Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Hutchings | 3118 | 98.11% | 33 | 91.67% |
Edward Cree | 56 | 1.76% | 1 | 2.78% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.78% |
Javier Martinez Canillas | 2 | 0.06% | 1 | 2.78% |
Total | 3178 | 36 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2007-2012 Solarflare Communications Inc. */ #include <linux/rtnetlink.h> #include "net_driver.h" #include "phy.h" #include "efx.h" #include "nic.h" #include "workarounds.h" /* Macros for unpacking the board revision */ /* The revision info is in host byte order. */ #define FALCON_BOARD_TYPE(_rev) (_rev >> 8) #define FALCON_BOARD_MAJOR(_rev) ((_rev >> 4) & 0xf) #define FALCON_BOARD_MINOR(_rev) (_rev & 0xf) /* Board types */ #define FALCON_BOARD_SFE4001 0x01 #define FALCON_BOARD_SFE4002 0x02 #define FALCON_BOARD_SFE4003 0x03 #define FALCON_BOARD_SFN4112F 0x52 /* Board temperature is about 15°C above ambient when air flow is * limited. The maximum acceptable ambient temperature varies * depending on the PHY specifications but the critical temperature * above which we should shut down to avoid damage is 80°C. */ #define FALCON_BOARD_TEMP_BIAS 15 #define FALCON_BOARD_TEMP_CRIT (80 + FALCON_BOARD_TEMP_BIAS) /* SFC4000 datasheet says: 'The maximum permitted junction temperature * is 125°C; the thermal design of the environment for the SFC4000 * should aim to keep this well below 100°C.' */ #define FALCON_JUNC_TEMP_MIN 0 #define FALCON_JUNC_TEMP_MAX 90 #define FALCON_JUNC_TEMP_CRIT 125 /***************************************************************************** * Support for LM87 sensor chip used on several boards */ #define LM87_REG_TEMP_HW_INT_LOCK 0x13 #define LM87_REG_TEMP_HW_EXT_LOCK 0x14 #define LM87_REG_TEMP_HW_INT 0x17 #define LM87_REG_TEMP_HW_EXT 0x18 #define LM87_REG_TEMP_EXT1 0x26 #define LM87_REG_TEMP_INT 0x27 #define LM87_REG_ALARMS1 0x41 #define LM87_REG_ALARMS2 0x42 #define LM87_IN_LIMITS(nr, _min, _max) \ 0x2B + (nr) * 2, _max, 0x2C + (nr) * 2, _min #define LM87_AIN_LIMITS(nr, _min, _max) \ 0x3B + (nr), _max, 0x1A + (nr), _min #define LM87_TEMP_INT_LIMITS(_min, _max) \ 0x39, _max, 0x3A, _min #define LM87_TEMP_EXT1_LIMITS(_min, _max) \ 0x37, _max, 0x38, _min #define LM87_ALARM_TEMP_INT 0x10 #define LM87_ALARM_TEMP_EXT1 0x20 #if IS_ENABLED(CONFIG_SENSORS_LM87) static int ef4_poke_lm87(struct i2c_client *client, const u8 *reg_values) { while (*reg_values) { u8 reg = *reg_values++; u8 value = *reg_values++; int rc = i2c_smbus_write_byte_data(client, reg, value); if (rc) return rc; } return 0; } static const u8 falcon_lm87_common_regs[] = { LM87_REG_TEMP_HW_INT_LOCK, FALCON_BOARD_TEMP_CRIT, LM87_REG_TEMP_HW_INT, FALCON_BOARD_TEMP_CRIT, LM87_TEMP_EXT1_LIMITS(FALCON_JUNC_TEMP_MIN, FALCON_JUNC_TEMP_MAX), LM87_REG_TEMP_HW_EXT_LOCK, FALCON_JUNC_TEMP_CRIT, LM87_REG_TEMP_HW_EXT, FALCON_JUNC_TEMP_CRIT, 0 }; static int ef4_init_lm87(struct ef4_nic *efx, const struct i2c_board_info *info, const u8 *reg_values) { struct falcon_board *board = falcon_board(efx); struct i2c_client *client = i2c_new_device(&board->i2c_adap, info); int rc; if (!client) return -EIO; /* Read-to-clear alarm/interrupt status */ i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1); i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2); rc = ef4_poke_lm87(client, reg_values); if (rc) goto err; rc = ef4_poke_lm87(client, falcon_lm87_common_regs); if (rc) goto