto err_out_iounmap;
		}
		enic->bar[i].bus_addr = pci_resource_start(pdev, i);
	}

	/* Register vNIC device
	 */

	enic->vdev = vnic_dev_register(NULL, enic, pdev, enic->bar,
		ARRAY_SIZE(enic->bar));
	if (!enic->vdev) {
		dev_err(dev, "vNIC registration failed, aborting\n");
		err = -ENODEV;
		goto err_out_iounmap;
	}

	err = vnic_devcmd_init(enic->vdev);

	if (err)
		goto err_out_vnic_unregister;

#ifdef CONFIG_PCI_IOV
	/* Get number of subvnics */
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
	if (pos) {
		pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF,
			&enic->num_vfs);
		if (enic->num_vfs) {
			err = pci_enable_sriov(pdev, enic->num_vfs);
			if (err) {
				dev_err(dev, "SRIOV enable failed, aborting."
					" pci_enable_sriov() returned %d\n",
					err);
				goto err_out_vnic_unregister;
			}
			enic->priv_flags |= ENIC_SRIOV_ENABLED;
			num_pps = enic->num_vfs;
		}
	}
#endif

	/* Allocate structure for port profiles */
	enic->pp = kcalloc(num_pps, sizeof(*enic->pp), GFP_KERNEL);
	if (!enic->pp) {
		err = -ENOMEM;
		goto err_out_disable_sriov_pp;
	}

	/* Issue device open to get device in known state
	 */

	err = enic_dev_open(enic);
	if (err) {
		dev_err(dev, "vNIC dev open failed, aborting\n");
		goto err_out_disable_sriov;
	}

	/* Setup devcmd lock
	 */

	spin_lock_init(&enic->devcmd_lock);
	spin_lock_init(&enic->enic_api_lock);

	/*
	 * Set ingress vlan rewrite mode before vnic initialization
	 */

	err = enic_dev_set_ig_vlan_rewrite_mode(enic);
	if (err) {
		dev_err(dev,
			"Failed to set ingress vlan rewrite mode, aborting.\n");
		goto err_out_dev_close;
	}

	/* Issue device init to initialize the vnic-to-switch link.
	 * We'll start with carrier off and wait for link UP
	 * notification later to turn on carrier.  We don't need
	 * to wait here for the vnic-to-switch link initialization
	 * to complete; link UP notification is the indication that
	 * the process is complete.
	 */

	netif_carrier_off(netdev);

	/* Do not call dev_init for a dynamic vnic.
	 * For a dynamic vnic, init_prov_info will be
	 * called later by an upper layer.
	 */

	if (!enic_is_dynamic(enic)) {
		err = vnic_dev_init(enic->vdev, 0);
		if (err) {
			dev_err(dev, "vNIC dev init failed, aborting\n");
			goto err_out_dev_close;
		}
	}

	err = enic_dev_init(enic);
	if (err) {
		dev_err(dev, "Device initialization failed, aborting\n");
		goto err_out_dev_close;
	}

	netif_set_real_num_tx_queues(netdev, enic->wq_count);
	netif_set_real_num_rx_queues(netdev, enic->rq_count);

	/* Setup notification timer, HW reset task, and wq locks
	 */

	timer_setup(&enic->notify_timer, enic_notify_timer, 0);

	enic_rfs_flw_tbl_init(enic);
	enic_set_rx_coal_setting(enic);
	INIT_WORK(&enic->reset, enic_reset);
	INIT_WORK(&enic->tx_hang_reset, enic_tx_hang_reset);
	INIT_WORK(&enic->change_mtu_work, enic_change_mtu_work);

	for (i = 0; i < enic->wq_count; i++)
		spin_lock_init(&enic->wq_lock[i]);

	/* Register net device
	 */

	enic->port_mtu = enic->config.mtu;

	err = enic_set_mac_addr(netdev, enic->mac_addr);
	if (err) {
		dev_err(dev, "Invalid MAC address, aborting\n");
		goto err_out_dev_deinit;
	}

	enic->tx_coalesce_usecs = enic->config.intr_timer_usec;
	/* rx coalesce time already got initialized. This gets used
	 * if adaptive coal is turned off
	 */
	enic->rx_coalesce_usecs = enic->tx_coalesce_usecs;

	if (enic_is_dynamic(enic) || enic_is_sriov_vf(enic))
		netdev->netdev_ops = &enic_netdev_dynamic_ops;
	else
		netdev->netdev_ops = &enic_netdev_ops;

	netdev->watchdog_timeo = 2 * HZ;
	enic_set_ethtool_ops(netdev);

