Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Hutchings | 3200 | 89.69% | 41 | 68.33% |
Steve Hodgson | 191 | 5.35% | 4 | 6.67% |
Daniel Pieczko | 55 | 1.54% | 2 | 3.33% |
Stephen Hemminger | 46 | 1.29% | 2 | 3.33% |
Jon Cooper | 42 | 1.18% | 2 | 3.33% |
Edward Cree | 15 | 0.42% | 1 | 1.67% |
Thomas Meyer | 5 | 0.14% | 1 | 1.67% |
Neil Turton | 4 | 0.11% | 1 | 1.67% |
Tejun Heo | 3 | 0.08% | 1 | 1.67% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.67% |
Alexandre Rames | 2 | 0.06% | 1 | 1.67% |
Peter Dunning | 1 | 0.03% | 1 | 1.67% |
Julia Lawall | 1 | 0.03% | 1 | 1.67% |
Eric Dumazet | 1 | 0.03% | 1 | 1.67% |
Total | 3568 | 60 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2012 Solarflare Communications Inc. */ #include <linux/netdevice.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/kernel_stat.h> #include <linux/pci.h> #include <linux/ethtool.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/udp.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /* IRQ latency can be enormous because: * - All IRQs may be disabled on a CPU for a *long* time by e.g. a * slow serial console or an old IDE driver doing error recovery * - The PREEMPT_RT patches mostly deal with this, but also allow a * tasklet or normal task to be given higher priority than our IRQ * threads * Try to avoid blaming the hardware for this. */ #define IRQ_TIMEOUT HZ /* * Loopback test packet structure * * The self-test should stress every RSS vector, and unfortunately * Falcon only performs RSS on TCP/UDP packets. */ struct efx_loopback_payload { struct ethhdr header; struct iphdr ip; struct udphdr udp; __be16 iteration; char msg[64]; } __packed; /* Loopback test source MAC address */ static const u8 payload_source[ETH_ALEN] __aligned(2) = { 0x00, 0x0f, 0x53, 0x1b, 0x1b, 0x1b, }; static const char payload_msg[] = "Hello world! This is an Efx loopback test in progress!"; /* Interrupt mode names */ static const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX; static const char *const efx_interrupt_mode_names[] = { [EFX_INT_MODE_MSIX] = "MSI-X", [EFX_INT_MODE_MSI] = "MSI", [EFX_INT_MODE_LEGACY] = "legacy", }; #define INT_MODE(efx) \ STRING_TABLE_LOOKUP(efx->interrupt_mode, efx_interrupt_mode) /** * efx_loopback_state - persistent state during a loopback selftest * @flush: Drop all packets in efx_loopback_rx_packet * @packet_count: Number of packets being used in this test * @skbs: An array of skbs transmitted * @offload_csum: Checksums are being offloaded * @rx_good: RX good packet count * @rx_bad: RX bad packet count * @payload: Payload used in tests */ struct efx_loopback_state { bool flush; int packet_count; struct sk_buff **skbs; bool offload_csum; atomic_t rx_good; atomic_t rx_bad; struct efx_loopback_payload payload; }; /* How long to wait for all the packets to arrive (in ms) */ #define LOOPBACK_TIMEOUT_MS 1000 /************************************************************************** * * MII, NVRAM and register tests * **************************************************************************/ static int efx_test_phy_alive(struct efx_nic *efx, struct efx_self_tests *tests) { int rc = 0; if (efx->phy_op->test_alive) { rc = efx->phy_op->test_alive(efx); tests->phy_alive = rc ? -1 : 1; } return rc; } static int efx_test_nvram(struct efx_nic *efx, struct efx_self_tests *tests) { int rc = 0; if (efx->type->test_nvram) { rc = efx->type->test_nvram(efx); if (rc == -EPERM) rc = 0; else tests->nvram = rc ? -1 : 1; } return rc; } /************************************************************************** * * Interrupt