err; board->hwmon_client = client; return 0; err: i2c_unregister_device(client); return rc; } static void ef4_fini_lm87(struct ef4_nic *efx) { i2c_unregister_device(falcon_board(efx)->hwmon_client); } static int ef4_check_lm87(struct ef4_nic *efx, unsigned mask) { struct i2c_client *client = falcon_board(efx)->hwmon_client; bool temp_crit, elec_fault, is_failure; u16 alarms; s32 reg; /* If link is up then do not monitor temperature */ if (EF4_WORKAROUND_7884(efx) && efx->link_state.up) return 0; reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1); if (reg < 0) return reg; alarms = reg; reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2); if (reg < 0) return reg; alarms |= reg << 8; alarms &= mask; temp_crit = false; if (alarms & LM87_ALARM_TEMP_INT) { reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_INT); if (reg < 0) return reg; if (reg > FALCON_BOARD_TEMP_CRIT) temp_crit = true; } if (alarms & LM87_ALARM_TEMP_EXT1) { reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_EXT1); if (reg < 0) return reg; if (reg > FALCON_JUNC_TEMP_CRIT) temp_crit = true; } elec_fault = alarms & ~(LM87_ALARM_TEMP_INT | LM87_ALARM_TEMP_EXT1); is_failure = temp_crit || elec_fault; if (alarms) netif_err(efx, hw, efx->net_dev, "LM87 detected a hardware %s (status %02x:%02x)" "%s%s%s%s\n", is_failure ? "failure" : "problem", alarms & 0xff, alarms >> 8, (alarms & LM87_ALARM_TEMP_INT) ? "; board is overheating" : "", (alarms & LM87_ALARM_TEMP_EXT1) ? "; controller is overheating" : "", temp_crit ? "; reached critical temperature" : "", elec_fault ? "; electrical fault" : ""); return is_failure ? -ERANGE : 0; } #else /* !CONFIG_SENSORS_LM87 */ static inline int ef4_init_lm87(struct ef4_nic *efx, const struct i2c_board_info *info, const u8 *reg_values) { return 0; } static inline void ef4_fini_lm87(struct ef4_nic *efx) { } static inline int ef4_check_lm87(struct ef4_nic *efx, unsigned mask) { return 0; } #endif /* CONFIG_SENSORS_LM87 */ /***************************************************************************** * Support for the SFE4001 NIC. * * The SFE4001 does not power-up fully at reset due to its high power * consumption. We control its power via a PCA9539 I/O expander. * It also has a MAX6647 temperature monitor which we expose to * the lm90 driver. * * This also provides minimal support for reflashing the PHY, which is * initiated by resetting it with the FLASH_CFG_1 pin pulled down. * On SFE4001 rev A2 and later this is connected to the 3V3X output of * the IO-expander. * We represent reflash mode as PHY_MODE_SPECIAL and make it mutually * exclusive with the network device being open. */ /************************************************************************** * Support for I2C IO Expander device on SFE4001 */ #define PCA9539 0x74 #define P0_IN 0x00 #define P0_OUT 0x02 #define P0_INVERT 0x04 #define P0_CONFIG 0x06 #define P0_EN_1V0X_LBN 0 #define P0_EN_1V0X_WIDTH 1 #define P0_EN_1V2_LBN 1 #define P0_EN_1V2_WIDTH 1 #define P0_EN_2V5_LBN 2 #define P0_EN_2V5_WIDTH 1 #define P0_EN_3V3X_LBN 3 #define P0_EN_3V3X_WIDTH 1 #define P0_EN_5V_LBN 4 #define P0_EN_5V_WIDTH 1 #define P0_SHORTEN_JTAG_LBN 5 #define P0_SHORTEN_JTAG_WIDTH 1 #define P0_X_TRST_LBN 6 #define P0_X_TRST_WIDTH 1 #define P0_DSP_RESET_LBN 7 #define P0_DSP_RESET_WIDTH 1 #define P1_IN 0x01 #define P1_OUT 0x03 #define P1_INVERT 0x05 #define P1_CONFIG 0x07 #define P1_AFE_PWD_LBN 0 #define