Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jassi Brar | 5597 | 55.92% | 1 | 3.70% |
Ilias Apalodimas | 4313 | 43.09% | 15 | 55.56% |
Masahisa KOJIMA | 83 | 0.83% | 4 | 14.81% |
Arnd Bergmann | 5 | 0.05% | 2 | 7.41% |
Yue haibing | 4 | 0.04% | 1 | 3.70% |
Ivan Khoronzhuk | 2 | 0.02% | 1 | 3.70% |
Ard Biesheuvel | 2 | 0.02% | 1 | 3.70% |
Wei Yongjun | 2 | 0.02% | 1 | 3.70% |
Kees Cook | 1 | 0.01% | 1 | 3.70% |
Total | 10009 | 27 |
// SPDX-License-Identifier: GPL-2.0+ #include <linux/types.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/acpi.h> #include <linux/of_mdio.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/netlink.h> #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <net/tcp.h> #include <net/page_pool.h> #include <net/ip6_checksum.h> #define NETSEC_REG_SOFT_RST 0x104 #define NETSEC_REG_COM_INIT 0x120 #define NETSEC_REG_TOP_STATUS 0x200 #define NETSEC_IRQ_RX BIT(1) #define NETSEC_IRQ_TX BIT(0) #define NETSEC_REG_TOP_INTEN 0x204 #define NETSEC_REG_INTEN_SET 0x234 #define NETSEC_REG_INTEN_CLR 0x238 #define NETSEC_REG_NRM_TX_STATUS 0x400 #define NETSEC_REG_NRM_TX_INTEN 0x404 #define NETSEC_REG_NRM_TX_INTEN_SET 0x428 #define NETSEC_REG_NRM_TX_INTEN_CLR 0x42c #define NRM_TX_ST_NTOWNR BIT(17) #define NRM_TX_ST_TR_ERR BIT(16) #define NRM_TX_ST_TXDONE BIT(15) #define NRM_TX_ST_TMREXP BIT(14) #define NETSEC_REG_NRM_RX_STATUS 0x440 #define NETSEC_REG_NRM_RX_INTEN 0x444 #define NETSEC_REG_NRM_RX_INTEN_SET 0x468 #define NETSEC_REG_NRM_RX_INTEN_CLR 0x46c #define NRM_RX_ST_RC_ERR BIT(16) #define NRM_RX_ST_PKTCNT BIT(15) #define NRM_RX_ST_TMREXP BIT(14) #define NETSEC_REG_PKT_CMD_BUF 0xd0 #define NETSEC_REG_CLK_EN 0x100 #define NETSEC_REG_PKT_CTRL 0x140 #define NETSEC_REG_DMA_TMR_CTRL 0x20c #define NETSEC_REG_F_TAIKI_MC_VER 0x22c #define NETSEC_REG_F_TAIKI_VER 0x230 #define NETSEC_REG_DMA_HM_CTRL 0x214 #define NETSEC_REG_DMA_MH_CTRL 0x220 #define NETSEC_REG_ADDR_DIS_CORE 0x218 #define NETSEC_REG_DMAC_HM_CMD_BUF 0x210 #define NETSEC_REG_DMAC_MH_CMD_BUF 0x21c #define NETSEC_REG_NRM_TX_PKTCNT 0x410 #define NETSEC_REG_NRM_TX_DONE_PKTCNT 0x414 #define NETSEC_REG_NRM_TX_DONE_TXINT_PKTCNT 0x418 #define NETSEC_REG_NRM_TX_TMR 0x41c #define NETSEC_REG_NRM_RX_PKTCNT 0x454 #define NETSEC_REG_NRM_RX_RXINT_PKTCNT 0x458 #define NETSEC_REG_NRM_TX_TXINT_TMR 0x420 #define NETSEC_REG_NRM_RX_RXINT_TMR 0x460 #define NETSEC_REG_NRM_RX_TMR 0x45c #define NETSEC_REG_NRM_TX_DESC_START_UP 0x434 #define NETSEC_REG_NRM_TX_DESC_START_LW 0x408 #define NETSEC_REG_NRM_RX_DESC_START_UP 0x474 #define NETSEC_REG_NRM_RX_DESC_START_LW 0x448 #define NETSEC_REG_NRM_TX_CONFIG 0x430 #define NETSEC_REG_NRM_RX_CONFIG 0x470 #define MAC_REG_STATUS 0x1024 #define MAC_REG_DATA 0x11c0 #define MAC_REG_CMD 0x11c4 #define MAC_REG_FLOW_TH 0x11cc #define MAC_REG_INTF_SEL 0x11d4 #define MAC_REG_DESC_INIT 0x11fc #define MAC_REG_DESC_SOFT_RST 0x1204 #define NETSEC_REG_MODE_TRANS_COMP_STATUS 0x500 #define GMAC_REG_MCR 0x0000 #define GMAC_REG_MFFR 0x0004 #define GMAC_REG_GAR 0x0010 #define GMAC_REG_GDR 0x0014 #define GMAC_REG_FCR 0x0018 #define GMAC_REG_BMR 0x1000 #define GMAC_REG_RDLAR 0x100c #define GMAC_REG_TDLAR 0x1010 #define GMAC_REG_OMR 0x1018 #define MHZ(n) ((n) * 1000 * 1000) #define NETSEC_TX_SHIFT_OWN_FIELD 31 #define NETSEC_TX_SHIFT_LD_FIELD 30 #define NETSEC_TX_SHIFT_DRID_FIELD 24 #define NETSEC_TX_SHIFT_PT_FIELD 21 #define NETSEC_TX_SHIFT_TDRID_FIELD 16 #define NETSEC_TX_SHIFT_CC_FIELD 15 #define NETSEC_TX_SHIFT_FS_FIELD 9 #define NETSEC_TX_LAST 8 #define NETSEC_TX_SHIFT_CO 7 #define NETSEC_TX_SHIFT_SO 6 #define NETSEC_TX_SHIFT_TRS_FIELD 4 #define NETSEC_RX_PKT_OWN_FIELD 31 #define NETSEC_RX_PKT_LD_FIELD 30 #define NETSEC_RX_PKT_SDRID_FIELD 24 #define NETSEC_RX_PKT_FR_FIELD 23 #define NETSEC_RX_PKT_ER_FIELD 21 #define NETSEC_RX_PKT_ERR_FIELD 16 #define NETSEC_RX_PKT_TDRID_FIELD 12 #define NETSEC_RX_PKT_FS_FIELD 9 #define NETSEC_RX_PKT_LS_FIELD 8 #define NETSEC_RX_PKT_CO_FIELD 6 #define NETSEC_RX_PKT_ERR_MASK 3 #define NETSEC_MAX_TX_PKT_LEN 1518 #define NETSEC_MAX_TX_JUMBO_PKT_LEN 9018 #define NETSEC_RING_GMAC 15 #define NETSEC_RING_MAX 2 #define NETSEC_TCP_SEG_LEN_MAX 1460 #define NETSEC_TCP_JUMBO_SEG_LEN_MAX 8960 #define NETSEC_RX_CKSUM_NOTAVAIL 0 #define NETSEC_RX_CKSUM_OK 1 #define NETSEC_RX_CKSUM_NG 2 #define NETSEC_TOP_IRQ_REG_CODE_LOAD_END BIT(20) #define NETSEC_IRQ_TRANSITION_COMPLETE BIT(4) #define NETSEC_MODE_TRANS_COMP_IRQ_N2T BIT(20) #define NETSEC_MODE_TRANS_COMP_IRQ_T2N BIT(19) #define NETSEC_INT_PKTCNT_MAX 2047 #define NETSEC_FLOW_START_TH_MAX 95 #define NETSEC_FLOW_STOP_TH_MAX 95 #define NETSEC_FLOW_PAUSE_TIME_MIN 5 #define NETSEC_CLK_EN_REG_DOM_ALL 0x3f #define NETSEC_PKT_CTRL_REG_MODE_NRM BIT(28) #define NETSEC_PKT_CTRL_REG_EN_JUMBO BIT(27) #define NETSEC_PKT_CTRL_REG_LOG_CHKSUM_ER BIT(3) #define NETSEC_PKT_CTRL_REG_LOG_HD_INCOMPLETE BIT(2) #define NETSEC_PKT_CTRL_REG_LOG_HD_ER BIT(1) #define NETSEC_PKT_CTRL_REG_DRP_NO_MATCH BIT(0) #define NETSEC_CLK_EN_REG_DOM_G BIT(5) #define NETSEC_CLK_EN_REG_DOM_C BIT(1) #define NETSEC_CLK_EN_REG_DOM_D BIT(0) #define NETSEC_COM_INIT_REG_DB BIT(2) #define NETSEC_COM_INIT_REG_CLS BIT(1) #define NETSEC_COM_INIT_REG_ALL (NETSEC_COM_INIT_REG_CLS | \ NETSEC_COM_INIT_REG_DB) #define NETSEC_SOFT_RST_REG_RESET 0 #define NETSEC_SOFT_RST_REG_RUN BIT(31) #define NETSEC_DMA_CTRL_REG_STOP 1 #define MH_CTRL__MODE_TRANS BIT(20) #define NETSEC_GMAC_CMD_ST_READ 0 #define NETSEC_GMAC_CMD_ST_WRITE BIT(28) #define NETSEC_GMAC_CMD_ST_BUSY BIT(31) #define NETSEC_GMAC_BMR_REG_COMMON 0x00412080 #define NETSEC_GMAC_BMR_REG_RESET 0x00020181 #define NETSEC_GMAC_BMR_REG_SWR 0x00000001 #define NETSEC_GMAC_OMR_REG_ST BIT(13) #define NETSEC_GMAC_OMR_REG_SR BIT(1) #define NETSEC_GMAC_MCR_REG_IBN BIT(30) #define NETSEC_GMAC_MCR_REG_CST BIT(25) #define NETSEC_GMAC_MCR_REG_JE BIT(20) #define NETSEC_MCR_PS BIT(15) #define NETSEC_GMAC_MCR_REG_FES BIT(14) #define NETSEC_GMAC_MCR_REG_FULL_DUPLEX_COMMON 0x0000280c #define NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON 0x0001a00c #define NETSEC_FCR_RFE BIT(2) #define NETSEC_FCR_TFE BIT(1) #define NETSEC_GMAC_GAR_REG_GW BIT(1) #define NETSEC_GMAC_GAR_REG_GB BIT(0) #define NETSEC_GMAC_GAR_REG_SHIFT_PA 11 #define NETSEC_GMAC_GAR_REG_SHIFT_GR 6 #define GMAC_REG_SHIFT_CR_GAR 2 #define NETSEC_GMAC_GAR_REG_CR_25_35_MHZ 2 #define NETSEC_GMAC_GAR_REG_CR_35_60_MHZ 3 #define NETSEC_GMAC_GAR_REG_CR_60_100_MHZ 0 #define NETSEC_GMAC_GAR_REG_CR_100_150_MHZ 1 #define NETSEC_GMAC_GAR_REG_CR_150_250_MHZ 4 #define NETSEC_GMAC_GAR_REG_CR_250_300_MHZ 5 #define NETSEC_GMAC_RDLAR_REG_COMMON 0x18000 #define NETSEC_GMAC_TDLAR_REG_COMMON 0x1c000 #define NETSEC_REG_NETSEC_VER_F_TAIKI 0x50000 #define NETSEC_REG_DESC_RING_CONFIG_CFG_UP BIT(31) #define NETSEC_REG_DESC_RING_CONFIG_CH_RST