and event queue testing * **************************************************************************/ /* Test generation and receipt of interrupts */ static int efx_test_interrupts(struct efx_nic *efx, struct efx_self_tests *tests) { unsigned long timeout, wait; int cpu; int rc; netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n"); tests->interrupt = -1; rc = efx_nic_irq_test_start(efx); if (rc == -ENOTSUPP) { netif_dbg(efx, drv, efx->net_dev, "direct interrupt testing not supported\n"); tests->interrupt = 0; return 0; } timeout = jiffies + IRQ_TIMEOUT; wait = 1; /* Wait for arrival of test interrupt. */ netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n"); do { schedule_timeout_uninterruptible(wait); cpu = efx_nic_irq_test_irq_cpu(efx); if (cpu >= 0) goto success; wait *= 2; } while (time_before(jiffies, timeout)); netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n"); return -ETIMEDOUT; success: netif_dbg(efx, drv, efx->net_dev, "%s test interrupt seen on CPU%d\n", INT_MODE(efx), cpu); tests->interrupt = 1; return 0; } /* Test generation and receipt of interrupting events */ static int efx_test_eventq_irq(struct efx_nic *efx, struct efx_self_tests *tests) { struct efx_channel *channel; unsigned int read_ptr[EFX_MAX_CHANNELS]; unsigned long napi_ran = 0, dma_pend = 0, int_pend = 0; unsigned long timeout, wait; BUILD_BUG_ON(EFX_MAX_CHANNELS > BITS_PER_LONG); efx_for_each_channel(channel, efx) { read_ptr[channel->channel] = channel->eventq_read_ptr; set_bit(channel->channel, &dma_pend); set_bit(channel->channel, &int_pend); efx_nic_event_test_start(channel); } timeout = jiffies + IRQ_TIMEOUT; wait = 1; /* Wait for arrival of interrupts. NAPI processing may or may * not complete in time, but we can cope in any case. */ do { schedule_timeout_uninterruptible(wait); efx_for_each_channel(channel, efx) { efx_stop_eventq(channel); if (channel->eventq_read_ptr != read_ptr[channel->channel]) { set_bit(channel->channel, &napi_ran); clear_bit(channel->channel, &dma_pend); clear_bit(channel->channel, &int_pend); } else { if (efx_nic_event_present(channel)) clear_bit(channel->channel, &dma_pend); if (efx_nic_event_test_irq_cpu(channel) >= 0) clear_bit(channel->channel, &int_pend); } efx_start_eventq(channel); } wait *= 2; } while ((dma_pend || int_pend) && time_before(jiffies, timeout)); efx_for_each_channel(channel, efx) { bool dma_seen = !test_bit(channel->channel, &dma_pend); bool int_seen = !test_bit(channel->channel, &int_pend); tests->eventq_dma[channel->channel] = dma_seen ? 1 : -1; tests->eventq_int[channel->channel] = int_seen ? 1 : -1; if (dma_seen && int_seen) { netif_dbg(efx, drv, efx->net_dev, "channel %d event queue passed (with%s NAPI)\n", channel->channel, test_bit(channel->channel, &napi_ran) ? "" : "out"); } else { /* Report failure and whether either interrupt or DMA * worked */ netif_err(efx, drv, efx->net_dev, "channel %d timed out waiting for event queue\n", channel->channel); if (int_seen) netif_err(efx, drv, efx->net_dev, "channel %d saw interrupt " "during event queue test\n", channel->channel); if (dma_seen) netif_err(efx, drv, efx->net_dev, "channel %d event was generated, but " "failed to trigger an interrupt\n", channel->channel); } } return (dma_pend || int_pend) ? -ETIMEDOUT : 0; } static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests, unsigned flags) { int rc; if (!efx->phy_op->run_tests) return 0; mutex_lock(&efx->mac_lock); rc = efx->phy_op->run_tests(efx, tests->phy_ext, flags); mutex_unlock(&efx->mac_lock); if (rc == -EPERM) rc = 0; else netif_info(efx, drv, efx->net_dev, "%s phy selftest\n", rc ? "Failed" : "Passed"); return rc; } /************************************************************************** * * Loopback testing * NB Only one loopback test can be executing concurrently. * **************************************************************************/ /* Loopback test RX callback * This is called for each received packet during loopback testing. */ void efx_loopback_rx_packet(struct efx_nic *efx, const char *buf_ptr, int pkt_len) { struct efx_loopback_state *state = efx->loopback_selftest; struct efx_loopback_payload *received; struct efx_loopback_payload *payload; BUG_ON(!buf_ptr); /* If we are just flushing, then drop the packet */ if ((state == NULL) || state->flush) return; payload = &state->payload; received = (struct efx_loopback_payload *) buf_ptr; received->ip.saddr = payload->ip.saddr; if (state->offload_csum) received->ip.check = payload->ip.check; /* Check that header exists */ if (pkt_len < sizeof(received->header)) { netif_err(efx, drv, efx->net_dev, "saw runt RX packet (length %d) in %s loopback " "test\n", pkt_len, LOOPBACK_MODE(efx)); goto err; } /* Check that the ethernet header exists */ if (memcmp(&received->header, &payload->header, ETH_HLEN) != 0) { netif_err(efx, drv, efx->net_dev, "saw non-loopback RX packet in %s loopback test\n", LOOPBACK_MODE(efx)); goto err; } /* Check packet length */ if (pkt_len != sizeof(*payload)) { netif_err(efx, drv, efx->net_dev, "saw incorrect RX packet length %d (wanted %d) in " "%s loopback test\n", pkt_len, (int)sizeof(*payload), LOOPBACK_MODE(efx)); goto err; } /* Check that IP header matches */ if (memcmp(&received->ip, &payload->ip, sizeof(payload->ip)) != 0) { netif_err(efx, drv, efx->net_dev, "saw corrupted IP header in %s loopback test\n", LOOPBACK_MODE(efx)); goto err; } /* Check that msg and padding matches */ if (memcmp(&received->msg, &payload->msg, sizeof(received->msg)) != 0) { netif_err(efx, drv, efx->net_dev, "saw corrupted RX packet in %s loopback test\n", LOOPBACK_MODE(efx)); goto err; } /* Check that iteration matches */ if (received->iteration != payload->iteration) { netif_err(efx, drv, efx->net_dev, "saw RX packet from iteration %d (wanted %d) in " "%s loopback test\n", ntohs(received->iteration), ntohs(payload->iteration), LOOPBACK_MODE(efx)); goto err; } /* Increase correct RX count */ netif_vdbg(efx, drv, efx->net_dev, "got loopback RX in %s loopback test\n", LOOPBACK_MODE(efx)); atomic_inc(&state->rx_good); return; err: #ifdef DEBUG if (atomic_read(&state->rx_bad) == 0) { netif_err(efx, drv, efx->net_dev, "received packet:\n"); print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1, buf_ptr, pkt_len, 0); netif_err(efx, drv, efx->net_dev, "expected packet:\n"); print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1, &state->payload, sizeof(state->payload), 0); } #endif atomic_inc(&state->rx_bad); } /* Initialise an efx_selftest_state for a new iteration */ static void efx_iterate_state(struct efx_nic *efx) { struct efx_loopback_state *state = efx->loopback_selftest; struct net_device *net_dev = efx->net_dev; struct efx_loopback_payload *payload = &state->payload; /* Initialise the layerII header */ ether_addr_copy((u8 *)&payload->header.h_dest, net_dev->dev_addr); ether_addr_copy((u8 *)&payload->header.h_source, payload_source); payload->header.h_proto = htons(ETH_P_IP); /* saddr set later and used as incrementing count */ payload->ip.daddr = htonl(INADDR_LOOPBACK); payload->ip.ihl = 5; payload->ip.check = (__force __sum16) htons(0xdead); payload->ip.tot_len = htons(sizeof(*payload) - sizeof(struct ethhdr)); payload->ip.version = IPVERSION; payload->ip.protocol = IPPROTO_UDP; /* Initialise udp header */ payload->udp.source = 0; payload->udp.len = htons(sizeof(*payload) - sizeof(struct ethhdr) - sizeof(struct iphdr)); payload->udp.check = 0; /* checksum ignored */ /* Fill out payload */ payload->iteration = htons(ntohs(payload->iteration) + 1); memcpy(&payload->msg, payload_msg, sizeof(payload_msg)); /* Fill out remaining state members */ atomic_set(&state->rx_good, 0); atomic_set(&state->rx_bad, 0); smp_wmb(); } static int efx_begin_loopback(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; struct efx_loopback_state *state = efx->loopback_selftest; struct efx_loopback_payload *payload; struct sk_buff *skb; int i; netdev_tx_t rc; /* Transmit N copies of buffer */ for (i = 0; i < state->packet_count; i++) { /* Allocate an skb, holding an extra reference for * transmit completion counting */ skb = alloc_skb(sizeof(state->payload), GFP_KERNEL); if (!skb) return -ENOMEM; state->skbs[i] = skb; skb_get(skb); /* Copy the payload in, incrementing the source address to * exercise the rss vectors */ payload = skb_put(skb, sizeof(state->payload)); memcpy(payload, &state->payload, sizeof(state->payload)); payload->ip.saddr = htonl(INADDR_LOOPBACK | (i << 2)); /* Ensure everything we've written is visible to the * interrupt handler. */ smp_wmb(); netif_tx_lock_bh(efx->net_dev); rc = efx_enqueue_skb(tx_queue, skb); netif_tx_unlock_bh(efx->net_dev); if (rc != NETDEV_TX_OK) { netif_err(efx, drv, efx->net_dev, "TX queue %d could not transmit packet %d of " "%d in %s loopback test\n", tx_queue->queue, i + 1, state->packet_count, LOOPBACK_MODE(efx)); /* Defer cleaning up the other skbs for the caller */ kfree_skb(skb); return -EPIPE; } } return 0; } static int efx_poll_loopback(struct efx_nic *efx) { struct efx_loopback_state *state = efx->loopback_selftest; return atomic_read(&state->rx_good) == state->packet_count; } static int efx_end_loopback(struct efx_tx_queue *tx_queue, struct efx_loopback_self_tests *lb_tests) { struct efx_nic *efx = tx_queue->efx; struct efx_loopback_state *state = efx->loopback_selftest; struct sk_buff *skb; int tx_done = 0, rx_good, rx_bad; int i, rc = 0; netif_tx_lock_bh(efx->net_dev); /* Count the number of tx completions, and decrement the refcnt. Any * skbs not already completed will be free'd when the queue is flushed */ for (i = 0; i < state->packet_count; i++) { skb = state->skbs[i]; if (skb && !skb_shared(skb)) ++tx_done; dev_kfree_skb(skb); } netif_tx_unlock_bh(efx->net_dev); /* Check TX completion and received packet counts */ rx_good = atomic_read(&state->rx_good); rx_bad = atomic_read(&state->rx_bad); if (tx_done != state->packet_count) { /* Don't free the skbs; they will be picked up on TX * overflow or channel teardown. */ netif_err(efx, drv, efx->net_dev, "TX queue %d saw only %d out of an expected %d " "TX completion events in %s loopback test\n", tx_queue->queue, tx_done, state->packet_count, LOOPBACK_MODE(efx)); rc = -ETIMEDOUT; /* Allow to fall through so we see the RX errors as well */ } /* We may always be up to a flush away from our desired packet total */ if (rx_good != state->packet_count) { netif_dbg(efx, drv, efx->net_dev, "TX queue %d saw only %d out of an expected %d " "received packets in %s loopback test\n", tx_queue->queue, rx_good, state->packet_count, LOOPBACK_MODE(efx)); rc = -ETIMEDOUT; /* Fall through */ } /* Update loopback test structure */ lb_tests->tx_sent[tx_queue->queue] += state->packet_count; lb_tests->tx_done[tx_queue->queue] += tx_done; lb_tests->rx_good += rx_good; lb_tests->rx_bad += rx_bad; return rc; } static int efx_test_loopback(struct efx_tx_queue *tx_queue, struct efx_loopback_self_tests *lb_tests) { struct efx_nic *efx = tx_queue->efx; struct efx_loopback_state *state = efx->loopback_selftest; int i, begin_rc, end_rc; for (i = 0; i < 3; i++) { /* Determine how many packets to send */ state->packet_count = efx->txq_entries / 3; state->packet_count = min(1 << (i << 2), state->packet_count); state->skbs = kcalloc(state->packet_count, sizeof(state->skbs[0]), GFP_KERNEL); if (!state->skbs) return -ENOMEM; state->flush = false; netif_dbg(efx, drv, efx->net_dev, "TX queue %d testing %s loopback with %d packets\n", tx_queue->queue, LOOPBACK_MODE(efx), state->packet_count); efx_iterate_state(efx); begin_rc = efx_begin_loopback(tx_queue); /* This will normally complete very quickly, but be * prepared to wait much longer. */ msleep(1); if (!efx_poll_loopback(efx)) { msleep(LOOPBACK_TIMEOUT_MS); efx_poll_loopback(efx); } end_rc = efx_end_loopback(tx_queue, lb_tests); kfree(state->skbs); if (begin_rc || end_rc) { /* Wait a while to ensure there are no packets * floating around after a failure. */ schedule_timeout_uninterruptible(HZ / 10); return begin_rc ? begin_rc : end_rc; } } netif_dbg(efx, drv, efx->net_dev, "TX queue %d passed %s loopback test with a burst length " "of %d packets\n", tx_queue->queue, LOOPBACK_MODE(efx), state->packet_count); return 0; } /* Wait for link up. On Falcon, we would prefer to rely on efx_monitor, but * any contention on the mac lock (via e.g. efx_mac_mcast_work) causes it * to delay and retry. Therefore, it's safer to just poll directly. Wait * for link up and any faults to dissipate. */ static int efx_wait_for_link(struct efx_nic *efx) { struct efx_link_state *link_state = &efx->link_state; int count, link_up_count = 0; bool link_up; for (count = 0; count < 40; count++) { schedule_timeout_uninterruptible(HZ / 10); if (efx->type->monitor != NULL) { mutex_lock(&efx->mac_lock); efx->type->monitor(efx); mutex_unlock(&efx->mac_lock); } mutex_lock(&efx->mac_lock); link_up = link_state->up; if (link_up) link_up = !efx->type->check_mac_fault(efx); mutex_unlock(&efx->mac_lock); if (link_up) { if (++link_up_count == 2) return 0; } else { link_up_count = 0; } } return -ETIMEDOUT; } static int efx_test_loopbacks(struct efx_nic *efx, struct efx_self_tests *tests, unsigned int loopback_modes) { enum efx_loopback_mode mode; struct efx_loopback_state *state; struct efx_channel *channel = efx_get_channel(efx, efx->tx_channel_offset); struct efx_tx_queue *tx_queue; int rc = 0; /* Set the port loopback_selftest member. From this point on * all received packets will be dropped. Mark the state as * "flushing" so all inflight packets are dropped */ state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return -ENOMEM; BUG_ON(efx->loopback_selftest); state->flush = true; efx->loopback_selftest = state; /* Test all supported loopback modes */ for (mode = LOOPBACK_NONE; mode <= LOOPBACK_TEST_MAX; mode++) { if (!