Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Kondratiev | 3340 | 37.52% | 65 | 40.12% |
Maya Erez | 2127 | 23.89% | 31 | 19.14% |
Lior David | 1424 | 15.99% | 18 | 11.11% |
Ahmad Masri | 739 | 8.30% | 7 | 4.32% |
Dedy Lansky | 703 | 7.90% | 16 | 9.88% |
Gidon Studinski | 289 | 3.25% | 4 | 2.47% |
Lazar Alexei | 128 | 1.44% | 4 | 2.47% |
Hamad Kadmany | 81 | 0.91% | 6 | 3.70% |
Alexei Avshalom Lazar | 53 | 0.60% | 5 | 3.09% |
Colin Ian King | 7 | 0.08% | 2 | 1.23% |
Vladimir Shulman | 4 | 0.04% | 1 | 0.62% |
Johannes Berg | 4 | 0.04% | 1 | 0.62% |
Wolfram Sang | 2 | 0.02% | 1 | 0.62% |
Luis R. Rodriguez | 2 | 0.02% | 1 | 0.62% |
Total | 8903 | 162 |
/* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/moduleparam.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include "wil6210.h" #include "txrx.h" #include "txrx_edma.h" #include "wmi.h" #include "boot_loader.h" #define WAIT_FOR_HALP_VOTE_MS 100 #define WAIT_FOR_SCAN_ABORT_MS 1000 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1 #define WIL_BOARD_FILE_MAX_NAMELEN 128 bool debug_fw; /* = false; */ module_param(debug_fw, bool, 0444); MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug"); static u8 oob_mode; module_param(oob_mode, byte, 0444); MODULE_PARM_DESC(oob_mode, " enable out of the box (OOB) mode in FW, for diagnostics and certification"); bool no_fw_recovery; module_param(no_fw_recovery, bool, 0644); MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery"); /* if not set via modparam, will be set to default value of 1/8 of * rx ring size during init flow */ unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT; module_param(rx_ring_overflow_thrsh, ushort, 0444); MODULE_PARM_DESC(rx_ring_overflow_thrsh, " RX ring overflow threshold in descriptors."); /* We allow allocation of more than 1 page buffers to support large packets. * It is suboptimal behavior performance wise in case MTU above page size. */ unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; static int mtu_max_set(const char *val, const struct kernel_param *kp) { int ret; /* sets mtu_max directly. no need to restore it in case of * illegal value since we assume this will fail insmod */ ret = param_set_uint(val, kp); if (ret) return ret; if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU) ret = -EINVAL; return ret; } static const struct kernel_param_ops mtu_max_ops = { .set = mtu_max_set, .get = param_get_uint, }; module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444); MODULE_PARM_DESC(mtu_max, " Max MTU value."); static uint rx_ring_order; static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT; static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT; static int ring_order_set(const char *val, const struct kernel_param *kp) { int ret; uint x; ret = kstrtouint(val, 0, &x); if (ret) return ret; if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX)) return -EINVAL; *((uint *)kp->arg) = x; return 0; } static const struct kernel_param_ops ring_order_ops = { .set = ring_order_set, .get = param_get_uint, }; module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444); MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order"); module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444); MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order"); module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444); MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order"); enum { WIL_BOOT_ERR, WIL_BOOT_VANILLA, WIL_BOOT_PRODUCTION, WIL_BOOT_DEVELOPMENT, }; enum { WIL_SIG_STATUS_VANILLA = 0x0, WIL_SIG_STATUS_DEVELOPMENT = 0x1, WIL_SIG_STATUS_PRODUCTION = 0x2, WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3, }; #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */ #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */ #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */ #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */ /* round up to be above 2 ms total */ #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY) /* * Due to a hardware issue, * one has to read/write to/from NIC in 32-bit chunks; * regular memcpy_fromio and siblings will * not work on 64-bit platform - it uses 64-bit transactions * * Force 32-bit transactions to enable NIC on 64-bit platforms * * To avoid byte swap on big endian host, __raw_{read|write}l * should be used - {read|write}l would swap bytes to provide * little endian on PCI value in host endianness. */ void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src, size_t count) { u32 *d = dst; const volatile u32 __iomem *s = src; for (; count >= 4; count -= 4) *d++ = __raw_readl(s++); if (unlikely(count)) { /* count can be 1..3 */ u32 tmp = __raw_readl(s); memcpy(d, &tmp, count); } } void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src, size_t count) { volatile u32 __iomem *d = dst; const