BIT(30) #define NETSEC_REG_DESC_TMR_MODE 4 #define NETSEC_REG_DESC_ENDIAN 0 #define NETSEC_MAC_DESC_SOFT_RST_SOFT_RST 1 #define NETSEC_MAC_DESC_INIT_REG_INIT 1 #define NETSEC_EEPROM_MAC_ADDRESS 0x00 #define NETSEC_EEPROM_HM_ME_ADDRESS_H 0x08 #define NETSEC_EEPROM_HM_ME_ADDRESS_L 0x0C #define NETSEC_EEPROM_HM_ME_SIZE 0x10 #define NETSEC_EEPROM_MH_ME_ADDRESS_H 0x14 #define NETSEC_EEPROM_MH_ME_ADDRESS_L 0x18 #define NETSEC_EEPROM_MH_ME_SIZE 0x1C #define NETSEC_EEPROM_PKT_ME_ADDRESS 0x20 #define NETSEC_EEPROM_PKT_ME_SIZE 0x24 #define DESC_NUM 256 #define NETSEC_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #define NETSEC_RXBUF_HEADROOM (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + \ NET_IP_ALIGN) #define NETSEC_RX_BUF_NON_DATA (NETSEC_RXBUF_HEADROOM + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define DESC_SZ sizeof(struct netsec_de) #define NETSEC_F_NETSEC_VER_MAJOR_NUM(x) ((x) & 0xffff0000) #define NETSEC_XDP_PASS 0 #define NETSEC_XDP_CONSUMED BIT(0) #define NETSEC_XDP_TX BIT(1) #define NETSEC_XDP_REDIR BIT(2) #define NETSEC_XDP_RX_OK (NETSEC_XDP_PASS | NETSEC_XDP_TX | NETSEC_XDP_REDIR) enum ring_id { NETSEC_RING_TX = 0, NETSEC_RING_RX }; enum buf_type { TYPE_NETSEC_SKB = 0, TYPE_NETSEC_XDP_TX, TYPE_NETSEC_XDP_NDO, }; struct netsec_desc { union { struct sk_buff *skb; struct xdp_frame *xdpf; }; dma_addr_t dma_addr; void *addr; u16 len; u8 buf_type; }; struct netsec_desc_ring { dma_addr_t desc_dma; struct netsec_desc *desc; void *vaddr; u16 head, tail; u16 xdp_xmit; /* netsec_xdp_xmit packets */ bool is_xdp; struct page_pool *page_pool; struct xdp_rxq_info xdp_rxq; spinlock_t lock; /* XDP tx queue locking */ }; struct netsec_priv { struct netsec_desc_ring desc_ring[NETSEC_RING_MAX]; struct ethtool_coalesce et_coalesce; struct bpf_prog *xdp_prog; spinlock_t reglock; /* protect reg access */ struct napi_struct napi; phy_interface_t phy_interface; struct net_device *ndev; struct device_node *phy_np; struct phy_device *phydev; struct mii_bus *mii_bus; void __iomem *ioaddr; void __iomem *eeprom_base; struct device *dev; struct clk *clk; u32 msg_enable; u32 freq; u32 phy_addr; bool rx_cksum_offload_flag; }; struct netsec_de { /* Netsec Descriptor layout */ u32 attr; u32 data_buf_addr_up; u32 data_buf_addr_lw; u32 buf_len_info; }; struct netsec_tx_pkt_ctrl { u16 tcp_seg_len; bool tcp_seg_offload_flag; bool cksum_offload_flag; }; struct netsec_rx_pkt_info { int rx_cksum_result; int err_code; bool err_flag; }; static void netsec_write(struct netsec_priv *priv, u32 reg_addr, u32 val) { writel(val, priv->ioaddr + reg_addr); } static u32 netsec_read(struct netsec_priv *priv, u32 reg_addr) { return readl(priv->ioaddr + reg_addr); } /************* MDIO BUS OPS FOLLOW *************/ #define TIMEOUT_SPINS_MAC 1000 #define TIMEOUT_SECONDARY_MS_MAC 100 static u32 netsec_clk_type(u32 freq) { if (freq < MHZ(35)) return NETSEC_GMAC_GAR_REG_CR_25_35_MHZ; if (freq < MHZ(60)) return NETSEC_GMAC_GAR_REG_CR_35_60_MHZ; if (freq < MHZ(100)) return NETSEC_GMAC_GAR_REG_CR_60_100_MHZ; if (freq < MHZ(150)) return NETSEC_GMAC_GAR_REG_CR_100_150_MHZ; if (freq < MHZ(250)) return NETSEC_GMAC_GAR_REG_CR_150_250_MHZ; return NETSEC_GMAC_GAR_REG_CR_250_300_MHZ; } static int netsec_wait_while_busy(struct netsec_priv *priv, u32 addr, u32 mask) { u32 timeout = TIMEOUT_SPINS_MAC; while (--timeout && netsec_read(priv, addr) & mask) cpu_relax(); if (timeout) return 0; timeout = TIMEOUT_SECONDARY_MS_MAC; while (--timeout && netsec_read(priv, addr) & mask) usleep_range(1000, 2000); if (timeout) return 0; netdev_WARN(priv->ndev, "%s: timeout\n", __func__); return -ETIMEDOUT; } static int netsec_mac_write(struct netsec_priv *priv, u32 addr, u32 value) { netsec_write(priv, MAC_REG_DATA, value); netsec_write(priv, MAC_REG_CMD, addr | NETSEC_GMAC_CMD_ST_WRITE); return netsec_wait_while_busy(priv, MAC_REG_CMD, NETSEC_GMAC_CMD_ST_BUSY); } static int netsec_mac_read(struct netsec_priv *priv, u32 addr, u32 *read) { int ret; netsec_write(priv, MAC_REG_CMD, addr | NETSEC_GMAC_CMD_ST_READ); ret = netsec_wait_while_busy(priv, MAC_REG_CMD, NETSEC_GMAC_CMD_ST_BUSY); if (ret) return ret; *read = netsec_read(priv, MAC_REG_DATA); return 0; } static int netsec_mac_wait_while_busy(struct netsec_priv *priv, u32 addr, u32 mask) { u32 timeout = TIMEOUT_SPINS_MAC; int ret, data; do { ret = netsec_mac_read(priv, addr, &data); if (ret) break; cpu_relax(); } while (--timeout && (data & mask)); if (timeout) return 0; timeout = TIMEOUT_SECONDARY_MS_MAC; do { usleep_range(1000, 2000); ret = netsec_mac_read(priv, addr, &data); if (ret) break; cpu_relax(); } while (--timeout && (data & mask)); if (timeout && !ret) return 0; netdev_WARN(priv->ndev, "%s: timeout\n", __func__); return -ETIMEDOUT; } static int netsec_mac_update_to_phy_state(struct netsec_priv *priv) { struct phy_device *phydev = priv->ndev->phydev; u32 value = 0; value = phydev->duplex ? NETSEC_GMAC_MCR_REG_FULL_DUPLEX_COMMON : NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON; if (phydev->speed != SPEED_1000) value |= NETSEC_MCR_PS; if (priv->phy_interface != PHY_INTERFACE_MODE_GMII && phydev->speed == SPEED_100) value |= NETSEC_GMAC_MCR_REG_FES; value |= NETSEC_GMAC_MCR_REG_CST | NETSEC_GMAC_MCR_REG_JE; if (phy_interface_mode_is_rgmii(priv->phy_interface)) value |= NETSEC_GMAC_MCR_REG_IBN; if (netsec_mac_write(priv, GMAC_REG_MCR, value)) return -ETIMEDOUT; return 0; } static int netsec_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr); static int netsec_phy_write(struct mii_bus *bus, int phy_addr, int reg, u16 val) { int status; struct netsec_priv *priv = bus->priv; if (netsec_mac_write(priv, GMAC_REG_GDR, val)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_GAR, phy_addr << NETSEC_GMAC_GAR_REG_SHIFT_PA | reg << NETSEC_GMAC_GAR_REG_SHIFT_GR | NETSEC_GMAC_GAR_REG_GW | NETSEC_GMAC_GAR_REG_GB | (netsec_clk_type(priv->freq) << GMAC_REG_SHIFT_CR_GAR))) return -ETIMEDOUT; status = netsec_mac_wait_while_busy(priv, GMAC_REG_GAR, NETSEC_GMAC_GAR_REG_GB); /* Developerbox implements RTL8211E PHY and there is * a compatibility problem with F_GMAC4. * RTL8211E expects MDC clock must be kept toggling for several * clock cycle with MDIO high before entering the IDLE state. * To meet this requirement, netsec driver needs to issue dummy * read(e.g. read PHYID1(offset 0x2) register) right after write. */ netsec_phy_read(bus, phy_addr, MII_PHYSID1); return status; } static int netsec_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr) { struct netsec_priv *priv = bus->priv; u32 data; int ret; if (netsec_mac_write(priv, GMAC_REG_GAR, NETSEC_GMAC_GAR_REG_GB | phy_addr << NETSEC_GMAC_GAR_REG_SHIFT_PA | reg_addr << NETSEC_GMAC_GAR_REG_SHIFT_GR | (netsec_clk_type(priv->freq) << GMAC_REG_SHIFT_CR_GAR))) return -ETIMEDOUT; ret = netsec_mac_wait_while_busy(priv, GMAC_REG_GAR, NETSEC_GMAC_GAR_REG_GB); if (ret) return ret; ret = netsec_mac_read(priv, GMAC_REG_GDR, &data); if (ret) return ret; return data; } /************* ETHTOOL_OPS FOLLOW *************/ static void netsec_et_get_drvinfo(struct net_device *net_device, struct ethtool_drvinfo *info) { strlcpy(info->driver, "netsec", sizeof(info->driver)); strlcpy(info->bus_info, dev_name(net_device->dev.parent), sizeof(info->bus_info)); } static int netsec_et_get_coalesce(struct net_device *net_device, struct ethtool_coalesce *et_coalesce) { struct netsec_priv *priv = netdev_priv(net_device); *et_coalesce = priv->et_coalesce; return 0; } static int netsec_et_set_coalesce(struct net_device *net_device, struct ethtool_coalesce *et_coalesce) { struct netsec_priv *priv = netdev_priv(net_device); priv->et_coalesce = *et_coalesce; if (priv->et_coalesce.tx_coalesce_usecs < 50) priv->et_coalesce.tx_coalesce_usecs = 50; if (priv->et_coalesce.tx_max_coalesced_frames < 1) priv->et_coalesce.tx_max_coalesced_frames = 1; netsec_write(priv, NETSEC_REG_NRM_TX_DONE_TXINT_PKTCNT, priv->et_coalesce.tx_max_coalesced_frames); netsec_write(priv, NETSEC_REG_NRM_TX_TXINT_TMR, priv->et_coalesce.tx_coalesce_usecs); netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_SET, NRM_TX_ST_TXDONE); netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_SET, NRM_TX_ST_TMREXP); if (priv->et_coalesce.rx_coalesce_usecs < 50) priv->et_coalesce.rx_coalesce_usecs = 50; if (priv->et_coalesce.rx_max_coalesced_frames < 1) priv->et_coalesce.rx_max_coalesced_frames = 1; netsec_write(priv, NETSEC_REG_NRM_RX_RXINT_PKTCNT, priv->et_coalesce.rx_max_coalesced_frames); netsec_write(priv, NETSEC_REG_NRM_RX_RXINT_TMR, priv->et_coalesce.rx_coalesce_usecs); netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_SET, NRM_RX_ST_PKTCNT); netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_SET, NRM_RX_ST_TMREXP); return 0; } static u32 netsec_et_get_msglevel(struct net_device *dev) { struct netsec_priv *priv = netdev_priv(dev); return priv->msg_enable; } static void netsec_et_set_msglevel(struct net_device *dev, u32 datum) { struct netsec_priv *priv = netdev_priv(dev); priv->msg_enable = datum; } static const struct ethtool_ops netsec_ethtool_ops = { .get_drvinfo = netsec_et_get_drvinfo, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_link = ethtool_op_get_link, .get_coalesce = netsec_et_get_coalesce, .set_coalesce = netsec_et_set_coalesce, .get_msglevel = netsec_et_get_msglevel, .set_msglevel = netsec_et_set_msglevel, }; /************* NETDEV_OPS FOLLOW *************/ static void netsec_set_rx_de(struct netsec_priv *priv, struct netsec_desc_ring *dring, u16 idx, const struct netsec_desc *desc) { struct netsec_de *de = dring->vaddr + DESC_SZ * idx; u32 attr = (1 << NETSEC_RX_PKT_OWN_FIELD) | (1 << NETSEC_RX_PKT_FS_FIELD) | (1 << NETSEC_RX_PKT_LS_FIELD); if (idx == DESC_NUM - 1) attr |= (1 << NETSEC_RX_PKT_LD_FIELD); de->data_buf_addr_up = upper_32_bits(desc->dma_addr); de->data_buf_addr_lw = lower_32_bits(desc->dma_addr); de->buf_len_info = desc->len; de->attr = attr; dma_wmb(); dring->desc[idx].dma_addr = desc->dma_addr; dring->desc[idx].addr = desc->addr; dring->desc[idx].len = desc->len; } static bool netsec_clean_tx_dring(struct netsec_priv *priv) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX]; struct netsec_de *entry; int tail = dring->tail; unsigned int bytes; int cnt = 0; if (dring->is_xdp) spin_lock(&dring->lock); bytes = 0; entry = dring->vaddr + DESC_SZ * tail; while (!(entry->attr & (1U << NETSEC_TX_SHIFT_OWN_FIELD)) && cnt < DESC_NUM) { struct netsec_desc *desc; int eop; desc = &dring->desc[tail]; eop = (entry->attr >> NETSEC_TX_LAST) & 1; dma_rmb(); /* if buf_type is either TYPE_NETSEC_SKB or * TYPE_NETSEC_XDP_NDO we mapped it */ if (desc->buf_type != TYPE_NETSEC_XDP_TX) dma_unmap_single(priv->dev, desc->dma_addr, desc->len, DMA_TO_DEVICE); if (!eop) goto next; if (desc->buf_type == TYPE_NETSEC_SKB) { bytes += desc->skb->len; dev_kfree_skb(desc->skb); } else { xdp_return_frame(desc->xdpf); } next: /* clean up so netsec_uninit_pkt_dring() won't free the skb * again */ *desc = (struct netsec_desc){}; /* entry->attr is not going to be accessed by the NIC until * netsec_set_tx_de() is called. No need for a dma_wmb() here */ entry->attr = 1U << NETSEC_TX_SHIFT_OWN_FIELD; /* move tail ahead */ dring->tail = (tail + 1) % DESC_NUM; tail = dring->tail; entry = dring->vaddr + DESC_SZ * tail; cnt++; } if (dring->is_xdp) spin_unlock(&dring->lock); if (!cnt) return false; /* reading the register clears the irq */ netsec_read(priv, NETSEC_REG_NRM_TX_DONE_PKTCNT); priv->ndev->stats.tx_packets += cnt; priv->ndev->stats.tx_bytes += bytes; netdev_completed_queue(priv->ndev, cnt, bytes); return true; } static void netsec_process_tx(struct netsec_priv *priv) { struct net_device *ndev = priv->ndev; bool cleaned; cleaned = netsec_clean_tx_dring(priv); if (cleaned && netif_queue_stopped(ndev)) { /* Make sure we update the value, anyone stopping the queue * after this will read the proper consumer idx */ smp_wmb(); netif_wake_queue(ndev); } } static void *netsec_alloc_rx_data(struct netsec_priv *priv, dma_addr_t *dma_handle, u16 *desc_len) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX]; enum dma_data_direction dma_dir; struct page *page; page = page_pool_dev_alloc_pages(dring->page_pool); if (!page) return NULL; /* We allocate the same buffer length for XDP and non-XDP cases. * page_pool API will map the whole page, skip what's needed for * network payloads and/or XDP */ *dma_handle = page_pool_get_dma_addr(page) + NETSEC_RXBUF_HEADROOM; /* Make sure the incoming payload fits in the page for XDP and non-XDP * cases and reserve enough space for headroom + skb_shared_info */ *desc_len = PAGE_SIZE - NETSEC_RX_BUF_NON_DATA; dma_dir = page_pool_get_dma_dir(dring->page_pool); dma_sync_single_for_device(priv->dev, *dma_handle, *desc_len, dma_dir); return page_address(page); } static void netsec_rx_fill(struct netsec_priv *priv, u16 from, u16 num) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX]; u16 idx = from; while (num) { netsec_set_rx_de(priv, dring, idx, &dring->desc[idx]); idx++; if (idx >= DESC_NUM) idx = 0; num--; } } static void netsec_xdp_ring_tx_db(struct netsec_priv *priv, u16 pkts) { if (likely(pkts)) netsec_write(priv, NETSEC_REG_NRM_TX_PKTCNT, pkts); } static void netsec_finalize_xdp_rx(struct netsec_priv *priv, u32 xdp_res, u16 pkts) { if (xdp_res & NETSEC_XDP_REDIR) xdp_do_flush_map(); if (xdp_res & NETSEC_XDP_TX) netsec_xdp_ring_tx_db(priv, pkts); } static void netsec_set_tx_de(struct netsec_priv *priv, struct netsec_desc_ring *dring, const struct netsec_tx_pkt_ctrl *tx_ctrl, const struct