Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zefir Kurtisi | 1247 | 68.40% | 8 | 30.77% |
Janusz Dziedzic | 387 | 21.23% | 6 | 23.08% |
Peter Oh | 156 | 8.56% | 6 | 23.08% |
Sriram R | 27 | 1.48% | 2 | 7.69% |
Vivek Natarajan | 2 | 0.11% | 1 | 3.85% |
Anilkumar Kolli | 2 | 0.11% | 1 | 3.85% |
Masahiro Yamada | 1 | 0.05% | 1 | 3.85% |
Julia Lawall | 1 | 0.05% | 1 | 3.85% |
Total | 1823 | 26 |
/* * Copyright (c) 2012 Neratec Solutions AG * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/slab.h> #include <linux/export.h> #include "dfs_pattern_detector.h" #include "dfs_pri_detector.h" #include "ath.h" /** * struct radar_types - contains array of patterns defined for one DFS domain * @domain: DFS regulatory domain * @num_radar_types: number of radar types to follow * @radar_types: radar types array */ struct radar_types { enum nl80211_dfs_regions region; u32 num_radar_types; const struct radar_detector_specs *radar_types; }; /* percentage on ppb threshold to trigger detection */ #define MIN_PPB_THRESH 50 #define PPB_THRESH_RATE(PPB, RATE) ((PPB * RATE + 100 - RATE) / 100) #define PPB_THRESH(PPB) PPB_THRESH_RATE(PPB, MIN_PPB_THRESH) #define PRF2PRI(PRF) ((1000000 + PRF / 2) / PRF) /* percentage of pulse width tolerance */ #define WIDTH_TOLERANCE 5 #define WIDTH_LOWER(X) ((X*(100-WIDTH_TOLERANCE)+50)/100) #define WIDTH_UPPER(X) ((X*(100+WIDTH_TOLERANCE)+50)/100) #define ETSI_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \ { \ ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ (PRF2PRI(PMAX) - PRI_TOLERANCE), \ (PRF2PRI(PMIN) * PRF + PRI_TOLERANCE), PRF, PPB * PRF, \ PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \ } /* radar types as defined by ETSI EN-301-893 v1.5.1 */ static const struct radar_detector_specs etsi_radar_ref_types_v15[] = { ETSI_PATTERN(0, 0, 1, 700, 700, 1, 18, false), ETSI_PATTERN(1, 0, 5, 200, 1000, 1, 10, false), ETSI_PATTERN(2, 0, 15, 200, 1600, 1, 15, false), ETSI_PATTERN(3, 0, 15, 2300, 4000, 1, 25, false), ETSI_PATTERN(4, 20, 30, 2000, 4000, 1, 20, false), ETSI_PATTERN(5, 0, 2, 300, 400, 3, 10, false), ETSI_PATTERN(6, 0, 2, 400, 1200, 3, 15, false), }; static const struct radar_types etsi_radar_types_v15 = { .region = NL80211_DFS_ETSI, .num_radar_types = ARRAY_SIZE(etsi_radar_ref_types_v15), .radar_types = etsi_radar_ref_types_v15, }; #define FCC_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \ { \ ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ PMIN - PRI_TOLERANCE, \ PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \ PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \ } /* radar types released on August 14, 2014 * type 1 PRI values randomly selected within the range of 518 and 3066. * divide it to 3 groups is good enough for both of radar detection and * avoiding false detection based on practical test results * collected for more than a year. */ static const struct radar_detector_specs fcc_radar_ref_types[] = { FCC_PATTERN(0, 0, 1, 1428, 1428, 1, 18, false), FCC_PATTERN(101, 0, 1, 518, 938, 1, 57, false), FCC_PATTERN(102, 0, 1, 938, 2000, 1, 27, false), FCC_PATTERN(103, 0, 1, 2000, 3066, 1, 18, false), FCC_PATTERN(2, 0, 5, 150, 230, 1, 23, false), FCC_PATTERN(3, 6, 10, 200, 500, 1, 16, false), FCC_PATTERN(4, 11, 20, 200, 500, 1, 12, false), FCC_PATTERN(5, 50, 100, 1000, 2000, 1, 1, true), FCC_PATTERN(6, 0, 1, 333, 333, 1, 9, false), }; static const struct radar_types fcc_radar_types = { .region = NL80211_DFS_FCC, .num_radar_types = ARRAY_SIZE(fcc_radar_ref_types), .radar_types = fcc_radar_ref_types, }; #define