	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
	if (ENIC_SETTING(enic, LOOP)) {
		netdev->features &= ~NETIF_F_HW_VLAN_CTAG_TX;
		enic->loop_enable = 1;
		enic->loop_tag = enic->config.loop_tag;
		dev_info(dev, "loopback tag=0x%04x\n", enic->loop_tag);
	}
	if (ENIC_SETTING(enic, TXCSUM))
		netdev->hw_features |= NETIF_F_SG | NETIF_F_HW_CSUM;
	if (ENIC_SETTING(enic, TSO))
		netdev->hw_features |= NETIF_F_TSO |
			NETIF_F_TSO6 | NETIF_F_TSO_ECN;
	if (ENIC_SETTING(enic, RSS))
		netdev->hw_features |= NETIF_F_RXHASH;
	if (ENIC_SETTING(enic, RXCSUM))
		netdev->hw_features |= NETIF_F_RXCSUM;
	if (ENIC_SETTING(enic, VXLAN)) {
		u64 patch_level;
		u64 a1 = 0;

		netdev->hw_enc_features |= NETIF_F_RXCSUM		|
					   NETIF_F_TSO			|
					   NETIF_F_TSO6			|
					   NETIF_F_TSO_ECN		|
					   NETIF_F_GSO_UDP_TUNNEL	|
					   NETIF_F_HW_CSUM		|
					   NETIF_F_GSO_UDP_TUNNEL_CSUM;
		netdev->hw_features |= netdev->hw_enc_features;
		/* get bit mask from hw about supported offload bit level
		 * BIT(0) = fw supports patch_level 0
		 *	    fcoe bit = encap
		 *	    fcoe_fc_crc_ok = outer csum ok
		 * BIT(1) = always set by fw
		 * BIT(2) = fw supports patch_level 2
		 *	    BIT(0) in rss_hash = encap
		 *	    BIT(1,2) in rss_hash = outer_ip_csum_ok/
		 *				   outer_tcp_csum_ok
		 * used in enic_rq_indicate_buf
		 */
		err = vnic_dev_get_supported_feature_ver(enic->vdev,
							 VIC_FEATURE_VXLAN,
							 &patch_level, &a1);
		if (err)
			patch_level = 0;
		enic->vxlan.flags = (u8)a1;
		/* mask bits that are supported by driver
		 */
		patch_level &= BIT_ULL(0) | BIT_ULL(2);
		patch_level = fls(patch_level);
		patch_level = patch_level ? patch_level - 1 : 0;
		enic->vxlan.patch_level = patch_level;
	}

	netdev->features |= netdev->hw_features;
	netdev->vlan_features |= netdev->features;

#ifdef CONFIG_RFS_ACCEL
	netdev->hw_features |= NETIF_F_NTUPLE;
#endif

	if (using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	netdev->priv_flags |= IFF_UNICAST_FLT;

	/* MTU range: 68 - 9000 */
	netdev->min_mtu = ENIC_MIN_MTU;
	netdev->max_mtu = ENIC_MAX_MTU;
	netdev->mtu	= enic->port_mtu;

	err = register_netdev(netdev);
	if (err) {
		dev_err(dev, "Cannot register net device, aborting\n");
		goto err_out_dev_deinit;
	}
	enic->rx_copybreak = RX_COPYBREAK_DEFAULT;

	return 0;

err_out_dev_deinit:
	enic_dev_deinit(enic);
err_out_dev_close:
	vnic_dev_close(enic->vdev);
err_out_disable_sriov:
	kfree(enic->pp);
err_out_disable_sriov_pp:
#ifdef CONFIG_PCI_IOV
	if (enic_sriov_enabled(enic)) {
		pci_disable_sriov(pdev);
		enic->priv_flags &= ~ENIC_SRIOV_ENABLED;
	}
#endif
err_out_vnic_unregister:
	vnic_dev_unregister(enic->vdev);
err_out_iounmap:
	enic_iounmap(enic);
err_out_release_regions:
	pci_release_regions(pdev);
err_out_disable_device:
	pci_disable_device(pdev);
err_out_free_netdev:
	free_netdev(netdev);

	return err;
}

static void enic_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);

	if (netdev) {
		struct enic *enic = netdev_priv(netdev);

		cancel_work_sync(&enic->reset);
		cancel_work_sync(&enic->change_mtu_work);
		unregister_netdev(netdev);
		enic_dev_deinit(enic);
		vnic_dev_close(enic->vdev);
#ifdef CONFIG_PCI_IOV
		if (enic_sriov_enabled(enic)) {
			pci_disable_sriov(pdev);
			enic->priv_flags &= ~ENIC_SRIOV_ENABLED;
		}
#endif
		kfree(enic->pp);
		vnic_dev_unregister(enic->vdev);
		enic_iounmap(enic);
		pci_release_regions(pdev);
		pci_disable_device(pdev);
		free_netdev(netdev);
	}
}

static struct pci_driver enic_driver = {
	.name = DRV_NAME,
	.id_table = enic_id_table,
	.probe = enic_probe,
	.remove = enic_remove,
};

static int __init enic_init_module(void)
{
	pr_info("%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION);

	return pci_register_driver(&enic_driver);
}

static void __exit enic_cleanup_module(void)
{
	pci_unregister_driver(&enic_driver);
}

module_init(enic_init_module);
module_exit(enic_cleanup_module);