(loopback_modes & (1 << mode))) continue; /* Move the port into the specified loopback mode. */ state->flush = true; mutex_lock(&efx->mac_lock); efx->loopback_mode = mode; rc = __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); if (rc) { netif_err(efx, drv, efx->net_dev, "unable to move into %s loopback\n", LOOPBACK_MODE(efx)); goto out; } rc = efx_wait_for_link(efx); if (rc) { netif_err(efx, drv, efx->net_dev, "loopback %s never came up\n", LOOPBACK_MODE(efx)); goto out; } /* Test all enabled types of TX queue */ efx_for_each_channel_tx_queue(tx_queue, channel) { state->offload_csum = (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD); rc = efx_test_loopback(tx_queue, &tests->loopback[mode]); if (rc) goto out; } } out: /* Remove the flush. The caller will remove the loopback setting */ state->flush = true; efx->loopback_selftest = NULL; wmb(); kfree(state); if (rc == -EPERM) rc = 0; return rc; } /************************************************************************** * * Entry point * *************************************************************************/ int efx_selftest(struct efx_nic *efx, struct efx_self_tests *tests, unsigned flags) { enum efx_loopback_mode loopback_mode = efx->loopback_mode; int phy_mode = efx->phy_mode; int rc_test = 0, rc_reset, rc; efx_selftest_async_cancel(efx); /* Online (i.e. non-disruptive) testing * This checks interrupt generation, event delivery and PHY presence. */ rc = efx_test_phy_alive(efx, tests); if (rc && !rc_test) rc_test = rc; rc = efx_test_nvram(efx, tests); if (rc && !rc_test) rc_test = rc; rc = efx_test_interrupts(efx, tests); if (rc && !rc_test) rc_test = rc; rc = efx_test_eventq_irq(efx, tests); if (rc && !rc_test) rc_test = rc; if (rc_test) return rc_test; if (!(flags & ETH_TEST_FL_OFFLINE)) return efx_test_phy(efx, tests, flags); /* Offline (i.e. disruptive) testing * This checks MAC and PHY loopback on the specified port. */ /* Detach the device so the kernel doesn't transmit during the * loopback test and the watchdog timeout doesn't fire. */ efx_device_detach_sync(efx); if (efx->type->test_chip) { rc_reset = efx->type->test_chip(efx, tests); if (rc_reset) { netif_err(efx, hw, efx->net_dev, "Unable to recover from chip test\n"); efx_schedule_reset(efx, RESET_TYPE_DISABLE); return rc_reset; } if ((tests->memory < 0 || tests->registers < 0) && !rc_test) rc_test = -EIO; } /* Ensure that the phy is powered and out of loopback * for the bist and loopback tests */ mutex_lock(&efx->mac_lock); efx->phy_mode &= ~PHY_MODE_LOW_POWER; efx->loopback_mode = LOOPBACK_NONE; __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); rc = efx_test_phy(efx, tests, flags); if (rc && !rc_test) rc_test = rc; rc = efx_test_loopbacks(efx, tests, efx->loopback_modes); if (rc && !rc_test) rc_test = rc; /* restore the PHY to the previous state */ mutex_lock(&efx->mac_lock); efx->phy_mode = phy_mode; efx->loopback_mode = loopback_mode; __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); efx_device_attach_if_not_resetting(efx); return rc_test; } void efx_selftest_async_start(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_nic_event_test_start(channel); schedule_delayed_work(&efx->selftest_work, IRQ_TIMEOUT); } void efx_selftest_async_cancel(struct efx_nic *efx) { cancel_delayed_work_sync(&efx->selftest_work); } void efx_selftest_async_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, selftest_work.work); struct efx_channel *channel; int cpu; efx_for_each_channel(channel, efx) { cpu = efx_nic_event_test_irq_cpu(channel); if (cpu < 0) netif_err(efx, ifup, efx->net_dev, "channel %d failed to trigger an interrupt\n", channel->channel); else netif_dbg(efx, ifup, efx->net_dev, "channel %d triggered interrupt on CPU %d\n", channel->channel, cpu); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1