JP_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, RATE, CHIRP) \ { \ ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \ PMIN - PRI_TOLERANCE, \ PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \ PPB_THRESH_RATE(PPB, RATE), PRI_TOLERANCE, CHIRP \ } static const struct radar_detector_specs jp_radar_ref_types[] = { JP_PATTERN(0, 0, 1, 1428, 1428, 1, 18, 29, false), JP_PATTERN(1, 2, 3, 3846, 3846, 1, 18, 29, false), JP_PATTERN(2, 0, 1, 1388, 1388, 1, 18, 50, false), JP_PATTERN(3, 0, 4, 4000, 4000, 1, 18, 50, false), JP_PATTERN(4, 0, 5, 150, 230, 1, 23, 50, false), JP_PATTERN(5, 6, 10, 200, 500, 1, 16, 50, false), JP_PATTERN(6, 11, 20, 200, 500, 1, 12, 50, false), JP_PATTERN(7, 50, 100, 1000, 2000, 1, 3, 50, true), JP_PATTERN(5, 0, 1, 333, 333, 1, 9, 50, false), }; static const struct radar_types jp_radar_types = { .region = NL80211_DFS_JP, .num_radar_types = ARRAY_SIZE(jp_radar_ref_types), .radar_types = jp_radar_ref_types, }; static const struct radar_types *dfs_domains[] = { &etsi_radar_types_v15, &fcc_radar_types, &jp_radar_types, }; /** * get_dfs_domain_radar_types() - get radar types for a given DFS domain * @param domain DFS domain * @return radar_types ptr on success, NULL if DFS domain is not supported */ static const struct radar_types * get_dfs_domain_radar_types(enum nl80211_dfs_regions region) { u32 i; for (i = 0; i < ARRAY_SIZE(dfs_domains); i++) { if (dfs_domains[i]->region == region) return dfs_domains[i]; } return NULL; } /** * struct channel_detector - detector elements for a DFS channel * @head: list_head * @freq: frequency for this channel detector in MHz * @detectors: array of dynamically created detector elements for this freq * * Channel detectors are required to provide multi-channel DFS detection, e.g. * to support off-channel scanning. A pattern detector has a list of channels * radar pulses have been reported for in the past. */ struct channel_detector { struct list_head head; u16 freq; struct pri_detector **detectors; }; /* channel_detector_reset() - reset detector lines for a given channel */ static void channel_detector_reset(struct dfs_pattern_detector *dpd, struct channel_detector *cd) { u32 i; if (cd == NULL) return; for (i = 0; i < dpd->num_radar_types; i++) cd->detectors[i]->reset(cd->detectors[i], dpd->last_pulse_ts); } /* channel_detector_exit() - destructor */ static void channel_detector_exit(struct dfs_pattern_detector *dpd, struct channel_detector *cd) { u32 i; if (cd == NULL) return; list_del(&cd->head); for (i = 0; i < dpd->num_radar_types; i++) { struct pri_detector *de = cd->detectors[i]; if (de != NULL) de->exit(de); } kfree(cd->detectors); kfree(cd); } static struct channel_detector * channel_detector_create(struct dfs_pattern_detector *dpd, u16 freq) { u32 sz, i; struct channel_detector *cd; cd = kmalloc(sizeof(*cd), GFP_ATOMIC); if (cd == NULL) goto fail; INIT_LIST_HEAD(&cd->head); cd->freq = freq; sz = sizeof(cd->detectors) * dpd->num_radar_types; cd->detectors = kzalloc(sz, GFP_ATOMIC); if (cd->detectors == NULL) goto fail; for (i = 0; i < dpd->num_radar_types; i++) { const struct radar_detector_specs *rs = &dpd->radar_spec[i]; struct pri_detector *de = pri_detector_init(rs); if (de == NULL) goto fail; cd->detectors[i] = de; } list_add(&cd->head, &dpd->channel_detectors); return cd; fail: ath_dbg(dpd->common, DFS, "failed to allocate channel_detector for freq=%d\n", freq); channel_detector_exit(dpd, cd); return NULL; } /** * channel_detector_get() - get channel detector for given frequency * @param dpd instance pointer * @param