netsec_desc *desc, void *buf) { int idx = dring->head; struct netsec_de *de; u32 attr; de = dring->vaddr + (DESC_SZ * idx); attr = (1 << NETSEC_TX_SHIFT_OWN_FIELD) | (1 << NETSEC_TX_SHIFT_PT_FIELD) | (NETSEC_RING_GMAC << NETSEC_TX_SHIFT_TDRID_FIELD) | (1 << NETSEC_TX_SHIFT_FS_FIELD) | (1 << NETSEC_TX_LAST) | (tx_ctrl->cksum_offload_flag << NETSEC_TX_SHIFT_CO) | (tx_ctrl->tcp_seg_offload_flag << NETSEC_TX_SHIFT_SO) | (1 << NETSEC_TX_SHIFT_TRS_FIELD); if (idx == DESC_NUM - 1) attr |= (1 << NETSEC_TX_SHIFT_LD_FIELD); de->data_buf_addr_up = upper_32_bits(desc->dma_addr); de->data_buf_addr_lw = lower_32_bits(desc->dma_addr); de->buf_len_info = (tx_ctrl->tcp_seg_len << 16) | desc->len; de->attr = attr; /* under spin_lock if using XDP */ if (!dring->is_xdp) dma_wmb(); dring->desc[idx] = *desc; if (desc->buf_type == TYPE_NETSEC_SKB) dring->desc[idx].skb = buf; else if (desc->buf_type == TYPE_NETSEC_XDP_TX || desc->buf_type == TYPE_NETSEC_XDP_NDO) dring->desc[idx].xdpf = buf; /* move head ahead */ dring->head = (dring->head + 1) % DESC_NUM; } /* The current driver only supports 1 Txq, this should run under spin_lock() */ static u32 netsec_xdp_queue_one(struct netsec_priv *priv, struct xdp_frame *xdpf, bool is_ndo) { struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX]; struct page *page = virt_to_page(xdpf->data); struct netsec_tx_pkt_ctrl tx_ctrl = {}; struct netsec_desc tx_desc; dma_addr_t dma_handle; u16 filled; if (tx_ring->head >= tx_ring->tail) filled = tx_ring->head - tx_ring->tail; else filled = tx_ring->head + DESC_NUM - tx_ring->tail; if (DESC_NUM - filled <= 1) return NETSEC_XDP_CONSUMED; if (is_ndo) { /* this is for ndo_xdp_xmit, the buffer needs mapping before * sending */ dma_handle = dma_map_single(priv->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, dma_handle)) return NETSEC_XDP_CONSUMED; tx_desc.buf_type = TYPE_NETSEC_XDP_NDO; } else { /* This is the device Rx buffer from page_pool. No need to remap * just sync and send it */ struct netsec_desc_ring *rx_ring = &priv->desc_ring[NETSEC_RING_RX]; enum dma_data_direction dma_dir = page_pool_get_dma_dir(rx_ring->page_pool); dma_handle = page_pool_get_dma_addr(page) + NETSEC_RXBUF_HEADROOM; dma_sync_single_for_device(priv->dev, dma_handle, xdpf->len, dma_dir); tx_desc.buf_type = TYPE_NETSEC_XDP_TX; } tx_desc.dma_addr = dma_handle; tx_desc.addr = xdpf->data; tx_desc.len = xdpf->len; netsec_set_tx_de(priv, tx_ring, &tx_ctrl, &tx_desc, xdpf); return NETSEC_XDP_TX; } static u32 netsec_xdp_xmit_back(struct netsec_priv *priv, struct xdp_buff *xdp) { struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX]; struct xdp_frame *xdpf = convert_to_xdp_frame(xdp); u32 ret; if (unlikely(!xdpf)) return NETSEC_XDP_CONSUMED; spin_lock(&tx_ring->lock); ret = netsec_xdp_queue_one(priv, xdpf, false); spin_unlock(&tx_ring->lock); return ret; } static u32 netsec_run_xdp(struct netsec_priv *priv, struct bpf_prog *prog, struct xdp_buff *xdp) { u32 ret = NETSEC_XDP_PASS; int err; u32 act; act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: ret = NETSEC_XDP_PASS; break; case XDP_TX: ret = netsec_xdp_xmit_back(priv, xdp); if (ret != NETSEC_XDP_TX) xdp_return_buff(xdp); break; case XDP_REDIRECT: err = xdp_do_redirect(priv->ndev, xdp, prog); if (!err) { ret = NETSEC_XDP_REDIR; } else { ret = NETSEC_XDP_CONSUMED; xdp_return_buff(xdp); } break; default: bpf_warn_invalid_xdp_action(act); /* fall through */ case XDP_ABORTED: trace_xdp_exception(priv->ndev, prog, act); /* fall through -- handle aborts by dropping packet */ case XDP_DROP: ret = NETSEC_XDP_CONSUMED; xdp_return_buff(xdp); break; } return ret; } static int netsec_process_rx(struct netsec_priv *priv, int budget) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX]; struct net_device *ndev = priv->ndev; struct netsec_rx_pkt_info rx_info; enum dma_data_direction dma_dir; struct bpf_prog *xdp_prog; struct sk_buff *skb = NULL; u16 xdp_xmit = 0; u32 xdp_act = 0; int done = 0; rcu_read_lock(); xdp_prog = READ_ONCE(priv->xdp_prog); dma_dir = page_pool_get_dma_dir(dring->page_pool); while (done < budget) { u16 idx = dring->tail; struct netsec_de *de = dring->vaddr + (DESC_SZ * idx); struct netsec_desc *desc = &dring->desc[idx]; struct page *page = virt_to_page(desc->addr); u32 xdp_result = XDP_PASS; u16 pkt_len, desc_len; dma_addr_t dma_handle; struct xdp_buff xdp; void *buf_addr; if (de->attr & (1U << NETSEC_RX_PKT_OWN_FIELD)) { /* reading the register clears the irq */ netsec_read(priv, NETSEC_REG_NRM_RX_PKTCNT); break; } /* This barrier is needed to keep us from reading * any other fields out of the netsec_de until we have * verified the descriptor has been written back */ dma_rmb(); done++; pkt_len = de->buf_len_info >> 16; rx_info.err_code = (de->attr >> NETSEC_RX_PKT_ERR_FIELD) & NETSEC_RX_PKT_ERR_MASK; rx_info.err_flag = (de->attr >> NETSEC_RX_PKT_ER_FIELD) & 1; if (rx_info.err_flag) { netif_err(priv, drv, priv->ndev, "%s: rx fail err(%d)\n", __func__, rx_info.err_code); ndev->stats.rx_dropped++; dring->tail = (dring->tail + 1) % DESC_NUM; /* reuse buffer page frag */ netsec_rx_fill(priv, idx, 1); continue; } rx_info.rx_cksum_result = (de->attr >> NETSEC_RX_PKT_CO_FIELD) & 3; /* allocate a fresh buffer and map it to the hardware. * This will eventually replace the old buffer in the hardware */ buf_addr = netsec_alloc_rx_data(priv, &dma_handle, &desc_len); if (unlikely(!buf_addr)) break; dma_sync_single_for_cpu(priv->dev, desc->dma_addr, pkt_len, dma_dir); prefetch(desc->addr); xdp.data_hard_start = desc->addr; xdp.data = desc->addr + NETSEC_RXBUF_HEADROOM; xdp_set_data_meta_invalid(&xdp); xdp.data_end = xdp.data + pkt_len; xdp.rxq = &dring->xdp_rxq; if (xdp_prog) { xdp_result = netsec_run_xdp(priv, xdp_prog, &xdp); if (xdp_result != NETSEC_XDP_PASS) { xdp_act |= xdp_result; if (xdp_result == NETSEC_XDP_TX) xdp_xmit++; goto next; } } skb = build_skb(desc->addr, desc->len + NETSEC_RX_BUF_NON_DATA); if (unlikely(!skb)) { /* If skb fails recycle_direct will either unmap and * free the page or refill the cache depending on the * cache state. Since we paid the allocation cost if * building an skb fails try to put the page into cache */ page_pool_recycle_direct(dring->page_pool, page); netif_err(priv, drv, priv->ndev, "rx failed to build skb\n"); break; } page_pool_release_page(dring->page_pool, page); skb_reserve(skb, xdp.data - xdp.data_hard_start); skb_put(skb, xdp.data_end - xdp.data); skb->protocol = eth_type_trans(skb, priv->ndev); if (priv->rx_cksum_offload_flag && rx_info.rx_cksum_result == NETSEC_RX_CKSUM_OK) skb->ip_summed = CHECKSUM_UNNECESSARY; next: if ((skb && napi_gro_receive(&priv->napi, skb) != GRO_DROP) || xdp_result & NETSEC_XDP_RX_OK) { ndev->stats.rx_packets++; ndev->stats.rx_bytes += xdp.data_end - xdp.data; } /* Update the descriptor with fresh buffers */ desc->len = desc_len; desc->dma_addr = dma_handle; desc->addr = buf_addr; netsec_rx_fill(priv, idx, 1); dring->tail = (dring->tail + 1) % DESC_NUM; } netsec_finalize_xdp_rx(priv, xdp_act, xdp_xmit); rcu_read_unlock(); return done; } static int netsec_napi_poll(struct napi_struct *napi, int budget) { struct netsec_priv *priv; int done; priv = container_of(napi, struct netsec_priv, napi); netsec_process_tx(priv); done = netsec_process_rx(priv, budget); if (done < budget && napi_complete_done(napi, done)) { unsigned long flags; spin_lock_irqsave(&priv->reglock, flags); netsec_write(priv, NETSEC_REG_INTEN_SET, NETSEC_IRQ_RX | NETSEC_IRQ_TX); spin_unlock_irqrestore(&priv->reglock, flags); } return done; } static int netsec_desc_used(struct netsec_desc_ring *dring) { int used; if (dring->head >= dring->tail) used = dring->head - dring->tail; else used = dring->head + DESC_NUM - dring->tail; return used; } static int netsec_check_stop_tx(struct netsec_priv *priv, int used) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX]; /* keep tail from touching the queue */ if (DESC_NUM - used < 2) { netif_stop_queue(priv->ndev); /* Make sure we read the updated value in case * descriptors got freed */ smp_rmb(); used = netsec_desc_used(dring); if (DESC_NUM - used < 2) return NETDEV_TX_BUSY; netif_wake_queue(priv->ndev); } return 0; } static netdev_tx_t netsec_netdev_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct netsec_priv *priv = netdev_priv(ndev); struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX]; struct netsec_tx_pkt_ctrl tx_ctrl = {}; struct netsec_desc tx_desc; u16 tso_seg_len = 0; int filled; if (dring->is_xdp) spin_lock_bh(&dring->lock); filled = netsec_desc_used(dring); if (netsec_check_stop_tx(priv, filled)) { if (dring->is_xdp) spin_unlock_bh(&dring->lock); net_warn_ratelimited("%s %s Tx queue full\n", dev_name(priv->dev), ndev->name); return NETDEV_TX_BUSY; } if (skb->ip_summed == CHECKSUM_PARTIAL) tx_ctrl.cksum_offload_flag = true; if (skb_is_gso(skb)) tso_seg_len = skb_shinfo(skb)->gso_size; if (tso_seg_len > 0) { if (skb->protocol == htons(ETH_P_IP)) { ip_hdr(skb)->tot_len = 0; tcp_hdr(skb)->check = ~tcp_v4_check(0, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0); } else { ipv6_hdr(skb)->payload_len = 0; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } tx_ctrl.tcp_seg_offload_flag = true; tx_ctrl.tcp_seg_len = tso_seg_len; } tx_desc.dma_addr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, tx_desc.dma_addr)) { if (dring->is_xdp) spin_unlock_bh(&dring->lock); netif_err(priv, drv, priv->ndev, "%s: DMA mapping failed\n", __func__); ndev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } tx_desc.addr = skb->data; tx_desc.len = skb_headlen(skb); tx_desc.buf_type = TYPE_NETSEC_SKB; skb_tx_timestamp(skb); netdev_sent_queue(priv->ndev, skb->len); netsec_set_tx_de(priv, dring, &tx_ctrl, &tx_desc, skb); if (dring->is_xdp) spin_unlock_bh(&dring->lock); netsec_write(priv, NETSEC_REG_NRM_TX_PKTCNT, 1); /* submit another tx */ return NETDEV_TX_OK; } static void netsec_uninit_pkt_dring(struct netsec_priv *priv, int id) { struct netsec_desc_ring *dring = &priv->desc_ring[id]; struct netsec_desc *desc; u16 idx; if (!dring->vaddr || !dring->desc) return; for (idx = 0; idx < DESC_NUM; idx++) { desc = &dring->desc[idx]; if (!desc->addr) continue; if (id == NETSEC_RING_RX) { struct page *page = virt_to_page(desc->addr); page_pool_put_page(dring->page_pool, page, false); } else if (id == NETSEC_RING_TX) { dma_unmap_single(priv->dev, desc->dma_addr, desc->len, DMA_TO_DEVICE); dev_kfree_skb(desc->skb); } } /* Rx is currently using page_pool */ if (id == NETSEC_RING_RX) { if (xdp_rxq_info_is_reg(&dring->xdp_rxq)) xdp_rxq_info_unreg(&dring->xdp_rxq); page_pool_destroy(dring->page_pool); } memset(dring->desc, 0, sizeof(struct netsec_desc) * DESC_NUM); memset(dring->vaddr, 0, DESC_SZ * DESC_NUM); dring->head = 0; dring->tail = 0; if (id == NETSEC_RING_TX) netdev_reset_queue(priv->ndev); } static void netsec_free_dring(struct netsec_priv *priv, int id) { struct netsec_desc_ring *dring = &priv->desc_ring[id]; if (dring->vaddr) { dma_free_coherent(priv->dev, DESC_SZ * DESC_NUM, dring->vaddr, dring->desc_dma); dring->vaddr = NULL; } kfree(dring->desc); dring->desc = NULL; } static int netsec_alloc_dring(struct netsec_priv *priv, enum ring_id id) { struct netsec_desc_ring *dring = &priv->desc_ring[id]; dring->vaddr = dma_alloc_coherent(priv->dev, DESC_SZ * DESC_NUM, &dring->desc_dma, GFP_KERNEL); if (!dring->vaddr) goto err; dring->desc = kcalloc(DESC_NUM, sizeof(*dring->desc), GFP_KERNEL); if (!dring->desc) goto err; return 0; err: netsec_free_dring(priv, id); return -ENOMEM; } static void netsec_setup_tx_dring(struct netsec_priv *priv) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX]; struct bpf_prog *xdp_prog = READ_ONCE(priv->xdp_prog); int i; for (i = 0; i < DESC_NUM; i++) { struct netsec_de *de; de = dring->vaddr + (DESC_SZ * i); /* de->attr is not going to be accessed by the NIC * until netsec_set_tx_de() is called. * No need for a dma_wmb() here */ de->attr = 1U << NETSEC_TX_SHIFT_OWN_FIELD; } if (xdp_prog) dring->is_xdp = true; else dring->is_xdp = false; } static int netsec_setup_rx_dring(struct netsec_priv *priv) { struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX]; struct bpf_prog *xdp_prog = READ_ONCE(priv->xdp_prog); struct page_pool_params pp_params = { 0 }; int i, err; pp_params.order = 0; /* internal DMA mapping in page_pool */ pp_params.flags = PP_FLAG_DMA_MAP; pp_params.pool_size = DESC_NUM; pp_params.nid = cpu_to_node(0); pp_params.dev = priv->dev; pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; dring->page_pool = page_pool_create(&pp_params); if (IS_ERR(dring->page_pool)) { err = PTR_ERR(dring->page_pool); dring->page_pool = NULL; goto err_out; } err = xdp_rxq_info_reg(&dring->xdp_rxq, priv->ndev, 0); if (err) goto err_out; err = xdp_rxq_info_reg_mem_model(&dring->xdp_rxq, MEM_TYPE_PAGE_POOL, dring->page_pool); if (err) goto err_out; for (i = 0; i < DESC_NUM; i++) { struct netsec_desc *desc = &dring->desc[i]; dma_addr_t dma_handle; void *buf; u16 len; buf = netsec_alloc_rx_data(priv, &dma_handle, &len); if (!buf) { err = -ENOMEM; goto err_out; } desc->dma_addr = dma_handle; desc->addr = buf; desc->len = len; } netsec_rx_fill(priv, 0, DESC_NUM); return 0; err_out: netsec_uninit_pkt_dring(priv, NETSEC_RING_RX); return err; } static int netsec_netdev_load_ucode_region(struct netsec_priv *priv, u32 reg, u32 addr_h, u32 addr_l, u32 size) { u64 base = (u64)addr_h << 32 | addr_l; void __iomem *ucode; u32 i; ucode = ioremap(base, size * sizeof(u32)); if (!ucode) return -ENOMEM; for (i = 0; i < size; i++) netsec_write(priv, reg, readl(ucode + i * 4)); iounmap(ucode); return 0; } static int netsec_netdev_load_microcode(struct netsec_priv *priv) { u32 addr_h, addr_l, size; int err; addr_h = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_ADDRESS_H); addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_ADDRESS_L); size = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_SIZE); err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_DMAC_HM_CMD_BUF, addr_h, addr_l, size); if (err) return err; addr_h = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_ADDRESS_H); addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_ADDRESS_L); size = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_SIZE); err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_DMAC_MH_CMD_BUF, addr_h, addr_l, size); if (err) return err; addr_h = 0; addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_PKT_ME_ADDRESS); size = readl(priv->eeprom_base + NETSEC_EEPROM_PKT_ME_SIZE); err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_PKT_CMD_BUF, addr_h, addr_l, size); if (err) return err; return 0; } static int netsec_reset_hardware(struct netsec_priv *priv, bool load_ucode) { u32 value; int err; /* stop DMA engines */ if (!netsec_read(priv, NETSEC_REG_ADDR_DIS_CORE)) { netsec_write(priv, NETSEC_REG_DMA_HM_CTRL, NETSEC_DMA_CTRL_REG_STOP); netsec_write(priv, NETSEC_REG_DMA_MH_CTRL, NETSEC_DMA_CTRL_REG_STOP); while (netsec_read(priv, NETSEC_REG_DMA_HM_CTRL) & NETSEC_DMA_CTRL_REG_STOP) cpu_relax(); while (netsec_read(priv, NETSEC_REG_DMA_MH_CTRL) & NETSEC_DMA_CTRL_REG_STOP) cpu_relax(); } netsec_write(priv, NETSEC_REG_SOFT_RST, NETSEC_SOFT_RST_REG_RESET); netsec_write(priv, NETSEC_REG_SOFT_RST, NETSEC_SOFT_RST_REG_RUN); netsec_write(priv, NETSEC_REG_COM_INIT, NETSEC_COM_INIT_REG_ALL); while (netsec_read(priv, NETSEC_REG_COM_INIT) != 0) cpu_relax(); /* set desc_start addr */ netsec_write(priv, NETSEC_REG_NRM_RX_DESC_START_UP, upper_32_bits(priv->desc_ring[NETSEC_RING_RX].desc_dma)); netsec_write(priv, NETSEC_REG_NRM_RX_DESC_START_LW, lower_32_bits(priv->desc_ring[NETSEC_RING_RX].desc_dma)); netsec_write(priv, NETSEC_REG_NRM_TX_DESC_START_UP, upper_32_bits(priv->desc_ring[NETSEC_RING_TX].desc_dma)); netsec_write(priv, NETSEC_REG_NRM_TX_DESC_START_LW, lower_32_bits(priv->desc_ring[NETSEC_RING_TX].desc_dma)); /* set normal tx dring ring config */ netsec_write(priv, NETSEC_REG_NRM_TX_CONFIG, 1 << NETSEC_REG_DESC_ENDIAN); netsec_write(priv, NETSEC_REG_NRM_RX_CONFIG, 1 << NETSEC_REG_DESC_ENDIAN); if (load_ucode) { err = netsec_netdev_load_microcode(priv); if (err) { netif_err(priv, probe, priv->ndev, "%s: failed to load microcode (%d)\n", __func__, err); return err; } } /* start DMA engines */ netsec_write(priv, NETSEC_REG_DMA_TMR_CTRL, priv->freq / 1000000 - 1); netsec_write(priv, NETSEC_REG_ADDR_DIS_CORE, 0); usleep_range(1000, 2000); if (!(netsec_read(priv, NETSEC_REG_TOP_STATUS) & NETSEC_TOP_IRQ_REG_CODE_LOAD_END)) { netif_err(priv, probe, priv->ndev, "microengine start failed\n"); return -ENXIO; } netsec_write(priv, NETSEC_REG_TOP_STATUS, NETSEC_TOP_IRQ_REG_CODE_LOAD_END); value = NETSEC_PKT_CTRL_REG_MODE_NRM; if (priv->ndev->mtu > ETH_DATA_LEN) value |= NETSEC_PKT_CTRL_REG_EN_JUMBO; /* change to normal mode */ netsec_write(priv, NETSEC_REG_DMA_MH_CTRL, MH_CTRL__MODE_TRANS); netsec_write(priv, NETSEC_REG_PKT_CTRL, value); while ((netsec_read(priv, NETSEC_REG_MODE_TRANS_COMP_STATUS) & NETSEC_MODE_TRANS_COMP_IRQ_T2N) == 0) cpu_relax(); /* clear any pending EMPTY/ERR irq status */ netsec_write(priv, NETSEC_REG_NRM_TX_STATUS, ~0); /* Disable TX & RX intr */ netsec_write(priv, NETSEC_REG_INTEN_CLR, ~0); return 0; } static int netsec_start_gmac(struct netsec_priv *priv) { struct phy_device *phydev = priv->ndev->phydev; u32 value = 0; int ret; if (phydev->speed != SPEED_1000) value = (NETSEC_GMAC_MCR_REG_CST | NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON); if (netsec_mac_write(priv, GMAC_REG_MCR, value)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_BMR, NETSEC_GMAC_BMR_REG_RESET)) return -ETIMEDOUT; /* Wait soft reset */ usleep_range(1000, 5000); ret = netsec_mac_read(priv, GMAC_REG_BMR, &value); if (ret) return ret; if (value & NETSEC_GMAC_BMR_REG_SWR) return -EAGAIN; netsec_write(priv, MAC_REG_DESC_SOFT_RST, 1); if (netsec_wait_while_busy(priv, MAC_REG_DESC_SOFT_RST, 1)) return -ETIMEDOUT; netsec_write(priv, MAC_REG_DESC_INIT, 1); if (netsec_wait_while_busy(priv, MAC_REG_DESC_INIT, 1)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_BMR, NETSEC_GMAC_BMR_REG_COMMON)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_RDLAR, NETSEC_GMAC_RDLAR_REG_COMMON)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_TDLAR, NETSEC_GMAC_TDLAR_REG_COMMON)) return -ETIMEDOUT; if (netsec_mac_write(priv, GMAC_REG_MFFR, 0x80000001)) return -ETIMEDOUT; ret = netsec_mac_update_to_phy_state(priv); if (ret) return ret; ret = netsec_mac_read(priv, GMAC_REG_OMR, &value); if (ret) return ret; value |= NETSEC_GMAC_OMR_REG_SR; value |= NETSEC_GMAC_OMR_REG_ST; netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_CLR, ~0); netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_CLR, ~0); netsec_et_set_coalesce(priv->ndev, &priv->et_coalesce); if (netsec_mac_write(priv, GMAC_REG_OMR, value)) return -ETIMEDOUT; return 0; } static int netsec_stop_gmac(struct netsec_priv *priv) { u32 value; int ret; ret = netsec_mac_read(priv, GMAC_REG_OMR, &value); if (ret) return ret; value &= ~NETSEC_GMAC_OMR_REG_SR; value &= ~NETSEC_GMAC_OMR_REG_ST; /* disable all interrupts */ netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_CLR, ~0); netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_CLR, ~0); return netsec_mac_write(priv, GMAC_REG_OMR, value); } static void netsec_phy_adjust_link(struct net_device *ndev) { struct netsec_priv *priv = netdev_priv(ndev); if (ndev->phydev->link) netsec_start_gmac(priv); else netsec_stop_gmac(priv); phy_print_status(ndev->phydev); } static irqreturn_t netsec_irq_handler(int irq, void *dev_id) { struct netsec_priv *priv = dev_id; u32 val, status = netsec_read(priv, NETSEC_REG_TOP_STATUS); unsigned long flags; /* Disable interrupts */ if (status & NETSEC_IRQ_TX) { val = netsec_read(priv, NETSEC_REG_NRM_TX_STATUS); netsec_write(priv, NETSEC_REG_NRM_TX_STATUS, val); } if (status & NETSEC_IRQ_RX) { val = netsec_read(priv, NETSEC_REG_NRM_RX_STATUS); netsec_write(priv, NETSEC_REG_NRM_RX_STATUS, val); } spin_lock_irqsave(&priv->reglock, flags); netsec_write(priv, NETSEC_REG_INTEN_CLR, NETSEC_IRQ_RX | NETSEC_IRQ_TX); spin_unlock_irqrestore(&priv->reglock, flags); napi_schedule(&priv->napi); return IRQ_HANDLED; } static int netsec_netdev_open(struct net_device *ndev) { struct netsec_priv *priv = netdev_priv(ndev); int ret; pm_runtime_get_sync(priv->dev); netsec_setup_tx_dring(priv); ret = netsec_setup_rx_dring(priv); if (ret) { netif_err(priv, probe, priv->ndev, "%s: fail setup ring\n", __func__); goto err1; } ret = request_irq(priv->ndev->irq, netsec_irq_handler, IRQF_SHARED, "netsec", priv); if (ret) { netif_err(priv, drv, priv->ndev, "request_irq failed\n"); goto err2; } if (dev_of_node(priv->dev)) { if (!of_phy_connect(priv->ndev, priv->phy_np, netsec_phy_adjust_link, 0, priv->phy_interface)) { netif_err(priv, link, priv->ndev, "missing PHY\n"); ret = -ENODEV; goto err3; } } else { ret = phy_connect_direct(priv->ndev, priv->phydev, netsec_phy_adjust_link, priv->phy_interface); if (ret) { netif_err(priv, link, priv->ndev, "phy_connect_direct() failed (%d)\n", ret); goto err3; } } phy_start(ndev->phydev); netsec_start_gmac(priv); napi_enable(&priv->napi); netif_start_queue(ndev); /* Enable TX+RX intr. */ netsec_write(priv, NETSEC_REG_INTEN_SET, NETSEC_IRQ_RX | NETSEC_IRQ_TX); return 0; err3: free_irq(priv->ndev->irq, priv); err2: netsec_uninit_pkt_dring(priv, NETSEC_RING_RX); err1: pm_runtime_put_sync(priv->dev); return ret; } static int netsec_netdev_stop(struct net_device *ndev) { int ret; struct netsec_priv *priv = netdev_priv(ndev); netif_stop_queue(priv->ndev); dma_wmb(); napi_disable(&priv->napi); netsec_write(priv, NETSEC_REG_INTEN_CLR, ~0); netsec_stop_gmac(priv); free_irq(priv->ndev->irq, priv); netsec_uninit_pkt_dring(priv, NETSEC_RING_TX); netsec_uninit_pkt_dring(priv, NETSEC_RING_RX); phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); ret = netsec_reset_hardware(priv, false); pm_runtime_put_sync(priv->dev); return ret; } static int netsec_netdev_init(struct net_device *ndev) { struct netsec_priv *priv = netdev_priv(ndev); int ret; u16 data; BUILD_BUG_ON_NOT_POWER_OF_2(DESC_NUM); ret = netsec_alloc_dring(priv, NETSEC_RING_TX); if (ret) return ret; ret = netsec_alloc_dring(priv, NETSEC_RING_RX); if (ret) goto err1; /* set phy power down */ data = netsec_phy_read(priv->mii_bus, priv->phy_addr, MII_BMCR) | BMCR_PDOWN; netsec_phy_write(priv->mii_bus, priv->phy_addr, MII_BMCR, data); ret = netsec_reset_hardware(priv, true); if (ret) goto err2; spin_lock_init(&priv->desc_ring[NETSEC_RING_TX].lock); spin_lock_init(&priv->desc_ring[NETSEC_RING_RX].lock); return 0; err2: netsec_free_dring(priv, NETSEC_RING_RX); err1: netsec_free_dring(priv, NETSEC_RING_TX); return ret; } static void netsec_netdev_uninit(struct net_device *ndev) { struct netsec_priv *priv = netdev_priv(ndev); netsec_free_dring(priv, NETSEC_RING_RX); netsec_free_dring(priv, NETSEC_RING_TX); } static int netsec_netdev_set_features(struct net_device *ndev, netdev_features_t features) { struct netsec_priv *priv = netdev_priv(ndev); priv->rx_cksum_offload_flag = !!(features & NETIF_F_RXCSUM); return 0; } static int netsec_netdev_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) { return phy_mii_ioctl(ndev->phydev, ifr, cmd); } static int netsec_xdp_xmit(struct net_device *ndev, int n, struct xdp_frame **frames, u32 flags) { struct netsec_priv *priv = netdev_priv(ndev); struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX]; int drops = 0; int i; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; spin_lock(&tx_ring->lock); for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; int err; err = netsec_xdp_queue_one(priv, xdpf, true); if (err != NETSEC_XDP_TX) { xdp_return_frame_rx_napi(xdpf); drops++; } else { tx_ring->xdp_xmit++; } } spin_unlock(&tx_ring->lock); if (unlikely(flags & XDP_XMIT_FLUSH)) { netsec_xdp_ring_tx_db(priv, tx_ring->xdp_xmit); tx_ring->xdp_xmit = 0; } return n - drops; } static int netsec_xdp_setup(struct netsec_priv *priv, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct net_device *dev = priv->ndev; struct bpf_prog *old_prog; /* For now just support only the usual MTU sized frames */ if (prog && dev->mtu > 1500) { NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); return -EOPNOTSUPP; } if (netif_running(dev)) netsec_netdev_stop(dev); /* Detach old prog, if any */ old_prog = xchg(&priv->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); if (netif_running(dev)) netsec_netdev_open(dev); return 0; } static int netsec_xdp(struct net_device *ndev, struct netdev_bpf *xdp) { struct netsec_priv *priv = netdev_priv(ndev); switch (xdp->command) { case XDP_SETUP_PROG: return netsec_xdp_setup(priv, xdp->prog, xdp->extack); case XDP_QUERY_PROG: xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; return 0; default: return -EINVAL; } } static const struct net_device_ops netsec_netdev_ops = { .ndo_init = netsec_netdev_init, .ndo_uninit = netsec_netdev_uninit, .ndo_open = netsec_netdev_open, .ndo_stop = netsec_netdev_stop, .ndo_start_xmit = netsec_netdev_start_xmit, .ndo_set_features = netsec_netdev_set_features, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = netsec_netdev_ioctl, .ndo_xdp_xmit = netsec_xdp_xmit, .ndo_bpf = netsec_xdp, }; static int netsec_of_probe(struct platform_device *pdev, struct netsec_priv *priv, u32 *phy_addr) { priv->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); if (!priv->phy_np) { dev_err(&pdev->dev, "missing required property 'phy-handle'\n"); return -EINVAL; } *phy_addr = of_mdio_parse_addr(&pdev->dev, priv->phy_np); priv->clk = devm_clk_get(&pdev->dev, NULL); /* get by 'phy_ref_clk' */ if (IS_ERR(priv->clk)) { dev_err(&pdev->dev, "phy_ref_clk not found\n"); return PTR_ERR(priv->clk); } priv->freq = clk_get_rate(priv->clk); return 0; } static int netsec_acpi_probe(struct platform_device *pdev, struct netsec_priv *priv, u32 *phy_addr) { int ret; if (!IS_ENABLED(CONFIG_ACPI)) return -ENODEV; ret = device_property_read_u32(&pdev->dev, "phy-channel", phy_addr); if (ret) { dev_err(&pdev->dev, "missing required property 'phy-channel'\n"); return ret; } ret = device_property_read_u32(&pdev->dev, "socionext,phy-clock-frequency", &priv->freq); if (ret) dev_err(&pdev->dev, "missing required property 'socionext,phy-clock-frequency'\n"); return ret; } static void netsec_unregister_mdio(struct netsec_priv *priv) { struct phy_device *phydev = priv->phydev; if (!dev_of_node(priv->dev) && phydev) { phy_device_remove(phydev); phy_device_free(phydev); } mdiobus_unregister(priv->mii_bus); } static int netsec_register_mdio(struct netsec_priv *priv, u32 phy_addr) { struct mii_bus *bus; int ret; bus = devm_mdiobus_alloc(priv->dev); if (!bus) return -ENOMEM; snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(priv->dev)); bus->priv = priv; bus->name = "SNI NETSEC MDIO"; bus->read = netsec_phy_read; bus->write = netsec_phy_write; bus->parent = priv->dev; priv->mii_bus = bus; if (dev_of_node(priv->dev)) { struct device_node *mdio_node, *parent = dev_of_node(priv->dev); mdio_node = of_get_child_by_name(parent, "mdio"); if (mdio_node) { parent = mdio_node; } else { /* older f/w doesn't populate the mdio subnode, * allow relaxed upgrade of f/w in due time. */ dev_info(priv->dev, "Upgrade f/w for mdio subnode!