P1_AFE_PWD_WIDTH 1 #define P1_DSP_PWD25_LBN 1 #define P1_DSP_PWD25_WIDTH 1 #define P1_RESERVED_LBN 2 #define P1_RESERVED_WIDTH 2 #define P1_SPARE_LBN 4 #define P1_SPARE_WIDTH 4 /* Temperature Sensor */ #define MAX664X_REG_RSL 0x02 #define MAX664X_REG_WLHO 0x0B static void sfe4001_poweroff(struct ef4_nic *efx) { struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client; struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client; /* Turn off all power rails and disable outputs */ i2c_smbus_write_byte_data(ioexp_client, P0_OUT, 0xff); i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG, 0xff); i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0xff); /* Clear any over-temperature alert */ i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL); } static int sfe4001_poweron(struct ef4_nic *efx) { struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client; struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client; unsigned int i, j; int rc; u8 out; /* Clear any previous over-temperature alert */ rc = i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL); if (rc < 0) return rc; /* Enable port 0 and port 1 outputs on IO expander */ rc = i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0x00); if (rc) return rc; rc = i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG, 0xff & ~(1 << P1_SPARE_LBN)); if (rc) goto fail_on; /* If PHY power is on, turn it all off and wait 1 second to * ensure a full reset. */ rc = i2c_smbus_read_byte_data(ioexp_client, P0_OUT); if (rc < 0) goto fail_on; out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) | (0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) | (0 << P0_EN_1V0X_LBN)); if (rc != out) { netif_info(efx, hw, efx->net_dev, "power-cycling PHY\n"); rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); if (rc) goto fail_on; schedule_timeout_uninterruptible(HZ); } for (i = 0; i < 20; ++i) { /* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */ out = 0xff & ~((1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) | (1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) | (1 << P0_X_TRST_LBN)); if (efx->phy_mode & PHY_MODE_SPECIAL) out |= 1 << P0_EN_3V3X_LBN; rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); if (rc) goto fail_on; msleep(10); /* Turn on 1V power rail */ out &= ~(1 << P0_EN_1V0X_LBN); rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); if (rc) goto fail_on; netif_info(efx, hw, efx->net_dev, "waiting for DSP boot (attempt %d)...\n", i); /* In flash config mode, DSP does not turn on AFE, so * just wait 1 second. */ if (efx->phy_mode & PHY_MODE_SPECIAL) { schedule_timeout_uninterruptible(HZ); return 0; } for (j = 0; j < 10; ++j) { msleep(100); /* Check DSP has asserted AFE power line */ rc = i2c_smbus_read_byte_data(ioexp_client, P1_IN); if (rc < 0) goto fail_on; if (rc & (1 << P1_AFE_PWD_LBN)) return 0; } } netif_info(efx, hw, efx->net_dev, "timed out waiting for DSP boot\n"); rc = -ETIMEDOUT; fail_on: sfe4001_poweroff(efx); return rc; } static ssize_t show_phy_flash_cfg(struct device *dev, struct device_attribute *attr, char *buf) { struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", !!(efx->phy_mode & PHY_MODE_SPECIAL)); } static ssize_t set_phy_flash_cfg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); enum ef4_phy_mode old_mode, new_mode; int err; rtnl_lock(); old_mode = efx->phy_mode; if (count == 0 || *buf == '0') new_mode = old_mode & ~PHY_MODE_SPECIAL; else new_mode = PHY_MODE_SPECIAL; if (!