Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roland Dreier | 1500 | 65.10% | 2 | 7.69% |
Jack Morgenstein | 368 | 15.97% | 4 | 15.38% |
Stephen Warren | 166 | 7.20% | 2 | 7.69% |
Eugenia Emantayev | 92 | 3.99% | 1 | 3.85% |
Yishai Hadas | 59 | 2.56% | 3 | 11.54% |
Jens Axboe | 29 | 1.26% | 2 | 7.69% |
Eric Dumazet | 25 | 1.09% | 1 | 3.85% |
Leon Romanovsky | 19 | 0.82% | 2 | 7.69% |
Qing Huang | 15 | 0.65% | 1 | 3.85% |
Sébastien Dugué | 9 | 0.39% | 1 | 3.85% |
Dotan Barak | 6 | 0.26% | 1 | 3.85% |
zhong jiang | 4 | 0.17% | 1 | 3.85% |
Stephen Hemminger | 4 | 0.17% | 2 | 7.69% |
Tejun Heo | 3 | 0.13% | 1 | 3.85% |
Al Viro | 3 | 0.13% | 1 | 3.85% |
Kees Cook | 2 | 0.09% | 1 | 3.85% |
Total | 2304 | 26 |
/* * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved. * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/errno.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/mlx4/cmd.h> #include "mlx4.h" #include "icm.h" #include "fw.h" /* * We allocate in as big chunks as we can, up to a maximum of 256 KB * per chunk. Note that the chunks are not necessarily in contiguous * physical memory. */ enum { MLX4_ICM_ALLOC_SIZE = 1 << 18, MLX4_TABLE_CHUNK_SIZE = 1 << 18, }; static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk) { int i; if (chunk->nsg > 0) dma_unmap_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages, DMA_BIDIRECTIONAL); for (i = 0; i < chunk->npages; ++i) __free_pages(sg_page(&chunk->sg[i]), get_order(chunk->sg[i].length)); } static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk) { int i; for (i = 0; i < chunk->npages; ++i) dma_free_coherent(&dev->persist->pdev->dev, chunk->buf[i].size, chunk->buf[i].addr, chunk->buf[i].dma_addr); } void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent) { struct mlx4_icm_chunk *chunk, *tmp; if (!icm) return; list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) { if (coherent) mlx4_free_icm_coherent(dev, chunk); else mlx4_free_icm_pages(dev, chunk); kfree(chunk); } kfree(icm); } static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order, gfp_t gfp_mask, int node) { struct page *page; page = alloc_pages_node(node, gfp_mask, order); if (!page) { page = alloc_pages(gfp_mask, order); if (!page) return -ENOMEM; } sg_set_page(mem, page, PAGE_SIZE << order, 0); return 0; } static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf, int order, gfp_t gfp_mask) { buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order, &buf->dma_addr, gfp_mask); if (!buf->addr) return -ENOMEM; if (offset_in_page(buf->addr)) { dma_free_coherent(dev, PAGE_SIZE << order, buf->addr, buf->dma_addr); return -ENOMEM; } buf->size = PAGE_SIZE << order; return 0; } struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages, gfp_t gfp_mask, int coherent) { struct mlx4_icm *icm; struct mlx4_icm_chunk *chunk = NULL; int cur_order; gfp_t mask; int ret; /* We use sg_set_buf for coherent allocs, which assumes low memory */ BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM)); icm = kmalloc_node(sizeof(*icm), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN), dev->numa_node); if (!icm) { icm = kmalloc(sizeof(*icm), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!icm) return NULL; } icm->refcount = 0; INIT_LIST_HEAD(&icm->chunk_list); cur_order = get_order(MLX4_ICM_ALLOC_SIZE); while (npages > 0) { if (!chunk) { chunk = kzalloc_node(sizeof(*chunk), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN), dev->numa_node); if (!chunk) { chunk = kzalloc(sizeof(*chunk), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!chunk) goto fail; } chunk->coherent = coherent; if (!coherent) sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN); list_add_tail(&chunk->list, &icm->chunk_list); } while (1 << cur_order > npages) --cur_order; mask = gfp_mask; if (cur_order) mask &= ~__GFP_DIRECT_RECLAIM; if (coherent) ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev, &chunk->buf[chunk->npages], cur_order, mask); else ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages], cur_order, mask, dev->numa_node); if (ret) { if (--cur_order < 0) goto fail; else continue; } ++chunk->npages; if (coherent) ++chunk->nsg; else if (chunk->npages == MLX4_ICM_CHUNK_LEN) { chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages, DMA_BIDIRECTIONAL); if (chunk->nsg <= 0) goto fail; } if (chunk->npages == MLX4_ICM_CHUNK_LEN) chunk = NULL; npages -= 1 << cur_order; } if (!coherent && chunk) { chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages, DMA_BIDIRECTIONAL); if (chunk->nsg <= 0) goto fail; } return icm; fail: mlx4_free_icm(dev, icm, coherent); return NULL; } static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt) { return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt); } static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count) { return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE); } int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm) { return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1); } int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev) { return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE); } int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj) { u32 