u32 *s = src; for (; count >= 4; count -= 4) __raw_writel(*s++, d++); if (unlikely(count)) { /* count can be 1..3 */ u32 tmp = 0; memcpy(&tmp, s, count); __raw_writel(tmp, d); } } /* Device memory access is prohibited while reset or suspend. * wil_mem_access_lock protects accessing device memory in these cases */ int wil_mem_access_lock(struct wil6210_priv *wil) { if (!down_read_trylock(&wil->mem_lock)) return -EBUSY; if (test_bit(wil_status_suspending, wil->status) || test_bit(wil_status_suspended, wil->status)) { up_read(&wil->mem_lock); return -EBUSY; } return 0; } void wil_mem_access_unlock(struct wil6210_priv *wil) { up_read(&wil->mem_lock); } static void wil_ring_fini_tx(struct wil6210_priv *wil, int id) { struct wil_ring *ring = &wil->ring_tx[id]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; lockdep_assert_held(&wil->mutex); if (!ring->va) return; wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id); spin_lock_bh(&txdata->lock); txdata->dot1x_open = false; txdata->mid = U8_MAX; txdata->enabled = 0; /* no Tx can be in progress or start anew */ spin_unlock_bh(&txdata->lock); /* napi_synchronize waits for completion of the current NAPI but will * not prevent the next NAPI run. * Add a memory barrier to guarantee that txdata->enabled is zeroed * before napi_synchronize so that the next scheduled NAPI will not * handle this vring */ wmb(); /* make sure NAPI won't touch this vring */ if (test_bit(wil_status_napi_en, wil->status)) napi_synchronize(&wil->napi_tx); wil->txrx_ops.ring_fini_tx(wil, ring); } static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid) { int i; for (i = 0; i < wil->max_assoc_sta; i++) { if (wil->sta[i].mid == mid && wil->sta[i].status == wil_sta_connected) return true; } return false; } static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid, u16 reason_code) __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) { uint i; struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct wireless_dev *wdev = vif_to_wdev(vif); struct wil_sta_info *sta = &wil->sta[cid]; int min_ring_id = wil_get_min_tx_ring_id(wil); might_sleep(); wil_dbg_misc(wil, "disconnect_cid_complete: CID %d, MID %d, status %d\n", cid, sta->mid, sta->status); /* inform upper layers */ if (sta->status != wil_sta_unused) { if (vif->mid != sta->mid) { wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid); } switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: /* AP-like interface */ cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL); break; default: break; } sta->status = wil_sta_unused; sta->mid = U8_MAX; } /* reorder buffers */ for (i = 0; i < WIL_STA_TID_NUM; i++) { struct wil_tid_ampdu_rx *r; spin_lock_bh(&sta->tid_rx_lock); r = sta->tid_rx[i]; sta->tid_rx[i] = NULL; wil_tid_ampdu_rx_free(wil, r); spin_unlock_bh(&sta->tid_rx_lock); } /* crypto context */ memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx)); memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx)); /* release vrings */ for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) { if (wil->ring2cid_tid[i][0] == cid) wil_ring_fini_tx(wil, i); } /* statistics */ memset(&sta->stats, 0, sizeof(sta->stats)); sta->stats.tx_latency_min_us = U32_MAX; } static void _wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid, u16 reason_code) { struct wil6210_priv *wil = vif_to_wil(vif); int cid = -ENOENT; struct net_device *ndev; struct wireless_dev *wdev; ndev = vif_to_ndev(vif); wdev = vif_to_wdev(vif); might_sleep(); wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n", bssid, reason_code); /* Cases are: * - disconnect single STA, still connected * - disconnect single STA, already disconnected * - disconnect all * * For "disconnect all", there are 3 options: * - bssid == NULL * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) * - bssid is our MAC address */ if (bssid && !is_broadcast_ether_addr(bssid) && !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { cid = wil_find_cid(wil, vif->mid, bssid); wil_dbg_misc(wil, "Disconnect complete %pM, CID=%d, reason=%d\n", bssid, cid, reason_code); if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */ wil_disconnect_cid_complete(vif, cid, reason_code); } else { /* all */ wil_dbg_misc(wil, "Disconnect complete all\n"); for (cid = 0; cid < wil->max_assoc_sta; cid++) wil_disconnect_cid_complete(vif, cid, reason_code); } /* link state */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: wil_bcast_fini(vif); wil_update_net_queues_bh(wil, vif, NULL, true); netif_carrier_off(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) { atomic_dec(&wil->connected_vifs); cfg80211_disconnected(ndev, reason_code, NULL, 0, vif->locally_generated_disc, GFP_KERNEL); vif->locally_generated_disc = false; } else if (test_bit(wil_vif_fwconnecting, vif->status)) { cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); vif->bss = NULL; } clear_bit(wil_vif_fwconnecting, vif->status); clear_bit(wil_vif_ft_roam, vif->status); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (!wil_vif_is_connected(wil, vif->mid)) { wil_update_net_queues_bh(wil, vif, NULL, true); if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) atomic_dec(&wil->connected_vifs); } else { wil_update_net_queues_bh(wil, vif, NULL, false); } break; default: break; } } static int wil_disconnect_cid(struct wil6210_vif *vif, int cid, u16 reason_code) { struct wil6210_priv *wil = vif_to_wil(vif); struct wireless_dev *wdev = vif_to_wdev(vif); struct wil_sta_info *sta = &wil->sta[cid]; bool del_sta = false; might_sleep(); wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n", cid, sta->mid, sta->status); if (sta->status == wil_sta_unused) return 0; if (vif->mid != sta->mid) { wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid); return -EINVAL; } /* inform lower layers */ if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme) del_sta = true; /* disconnect by sending command disconnect/del_sta and wait * synchronously for WMI_DISCONNECT_EVENTID event. */ return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta); } static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, u16 reason_code) { struct wil6210_priv *wil; struct net_device *ndev; int cid = -ENOENT; if (unlikely(!vif)) return; wil = vif_to_wil(vif); ndev = vif_to_ndev(vif); might_sleep(); wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code); /* Cases are: * - disconnect single STA, still connected * - disconnect single STA, already disconnected * - disconnect all * * For "disconnect all", there are 3 options: * - bssid == NULL * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) * - bssid is our MAC address */ if (bssid && !is_broadcast_ether_addr(bssid) && !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { cid = wil_find_cid(wil, vif->mid, bssid); wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n", bssid, cid, reason_code); if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */ wil_disconnect_cid(vif, cid, reason_code); } else { /* all */ wil_dbg_misc(wil, "Disconnect all\n"); for (cid = 0; cid < wil->max_assoc_sta; cid++) wil_disconnect_cid(vif, cid, reason_code); } /* call event handler manually after processing wmi_call, * to avoid deadlock - disconnect event handler acquires * wil->mutex while it is already held here */ _wil6210_disconnect_complete(vif, bssid, reason_code); } void wil_disconnect_worker(struct work_struct *work) { struct wil6210_vif *vif = container_of(work, struct wil6210_vif, disconnect_worker); struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_disconnect_event evt; } __packed reply; if (test_bit(wil_vif_fwconnected, vif->status)) /* connect succeeded after all */ return; if (!test_bit(wil_vif_fwconnecting, vif->status)) /* already disconnected */ return; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0, WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), WIL6210_DISCONNECT_TO_MS); if (rc) { wil_err(wil, "disconnect error %d\n", rc); return; } wil_update_net_queues_bh(wil, vif, NULL, true); netif_carrier_off(ndev); cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); clear_bit(wil_vif_fwconnecting, vif->status); } static int wil_wait_for_recovery(struct wil6210_priv *wil) { if (wait_event_interruptible(wil->wq, wil->recovery_state != fw_recovery_pending)) { wil_err(wil, "Interrupt, canceling recovery\n"); return -ERESTARTSYS; } if (wil->recovery_state != fw_recovery_running) { wil_info(wil, "Recovery cancelled\n"); return -EINTR; } wil_info(wil, "Proceed with recovery\n"); return 0; } void wil_set_recovery_state(struct wil6210_priv *wil, int state) { wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n", wil->recovery_state, state); wil->recovery_state = state; wake_up_interruptible(&wil->wq); } bool wil_is_recovery_blocked(struct wil6210_priv *wil) { return no_fw_recovery && (wil->recovery_state == fw_recovery_pending); } static void wil_fw_error_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, fw_error_worker); struct net_device *ndev = wil->main_ndev; struct wireless_dev *wdev; wil_dbg_misc(wil, "fw error worker\n"); if (!ndev || !(ndev->flags & IFF_UP)) { wil_info(wil, "No recovery - interface is down\n"); return; } wdev = ndev->ieee80211_ptr; /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO * passed since last recovery attempt */ if (time_is_after_jiffies(wil->last_fw_recovery + WIL6210_FW_RECOVERY_TO)) wil->recovery_count++; else wil->recovery_count = 1; /* fw was alive for a long time */ if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) { wil_err(wil, "too many recovery attempts (%d), giving up\n", wil->recovery_count); return; } wil->last_fw_recovery = jiffies; wil_info(wil, "fw error recovery requested (try %d)...