((old_mode ^ new_mode) & PHY_MODE_SPECIAL)) { err = 0; } else if (efx->state != STATE_READY || netif_running(efx->net_dev)) { err = -EBUSY; } else { /* Reset the PHY, reconfigure the MAC and enable/disable * MAC stats accordingly. */ efx->phy_mode = new_mode; if (new_mode & PHY_MODE_SPECIAL) falcon_stop_nic_stats(efx); err = sfe4001_poweron(efx); if (!err) err = ef4_reconfigure_port(efx); if (!(new_mode & PHY_MODE_SPECIAL)) falcon_start_nic_stats(efx); } rtnl_unlock(); return err ? err : count; } static DEVICE_ATTR(phy_flash_cfg, 0644, show_phy_flash_cfg, set_phy_flash_cfg); static void sfe4001_fini(struct ef4_nic *efx) { struct falcon_board *board = falcon_board(efx); netif_info(efx, drv, efx->net_dev, "%s\n", __func__); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg); sfe4001_poweroff(efx); i2c_unregister_device(board->ioexp_client); i2c_unregister_device(board->hwmon_client); } static int sfe4001_check_hw(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; s32 status; /* If XAUI link is up then do not monitor */ if (EF4_WORKAROUND_7884(efx) && !nic_data->xmac_poll_required) return 0; /* Check the powered status of the PHY. Lack of power implies that * the MAX6647 has shut down power to it, probably due to a temp. * alarm. Reading the power status rather than the MAX6647 status * directly because the later is read-to-clear and would thus * start to power up the PHY again when polled, causing us to blip * the power undesirably. * We know we can read from the IO expander because we did * it during power-on. Assume failure now is bad news. */ status = i2c_smbus_read_byte_data(falcon_board(efx)->ioexp_client, P1_IN); if (status >= 0 && (status & ((1 << P1_AFE_PWD_LBN) | (1 << P1_DSP_PWD25_LBN))) != 0) return 0; /* Use board power control, not PHY power control */ sfe4001_poweroff(efx); efx->phy_mode = PHY_MODE_OFF; return (status < 0) ? -EIO : -ERANGE; } static const struct i2c_board_info sfe4001_hwmon_info = { I2C_BOARD_INFO("max6647", 0x4e), }; /* This board uses an I2C expander to provider power to the PHY, which needs to * be turned on before the PHY can be used. * Context: Process context, rtnl lock held */ static int sfe4001_init(struct ef4_nic *efx) { struct falcon_board *board = falcon_board(efx); int rc; #if IS_ENABLED(CONFIG_SENSORS_LM90) board->hwmon_client = i2c_new_device(&board->i2c_adap, &sfe4001_hwmon_info); #else board->hwmon_client = i2c_new_dummy(&board->i2c_adap, sfe4001_hwmon_info.addr); #endif if (!board->hwmon_client) return -EIO; /* Raise board/PHY high limit from 85 to 90 degrees Celsius */ rc = i2c_smbus_write_byte_data(board->hwmon_client, MAX664X_REG_WLHO, 90); if (rc) goto fail_hwmon; board->ioexp_client = i2c_new_dummy(&board->i2c_adap, PCA9539); if (!board->ioexp_client) { rc = -EIO; goto fail_hwmon; } if (efx->phy_mode & PHY_MODE_SPECIAL) { /* PHY won't generate a 156.25 MHz clock and MAC stats fetch * will fail. */ falcon_stop_nic_stats(efx); } rc = sfe4001_poweron(efx); if (rc) goto fail_ioexp; rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg); if (rc) goto fail_on; netif_info(efx, hw, efx->net_dev, "PHY is powered on\n"); return 0; fail_on: sfe4001_poweroff(efx); fail_ioexp: i2c_unregister_device(board->ioexp_client); fail_hwmon: i2c_unregister_device(board->hwmon_client); return