\n"); } ret = of_mdiobus_register(bus, parent); of_node_put(mdio_node); if (ret) { dev_err(priv->dev, "mdiobus register err(%d)\n", ret); return ret; } } else { /* Mask out all PHYs from auto probing. */ bus->phy_mask = ~0; ret = mdiobus_register(bus); if (ret) { dev_err(priv->dev, "mdiobus register err(%d)\n", ret); return ret; } priv->phydev = get_phy_device(bus, phy_addr, false); if (IS_ERR(priv->phydev)) { ret = PTR_ERR(priv->phydev); dev_err(priv->dev, "get_phy_device err(%d)\n", ret); priv->phydev = NULL; return -ENODEV; } ret = phy_device_register(priv->phydev); if (ret) { mdiobus_unregister(bus); dev_err(priv->dev, "phy_device_register err(%d)\n", ret); } } return ret; } static int netsec_probe(struct platform_device *pdev) { struct resource *mmio_res, *eeprom_res, *irq_res; u8 *mac, macbuf[ETH_ALEN]; struct netsec_priv *priv; u32 hw_ver, phy_addr = 0; struct net_device *ndev; int ret; mmio_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mmio_res) { dev_err(&pdev->dev, "No MMIO resource found.\n"); return -ENODEV; } eeprom_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!eeprom_res) { dev_info(&pdev->dev, "No EEPROM resource found.\n"); return -ENODEV; } irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!irq_res) { dev_err(&pdev->dev, "No IRQ resource found.\n"); return -ENODEV; } ndev = alloc_etherdev(sizeof(*priv)); if (!ndev) return -ENOMEM; priv = netdev_priv(ndev); spin_lock_init(&priv->reglock); SET_NETDEV_DEV(ndev, &pdev->dev); platform_set_drvdata(pdev, priv); ndev->irq = irq_res->start; priv->dev = &pdev->dev; priv->ndev = ndev; priv->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK | NETIF_MSG_PROBE; priv->phy_interface = device_get_phy_mode(&pdev->dev); if (priv->phy_interface < 0) { dev_err(&pdev->dev, "missing required property 'phy-mode'\n"); ret = -ENODEV; goto free_ndev; } priv->ioaddr = devm_ioremap(&pdev->dev, mmio_res->start, resource_size(mmio_res)); if (!priv->ioaddr) { dev_err(&pdev->dev, "devm_ioremap() failed\n"); ret = -ENXIO; goto free_ndev; } priv->eeprom_base = devm_ioremap(&pdev->dev, eeprom_res->start, resource_size(eeprom_res)); if (!priv->eeprom_base) { dev_err(&pdev->dev, "devm_ioremap() failed for EEPROM\n"); ret = -ENXIO; goto free_ndev; } mac = device_get_mac_address(&pdev->dev, macbuf, sizeof(macbuf)); if (mac) ether_addr_copy(ndev->dev_addr, mac); if (priv->eeprom_base && (!mac || !is_valid_ether_addr(ndev->dev_addr))) { void __iomem *macp = priv->eeprom_base + NETSEC_EEPROM_MAC_ADDRESS; ndev->dev_addr[0] = readb(macp + 3); ndev->dev_addr[1] = readb(macp + 2); ndev->dev_addr[2] = readb(macp + 1); ndev->dev_addr[3] = readb(macp + 0); ndev->dev_addr[4] = readb(macp + 7); ndev->dev_addr[5] = readb(macp + 6); } if (!is_valid_ether_addr(ndev->dev_addr)) { dev_warn(&pdev->dev, "No MAC address found, using random\n"); eth_hw_addr_random(ndev); } if (dev_of_node(&pdev->dev)) ret = netsec_of_probe(pdev, priv, &phy_addr); else ret = netsec_acpi_probe(pdev, priv, &phy_addr); if (ret) goto free_ndev; priv->phy_addr = phy_addr; if (!priv->freq) { dev_err(&pdev->dev, "missing PHY reference clock frequency\n"); ret = -ENODEV; goto free_ndev; } /* default for throughput */ priv->et_coalesce.rx_coalesce_usecs = 500; priv->et_coalesce.rx_max_coalesced_frames = 8; priv->et_coalesce.tx_coalesce_usecs = 500; priv->et_coalesce.tx_max_coalesced_frames = 8; ret = device_property_read_u32(&pdev->dev, "max-frame-size", &ndev->max_mtu); if (ret < 0) ndev->max_mtu = ETH_DATA_LEN; /* runtime_pm coverage just for probe, open/close also cover it */ pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); hw_ver = netsec_read(priv, NETSEC_REG_F_TAIKI_VER); /* this driver only supports F_TAIKI style NETSEC */ if (NETSEC_F_NETSEC_VER_MAJOR_NUM(hw_ver) != NETSEC_F_NETSEC_VER_MAJOR_NUM(NETSEC_REG_NETSEC_VER_F_TAIKI)) { ret = -ENODEV; goto pm_disable; } dev_info(&pdev->dev, "hardware revision %d.%d\n", hw_ver >> 16, hw_ver & 0xffff); netif_napi_add(ndev, &priv->napi, netsec_napi_poll, NAPI_POLL_WEIGHT); ndev->netdev_ops = &netsec_netdev_ops; ndev->ethtool_ops = &netsec_ethtool_ops; ndev->features |= NETIF_F_HIGHDMA | NETIF_F_RXCSUM | NETIF_F_GSO | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; ndev->hw_features = ndev->features; priv->rx_cksum_offload_flag = true; ret = netsec_register_mdio(priv, phy_addr); if (ret) goto unreg_napi; if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40))) dev_warn(&pdev->dev, "Failed to set DMA mask\n"); ret = register_netdev(ndev); if (ret) { netif_err(priv, probe, ndev, "register_netdev() failed\n"); goto unreg_mii; } pm_runtime_put_sync(&pdev->dev); return 0; unreg_mii: netsec_unregister_mdio(priv); unreg_napi: netif_napi_del(&priv->napi); pm_disable: pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); free_ndev: free_netdev(ndev); dev_err(&pdev->dev, "init failed\n"); return ret; } static int netsec_remove(struct platform_device *pdev) { struct netsec_priv *priv = platform_get_drvdata(pdev); unregister_netdev(priv->ndev); netsec_unregister_mdio(priv); netif_napi_del(&priv->napi); pm_runtime_disable(&pdev->dev); free_netdev(priv->ndev); return 0; } #ifdef CONFIG_PM static int netsec_runtime_suspend(struct device *dev) { struct netsec_priv *priv = dev_get_drvdata(dev); netsec_write(priv, NETSEC_REG_CLK_EN, 0); clk_disable_unprepare(priv->clk); return 0; } static int netsec_runtime_resume(struct device *dev) { struct netsec_priv *priv = dev_get_drvdata(dev); clk_prepare_enable(priv->clk); netsec_write(priv, NETSEC_REG_CLK_EN, NETSEC_CLK_EN_REG_DOM_D | NETSEC_CLK_EN_REG_DOM_C | NETSEC_CLK_EN_REG_DOM_G); return 0; } #endif static const struct dev_pm_ops netsec_pm_ops = { SET_RUNTIME_PM_OPS(netsec_runtime_suspend, netsec_runtime_resume, NULL) }; static const struct of_device_id netsec_dt_ids[] = { { .compatible = "socionext,synquacer-netsec" }, { } }; MODULE_DEVICE_TABLE(of, netsec_dt_ids); #ifdef CONFIG_ACPI static const struct acpi_device_id netsec_acpi_ids[] = { { "SCX0001" }, { } }; MODULE_DEVICE_TABLE(acpi, netsec_acpi_ids); #endif static struct platform_driver netsec_driver = { .probe = netsec_probe, .remove = netsec_remove, .driver = { .name = "netsec", .pm = &netsec_pm_ops, .of_match_table = netsec_dt_ids, .acpi_match_table = ACPI_PTR(netsec_acpi_ids), }, }; module_platform_driver(netsec_driver); MODULE_AUTHOR("Jassi Brar <jaswinder.singh@linaro.org>"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_DESCRIPTION("NETSEC Ethernet driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1