freq frequency in MHz * @return pointer to channel detector on success, NULL otherwise * * Return existing channel detector for the given frequency or return a * newly create one. */ static struct channel_detector * channel_detector_get(struct dfs_pattern_detector *dpd, u16 freq) { struct channel_detector *cd; list_for_each_entry(cd, &dpd->channel_detectors, head) { if (cd->freq == freq) return cd; } return channel_detector_create(dpd, freq); } /* * DFS Pattern Detector */ /* dpd_reset(): reset all channel detectors */ static void dpd_reset(struct dfs_pattern_detector *dpd) { struct channel_detector *cd; if (!list_empty(&dpd->channel_detectors)) list_for_each_entry(cd, &dpd->channel_detectors, head) channel_detector_reset(dpd, cd); } static void dpd_exit(struct dfs_pattern_detector *dpd) { struct channel_detector *cd, *cd0; if (!list_empty(&dpd->channel_detectors)) list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) channel_detector_exit(dpd, cd); kfree(dpd); } static bool dpd_add_pulse(struct dfs_pattern_detector *dpd, struct pulse_event *event, struct radar_detector_specs *rs) { u32 i; struct channel_detector *cd; /* * pulses received for a non-supported or un-initialized * domain are treated as detected radars for fail-safety */ if (dpd->region == NL80211_DFS_UNSET) return true; cd = channel_detector_get(dpd, event->freq); if (cd == NULL) return false; /* reset detector on time stamp wraparound, caused by TSF reset */ if (event->ts < dpd->last_pulse_ts) dpd_reset(dpd); dpd->last_pulse_ts = event->ts; /* do type individual pattern matching */ for (i = 0; i < dpd->num_radar_types; i++) { struct pri_detector *pd = cd->detectors[i]; struct pri_sequence *ps = pd->add_pulse(pd, event); if (ps != NULL) { if (rs != NULL) memcpy(rs, pd->rs, sizeof(*rs)); ath_dbg(dpd->common, DFS, "DFS: radar found on freq=%d: id=%d, pri=%d, " "count=%d, count_false=%d\n", event->freq, pd->rs->type_id, ps->pri, ps->count, ps->count_falses); pd->reset(pd, dpd->last_pulse_ts); return true; } } return false; } static struct ath_dfs_pool_stats dpd_get_stats(struct dfs_pattern_detector *dpd) { return global_dfs_pool_stats; } static bool dpd_set_domain(struct dfs_pattern_detector *dpd, enum nl80211_dfs_regions region) { const struct radar_types *rt; struct channel_detector *cd, *cd0; if (dpd->region == region) return true; dpd->region = NL80211_DFS_UNSET; rt = get_dfs_domain_radar_types(region); if (rt == NULL) return false; /* delete all channel detectors for previous DFS domain */ if (!list_empty(&dpd->channel_detectors)) list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) channel_detector_exit(dpd, cd); dpd->radar_spec = rt->radar_types; dpd->num_radar_types = rt->num_radar_types; dpd->region = region; return true; } static const struct dfs_pattern_detector default_dpd = { .exit = dpd_exit, .set_dfs_domain = dpd_set_domain, .add_pulse = dpd_add_pulse, .get_stats = dpd_get_stats, .region = NL80211_DFS_UNSET, }; struct dfs_pattern_detector * dfs_pattern_detector_init(struct ath_common *common, enum nl80211_dfs_regions region) { struct dfs_pattern_detector *dpd; if (!IS_ENABLED(CONFIG_CFG80211_CERTIFICATION_ONUS)) return NULL; dpd = kmalloc(sizeof(*dpd), GFP_KERNEL); if (dpd == NULL) return NULL; *dpd = default_dpd; INIT_LIST_HEAD(&dpd->channel_detectors); dpd->common = common; if (dpd->set_dfs_domain(dpd, region)) return dpd; ath_dbg(common, DFS,"Could not set DFS domain to %d", region); kfree(dpd); return NULL; } EXPORT_SYMBOL(dfs_pattern_detector_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1