rc; } /***************************************************************************** * Support for the SFE4002 * */ static u8 sfe4002_lm87_channel = 0x03; /* use AIN not FAN inputs */ static const u8 sfe4002_lm87_regs[] = { LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */ LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ LM87_IN_LIMITS(3, 0xac, 0xd4), /* 5V: 5.0V +/- 10% */ LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ LM87_AIN_LIMITS(0, 0x98, 0xbb), /* AIN1: 1.66V +/- 10% */ LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */ LM87_TEMP_INT_LIMITS(0, 80 + FALCON_BOARD_TEMP_BIAS), LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX), 0 }; static const struct i2c_board_info sfe4002_hwmon_info = { I2C_BOARD_INFO("lm87", 0x2e), .platform_data = &sfe4002_lm87_channel, }; /****************************************************************************/ /* LED allocations. Note that on rev A0 boards the schematic and the reality * differ: red and green are swapped. Below is the fixed (A1) layout (there * are only 3 A0 boards in existence, so no real reason to make this * conditional). */ #define SFE4002_FAULT_LED (2) /* Red */ #define SFE4002_RX_LED (0) /* Green */ #define SFE4002_TX_LED (1) /* Amber */ static void sfe4002_init_phy(struct ef4_nic *efx) { /* Set the TX and RX LEDs to reflect status and activity, and the * fault LED off */ falcon_qt202x_set_led(efx, SFE4002_TX_LED, QUAKE_LED_TXLINK | QUAKE_LED_LINK_ACTSTAT); falcon_qt202x_set_led(efx, SFE4002_RX_LED, QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACTSTAT); falcon_qt202x_set_led(efx, SFE4002_FAULT_LED, QUAKE_LED_OFF); } static void sfe4002_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode) { falcon_qt202x_set_led( efx, SFE4002_FAULT_LED, (mode == EF4_LED_ON) ? QUAKE_LED_ON : QUAKE_LED_OFF); } static int sfe4002_check_hw(struct ef4_nic *efx) { struct falcon_board *board = falcon_board(efx); /* A0 board rev. 4002s report a temperature fault the whole time * (bad sensor) so we mask it out. */ unsigned alarm_mask = (board->major == 0 && board->minor == 0) ? ~LM87_ALARM_TEMP_EXT1 : ~0; return ef4_check_lm87(efx, alarm_mask); } static int sfe4002_init(struct ef4_nic *efx) { return ef4_init_lm87(efx, &sfe4002_hwmon_info, sfe4002_lm87_regs); } /***************************************************************************** * Support for the SFN4112F * */ static u8 sfn4112f_lm87_channel = 0x03; /* use AIN not FAN inputs */ static const u8 sfn4112f_lm87_regs[] = { LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */ LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */ LM87_TEMP_INT_LIMITS(0, 60 + FALCON_BOARD_TEMP_BIAS), LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX), 0 }; static const struct i2c_board_info sfn4112f_hwmon_info = { I2C_BOARD_INFO("lm87", 0x2e), .platform_data = &sfn4112f_lm87_channel, }; #define SFN4112F_ACT_LED 0 #define SFN4112F_LINK_LED 1 static void sfn4112f_init_phy(struct ef4_nic *efx) { falcon_qt202x_set_led(efx, SFN4112F_ACT_LED, QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACT); falcon_qt202x_set_led(efx, SFN4112F_LINK_LED, QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT); } static void sfn4112f_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode) { int reg; switch (mode) { case EF4_LED_OFF: reg = QUAKE_LED_OFF; break; case EF4_LED_ON: reg = QUAKE_LED_ON; break; default: reg = QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT; break; } falcon_qt202x_set_led(efx, SFN4112F_LINK_LED, reg); } static int sfn4112f_check_hw(struct ef4_nic *efx) { /* Mask out unused sensors */ return ef4_check_lm87(efx, ~0x48); } static int sfn4112f_init(struct ef4_nic *efx) { return ef4_init_lm87(efx, &sfn4112f_hwmon_info, sfn4112f_lm87_regs); } /***************************************************************************** * Support for the SFE4003 * */ static u8 sfe4003_lm87_channel = 0x03; /* use AIN not FAN inputs */ static const u8 sfe4003_lm87_regs[] = { LM87_IN_LIMITS(0, 0x67, 0x7f), /* 2.5V: 1.5V +/- 10% */ LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ LM87_TEMP_INT_LIMITS(0, 70 + FALCON_BOARD_TEMP_BIAS), 0 }; static const struct i2c_board_info sfe4003_hwmon_info = { I2C_BOARD_INFO("lm87", 0x2e), .platform_data = &sfe4003_lm87_channel, }; /* Board-specific LED info. */ #define SFE4003_RED_LED_GPIO 11 #define SFE4003_LED_ON 1 #define SFE4003_LED_OFF 0 static void sfe4003_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode) { struct falcon_board *board = falcon_board(efx); /* The LEDs were not wired to GPIOs before A3 */ if (board->minor < 3 && board->major == 0) return; falcon_txc_set_gpio_val( efx, SFE4003_RED_LED_GPIO, (mode == EF4_LED_ON) ? SFE4003_LED_ON : SFE4003_LED_OFF); } static void sfe4003_init_phy(struct ef4_nic *efx) { struct falcon_board *board = falcon_board(efx); /* The LEDs were not wired to GPIOs before A3 */ if (board->minor < 3 && board->major == 0) return; falcon_txc_set_gpio_dir(efx, SFE4003_RED_LED_GPIO, TXC_GPIO_DIR_OUTPUT); falcon_txc_set_gpio_val(efx, SFE4003_RED_LED_GPIO, SFE4003_LED_OFF); } static int sfe4003_check_hw(struct ef4_nic *efx) { struct falcon_board *board = falcon_board(efx); /* A0/A1/A2 board rev. 4003s report a temperature fault the whole time * (bad sensor) so we mask it out. */ unsigned alarm_mask = (board->major == 0 && board->minor <= 2) ? ~LM87_ALARM_TEMP_EXT1 : ~0; return ef4_check_lm87(efx, alarm_mask); } static int sfe4003_init(struct ef4_nic *efx) { return ef4_init_lm87(efx, &sfe4003_hwmon_info, sfe4003_lm87_regs); } static const struct falcon_board_type board_types[] = { { .id = FALCON_BOARD_SFE4001, .init = sfe4001_init, .init_phy = ef4_port_dummy_op_void, .fini = sfe4001_fini, .set_id_led = tenxpress_set_id_led, .monitor = sfe4001_check_hw, }, { .id = FALCON_BOARD_SFE4002, .init = sfe4002_init, .init_phy = sfe4002_init_phy, .fini = ef4_fini_lm87, .set_id_led = sfe4002_set_id_led, .monitor = sfe4002_check_hw, }, { .id = FALCON_BOARD_SFE4003, .init = sfe4003_init, .init_phy = sfe4003_init_phy, .fini = ef4_fini_lm87, .set_id_led = sfe4003_set_id_led, .monitor = sfe4003_check_hw, }, { .id = FALCON_BOARD_SFN4112F, .init = sfn4112f_init, .init_phy = sfn4112f_init_phy, .fini = ef4_fini_lm87, .set_id_led = sfn4112f_set_id_led, .monitor = sfn4112f_check_hw, }, }; int falcon_probe_board(struct ef4_nic *efx, u16 revision_info) { struct falcon_board *board = falcon_board(efx); u8 type_id = FALCON_BOARD_TYPE(revision_info); int i; board->major = FALCON_BOARD_MAJOR(revision_info); board->minor = FALCON_BOARD_MINOR(revision_info); for (i = 0; i < ARRAY_SIZE(board_types); i++) if (board_types[i].id == type_id) board->type = &board_types[i]; if (board->type) { return 0; } else { netif_err(efx, probe, efx->net_dev, "unknown board type %d\n", type_id); return -ENODEV; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1