i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size); int ret = 0; mutex_lock(&table->mutex); if (table->icm[i]) { ++table->icm[i]->refcount; goto out; } table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT, (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN, table->coherent); if (!table->icm[i]) { ret = -ENOMEM; goto out; } if (mlx4_MAP_ICM(dev, table->icm[i], table->virt + (u64) i * MLX4_TABLE_CHUNK_SIZE)) { mlx4_free_icm(dev, table->icm[i], table->coherent); table->icm[i] = NULL; ret = -ENOMEM; goto out; } ++table->icm[i]->refcount; out: mutex_unlock(&table->mutex); return ret; } void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj) { u32 i; u64 offset; i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size); mutex_lock(&table->mutex); if (--table->icm[i]->refcount == 0) { offset = (u64) i * MLX4_TABLE_CHUNK_SIZE; mlx4_UNMAP_ICM(dev, table->virt + offset, MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); mlx4_free_icm(dev, table->icm[i], table->coherent); table->icm[i] = NULL; } mutex_unlock(&table->mutex); } void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj, dma_addr_t *dma_handle) { int offset, dma_offset, i; u64 idx; struct mlx4_icm_chunk *chunk; struct mlx4_icm *icm; void *addr = NULL; if (!table->lowmem) return NULL; mutex_lock(&table->mutex); idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size; icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE]; dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE; if (!icm) goto out; list_for_each_entry(chunk, &icm->chunk_list, list) { for (i = 0; i < chunk->npages; ++i) { dma_addr_t dma_addr; size_t len; if (table->coherent) { len = chunk->buf[i].size; dma_addr = chunk->buf[i].dma_addr; addr = chunk->buf[i].addr; } else { struct page *page; len = sg_dma_len(&chunk->sg[i]); dma_addr = sg_dma_address(&chunk->sg[i]); /* XXX: we should never do this for highmem * allocation. This function either needs * to be split, or the kernel virtual address * return needs to be made optional. */ page = sg_page(&chunk->sg[i]); addr = lowmem_page_address(page); } if (dma_handle && dma_offset >= 0) { if (len > dma_offset) *dma_handle = dma_addr + dma_offset; dma_offset -= len; } /* * DMA mapping can merge pages but not split them, * so if we found the page, dma_handle has already * been assigned to. */ if (len > offset) goto out; offset -= len; } } addr = NULL; out: mutex_unlock(&table->mutex); return addr ? addr + offset : NULL; } int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 start, u32 end) { int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size; int err; u32 i; for (i = start; i <= end; i += inc) { err = mlx4_table_get(dev, table, i); if (err) goto fail; } return 0; fail: while (i > start) { i -= inc; mlx4_table_put(dev, table, i); } return err; } void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 start, u32 end) { u32 i; for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size) mlx4_table_put(dev, table, i); } int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table, u64 virt, int obj_size, u32 nobj, int reserved, int use_lowmem, int use_coherent) { int obj_per_chunk; int num_icm; unsigned chunk_size; int i; u64 size; obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size; if (WARN_ON(!obj_per_chunk)) return -EINVAL; num_icm = DIV_ROUND_UP(nobj, obj_per_chunk); table->icm = kvcalloc(num_icm, sizeof(*table->icm), GFP_KERNEL); if (!table->icm) return -ENOMEM; table->virt = virt; table->num_icm = num_icm; table->num_obj = nobj; table->obj_size = obj_size; table->lowmem = use_lowmem; table->coherent = use_coherent; mutex_init(&table->mutex); size = (u64) nobj * obj_size; for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) { chunk_size = MLX4_TABLE_CHUNK_SIZE; if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size) chunk_size = PAGE_ALIGN(size - i * MLX4_TABLE_CHUNK_SIZE); table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT, (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN, use_coherent); if (!table->icm[i]) goto err; if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) { mlx4_free_icm(dev, table->icm[i], use_coherent); table->icm[i] = NULL; goto err; } /* * Add a reference to this ICM chunk so that it never * gets freed (since it contains reserved firmware objects). */ ++table->icm[i]->refcount; } return 0; err: for (i = 0; i < num_icm; ++i) if (table->icm[i]) { mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE, MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); mlx4_free_icm(dev, table->icm[i], use_coherent); } kvfree(table->icm); return -ENOMEM; } void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table) { int i; for (i = 0; i < table->num_icm; ++i) if (table->icm[i]) { mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE, MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); mlx4_free_icm(dev, table->icm[i], table->coherent); } kvfree(table->icm); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1