\n", wil->recovery_count); if (!no_fw_recovery) wil->recovery_state = fw_recovery_running; if (wil_wait_for_recovery(wil) != 0) return; rtnl_lock(); mutex_lock(&wil->mutex); /* Needs adaptation for multiple VIFs * need to go over all VIFs and consider the appropriate * recovery because each one can have different iftype. */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: /* silent recovery, upper layers will see disconnect */ __wil_down(wil); __wil_up(wil); break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (no_fw_recovery) /* upper layers do recovery */ break; /* silent recovery, upper layers will see disconnect */ __wil_down(wil); __wil_up(wil); mutex_unlock(&wil->mutex); wil_cfg80211_ap_recovery(wil); mutex_lock(&wil->mutex); wil_info(wil, "... completed\n"); break; default: wil_err(wil, "No recovery - unknown interface type %d\n", wdev->iftype); break; } mutex_unlock(&wil->mutex); rtnl_unlock(); } static int wil_find_free_ring(struct wil6210_priv *wil) { int i; int min_ring_id = wil_get_min_tx_ring_id(wil); for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { if (!wil->ring_tx[i].va) return i; } return -EINVAL; } int wil_ring_init_tx(struct wil6210_vif *vif, int cid) { struct wil6210_priv *wil = vif_to_wil(vif); int rc = -EINVAL, ringid; if (cid < 0) { wil_err(wil, "No connection pending\n"); goto out; } ringid = wil_find_free_ring(wil); if (ringid < 0) { wil_err(wil, "No free vring found\n"); goto out; } wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n", cid, vif->mid, ringid); rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order, cid, 0); if (rc) wil_err(wil, "init TX for CID %d MID %d vring %d failed\n", cid, vif->mid, ringid); out: return rc; } int wil_bcast_init(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int ri = vif->bcast_ring, rc; if (ri >= 0 && wil->ring_tx[ri].va) return 0; ri = wil_find_free_ring(wil); if (ri < 0) return ri; vif->bcast_ring = ri; rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order); if (rc) vif->bcast_ring = -1; return rc; } void wil_bcast_fini(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int ri = vif->bcast_ring; if (ri < 0) return; vif->bcast_ring = -1; wil_ring_fini_tx(wil, ri); } void wil_bcast_fini_all(struct wil6210_priv *wil) { int i; struct wil6210_vif *vif; for (i = 0; i < GET_MAX_VIFS(wil); i++) { vif = wil->vifs[i]; if (vif) wil_bcast_fini(vif); } } int wil_priv_init(struct wil6210_priv *wil) { uint i; wil_dbg_misc(wil, "priv_init\n"); memset(wil->sta, 0, sizeof(wil->sta)); for (i = 0; i < WIL6210_MAX_CID; i++) { spin_lock_init(&wil->sta[i].tid_rx_lock); wil->sta[i].mid = U8_MAX; } for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { spin_lock_init(&wil->ring_tx_data[i].lock); wil->ring2cid_tid[i][0] = WIL6210_MAX_CID; } mutex_init(&wil->mutex); mutex_init(&wil->vif_mutex); mutex_init(&wil->wmi_mutex); mutex_init(&wil->halp.lock); init_completion(&wil->wmi_ready); init_completion(&wil->wmi_call); init_completion(&wil->halp.comp); INIT_WORK(&wil->wmi_event_worker, wmi_event_worker); INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker); INIT_LIST_HEAD(&wil->pending_wmi_ev); spin_lock_init(&wil->wmi_ev_lock); spin_lock_init(&wil->net_queue_lock); init_waitqueue_head(&wil->wq); init_rwsem(&wil->mem_lock); wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi"); if (!wil->wmi_wq) return -EAGAIN; wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service"); if (!wil->wq_service) goto out_wmi_wq; wil->last_fw_recovery = jiffies; wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT; wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT; wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT; wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT; if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT) rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT; wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST | WMI_WAKEUP_TRIGGER_BCAST; memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats)); wil->ring_idle_trsh = 16; wil->reply_mid = U8_MAX; wil->max_vifs = 1; wil->max_assoc_sta = max_assoc_sta; /* edma configuration can be updated via debugfs before allocation */ wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS; wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT; /* Rx status ring size should be bigger than the number of RX buffers * in order to prevent backpressure on the status ring, which may * cause HW freeze. */ wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT; /* Number of RX buffer IDs should be bigger than the RX descriptor * ring size as in HW reorder flow, the HW can consume additional * buffers before releasing the previous ones. */ wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT; wil->amsdu_en = 1; return 0; out_wmi_wq: destroy_workqueue(wil->wmi_wq); return -EAGAIN; } void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps) { if (wil->platform_ops.bus_request) { wil->bus_request_kbps = kbps; wil->platform_ops.bus_request(wil->platform_handle, kbps); } } /** * wil6210_disconnect - disconnect one connection * @vif: virtual interface context * @bssid: peer to disconnect, NULL to disconnect all * @reason_code: Reason code for the Disassociation frame * * Disconnect and release associated resources. Issue WMI * command(s) to trigger MAC disconnect. When command was issued * successfully, call the wil6210_disconnect_complete function * to handle the event synchronously */ void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, u16 reason_code) { struct wil6210_priv *wil = vif_to_wil(vif); wil_dbg_misc(wil, "disconnecting\n"); del_timer_sync(&vif->connect_timer); _wil6210_disconnect(vif, bssid, reason_code); } /** * wil6210_disconnect_complete - handle disconnect event * @vif: virtual interface context * @bssid: peer to disconnect, NULL to disconnect all * @reason_code: Reason code for the Disassociation frame * * Release associated resources and indicate upper layers the * connection is terminated. */ void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid, u16 reason_code) { struct wil6210_priv *wil = vif_to_wil(vif); wil_dbg_misc(wil, "got disconnect\n"); del_timer_sync(&vif->connect_timer); _wil6210_disconnect_complete(vif, bssid, reason_code); } void wil_priv_deinit(struct wil6210_priv *wil) { wil_dbg_misc(wil, "priv_deinit\n"); wil_set_recovery_state(wil, fw_recovery_idle); cancel_work_sync(&wil->fw_error_worker); wmi_event_flush(wil); destroy_workqueue(wil->wq_service); destroy_workqueue(wil->wmi_wq); kfree(wil->brd_info); } static void wil_shutdown_bl(struct wil6210_priv *wil) { u32 val; wil_s(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD); usleep_range(100, 150); val = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake)); if (val & BL_SHUTDOWN_HS_RTD) { wil_dbg_misc(wil, "BL is ready for halt\n"); return; } wil_err(wil, "BL did not report ready for halt\n"); } /* this format is used by ARC embedded CPU for instruction memory */ static inline u32 ARC_me_imm32(u32 d) { return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16); } /* defines access to interrupt vectors for wil_freeze_bl */ #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8) /* ARC long jump instruction */ #define ARC_JAL_INST (0x20200f80) static void wil_freeze_bl(struct wil6210_priv *wil) { u32 jal, upc, saved; u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3); jal = wil_r(wil, wil->iccm_base + ivt3); if (jal != ARC_me_imm32(ARC_JAL_INST)) { wil_dbg_misc(wil, "invalid IVT entry found, skipping\n"); return; } /* prevent the target from entering deep sleep * and disabling memory access */ saved = wil_r(wil, RGF_USER_USAGE_8); wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP); usleep_range(20, 25); /* let the BL process the bit */ /* redirect to endless loop in the INT_L1 context and let it trap */ wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3)); usleep_range(20, 25); /* let the BL get into the trap */ /* verify the BL is frozen */ upc = wil_r(wil, RGF_USER_CPU_PC); if (upc < ivt3 || (upc > (ivt3 + 8))) wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc); wil_w(wil, RGF_USER_USAGE_8, saved); } static void wil_bl_prepare_halt(struct wil6210_priv *wil) { u32 tmp, ver; /* before halting device CPU driver must make sure BL is not accessing * host memory. This is done differently depending on BL version: * 1. For very old BL versions the procedure is skipped * (not supported). * 2. For old BL version we use a special trick to freeze the BL * 3. For new BL versions we shutdown the BL using handshake procedure. */ tmp = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_struct_version)); if (!tmp) { wil_dbg_misc(wil, "old BL, skipping halt preparation\n"); return; } tmp = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake)); ver = BL_SHUTDOWN_HS_PROT_VER(tmp); if (ver > 0) wil_shutdown_bl(wil); else wil_freeze_bl(wil); } static inline void wil_halt_cpu(struct wil6210_priv *wil) { if (wil->hw_version >= HW_VER_TALYN_MB) { wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, BIT_USER_USER_CPU_MAN_RST); wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB, BIT_USER_MAC_CPU_MAN_RST); } else { wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST); wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST); } } static inline void wil_release_cpu(struct wil6210_priv *wil) { /* Start CPU */ if (wil->hw_version >= HW_VER_TALYN_MB) wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1); else wil_w(wil, RGF_USER_USER_CPU_0, 1); } static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode) { wil_info(wil, "oob_mode to %d\n", mode); switch (mode) { case 0: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE | BIT_USER_OOB_R2_MODE); break; case 1: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); break; case 2: wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); break; default: wil_err(wil, "invalid oob_mode: %d\n", mode); } } static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash) { int delay = 0; u32 x, x1 = 0; /* wait until device ready. */ if (no_flash) { msleep(PMU_READY_DELAY_MS); wil_dbg_misc(wil, "Reset completed\n"); } else { do { msleep(RST_DELAY); x = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready)); if (x1 != x) { wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", x1, x); x1 = x; } if (delay++ > RST_COUNT) { wil_err(wil, "Reset not completed, bl.ready 0x%08x\n", x); return -ETIME; } } while (x != BL_READY); wil_dbg_misc(wil, "Reset completed in %d ms\n", delay * RST_DELAY); } return 0; } static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil) { u32 otp_hw; u8 signature_status; bool otp_signature_err; bool hw_section_done; u32 otp_qc_secured; int delay = 0; /* Wait for OTP signature test to complete */ usleep_range(2000, 2200); wil->boot_config = WIL_BOOT_ERR; /* Poll until OTP signature status is valid. * In vanilla and development modes, when signature test is complete * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB. * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll * for signature status change to 2 or 3. */ do { otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); signature_status = WIL_GET_BITS(otp_hw, 8, 9); otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB; if (otp_signature_err && signature_status == WIL_SIG_STATUS_VANILLA) { wil->boot_config = WIL_BOOT_VANILLA; break; } if (otp_signature_err && signature_status == WIL_SIG_STATUS_DEVELOPMENT) { wil->boot_config = WIL_BOOT_DEVELOPMENT; break; } if (!otp_signature_err && signature_status == WIL_SIG_STATUS_PRODUCTION) { wil->boot_config = WIL_BOOT_PRODUCTION; break; } if (!otp_signature_err && signature_status == WIL_SIG_STATUS_CORRUPTED_PRODUCTION) { /* Unrecognized OTP signature found. Possibly a * corrupted production signature, access control * is applied as in production mode, therefore * do not fail */ wil->boot_config = WIL_BOOT_PRODUCTION; break; } if (delay++ > OTP_HW_COUNT) break; usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10); } while (!otp_signature_err && signature_status == 0); if (wil->boot_config == WIL_BOOT_ERR) { wil_err(wil, "invalid boot config, signature_status %d otp_signature_err %d\n", signature_status, otp_signature_err); return -ETIME; } wil_dbg_misc(wil, "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n", delay * OTP_HW_DELAY, otp_hw, wil->boot_config); if (wil->boot_config == WIL_BOOT_VANILLA) /* Assuming not SPI boot (currently not supported) */ goto out; hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; delay = 0; while (!hw_section_done) { msleep(RST_DELAY); otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; if (delay++ > RST_COUNT) { wil_err(wil, "TO waiting for hw_section_done\n"); return -ETIME; } } wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY); otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED); wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0; wil_dbg_misc(wil, "secured boot is %sabled\n", wil->secured_boot ? "en" : "dis"); out: wil_dbg_misc(wil, "Reset completed\n"); return 0; } static int wil_target_reset(struct wil6210_priv *wil, int no_flash) { u32 x; int rc; wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name); if (wil->hw_version < HW_VER_TALYN) { /* Clear MAC link up */ wil_s(wil, RGF_HP_CTRL, BIT(15)); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD); wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST); } wil_halt_cpu(wil); if (!no_flash) { /* clear all boot loader "ready" bits */ wil_w(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_ready), 0); /* this should be safe to write even with old BLs */ wil_w(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_shutdown_handshake), 0); } /* Clear Fw Download notification */ wil_c(wil, RGF_USER_USAGE_6, BIT(0)); wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN); /* XTAL stabilization should take about 3ms */ usleep_range(5000, 7000); x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS); if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) { wil_err(wil, "Xtal stabilization timeout\n" "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x); return -ETIME; } /* switch 10k to XTAL*/ wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF); /* 40 MHz */ wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf); if (wil->hw_version >= HW_VER_TALYN_MB) { wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); } else { wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); } wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003); /* reset A2 PCIE AHB */ wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000); wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); if (wil->hw_version == HW_VER_TALYN_MB) rc = wil_wait_device_ready_talyn_mb(wil); else rc = wil_wait_device_ready(wil, no_flash); if (rc) return rc; wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD); /* enable fix for HW bug related to the SA/DA swap in AP Rx */ wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN | BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC); if (wil->hw_version < HW_VER_TALYN_MB && no_flash) { /* Reset OTP HW vectors to fit 40MHz */ wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001); wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001); wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57); } return 0; } static void wil_collect_fw_info(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); u8 retry_short; int rc; wil_refresh_fw_capabilities(wil); rc = wmi_get_mgmt_retry(wil, &retry_short); if (!rc) { wiphy->retry_short = retry_short; wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short); } } void wil_refresh_fw_capabilities(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); int features; wil->keep_radio_on_during_sleep = test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND, wil->platform_capa) && test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities); wil_info(wil, "keep_radio_on_during_sleep (%d)\n", wil->keep_radio_on_during_sleep); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; else wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) { wiphy->max_sched_scan_reqs = 1; wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM; wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM; wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN; wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM; } if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities)) wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX; if (wil->platform_ops.set_features) { features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL, wil->fw_capabilities) && test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) ? BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0; if (wil->n_msi == 3) features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI); wil->platform_ops.set_features(wil->platform_handle, features); } if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64, wil->fw_capabilities)) { wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64; wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128; } else { wil->max_agg_wsize = WIL_MAX_AGG_WSIZE; wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE; } update_supported_bands(wil); } void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r) { le32_to_cpus(&r->base); le16_to_cpus(&r->entry_size); le16_to_cpus(&r->size); le32_to_cpus(&r->tail); le32_to_cpus(&r->head); } /* construct actual board file name to use */ void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len) { const char *board_file; const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN : WIL_FW_NAME_TALYN; if (wil->board_file) { board_file = wil->board_file; } else { /* If specific FW file is used for Talyn, * use specific board file */ if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0) board_file = WIL_BRD_NAME_TALYN; else board_file = WIL_BOARD_FILE_NAME; } strlcpy(buf, board_file, len); } static int wil_get_bl_info(struct wil6210_priv *wil) { struct net_device *ndev = wil->main_ndev; struct wiphy *wiphy = wil_to_wiphy(wil); union { struct bl_dedicated_registers_v0 bl0; struct bl_dedicated_registers_v1 bl1; } bl; u32 bl_ver; u8 *mac; u16 rf_status; wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL), sizeof(bl)); bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version); mac = bl.bl0.mac_address; if (bl_ver == 0) { le32_to_cpus(&bl.bl0.rf_type); le32_to_cpus(&bl.bl0.baseband_type); rf_status = 0; /* actually, unknown */ wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n", bl_ver, mac, bl.bl0.rf_type, bl.bl0.baseband_type); wil_info(wil, "Boot Loader build unknown for struct v0\n"); } else { le16_to_cpus(&bl.bl1.rf_type); rf_status = le16_to_cpu(bl.bl1.rf_status); le32_to_cpus(&bl.bl1.baseband_type); le16_to_cpus(&bl.bl1.bl_version_subminor); le16_to_cpus(&bl.bl1.bl_version_build); wil_info(wil, "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n", bl_ver, mac, bl.bl1.rf_type, rf_status, bl.bl1.baseband_type); wil_info(wil, "Boot Loader build %d.%d.%d.%d\n", bl.bl1.bl_version_major, bl.bl1.bl_version_minor, bl.bl1.bl_version_subminor, bl.bl1.bl_version_build); } if (!is_valid_ether_addr(mac)) { wil_err(wil, "BL: Invalid MAC %pM\n", mac); return -EINVAL; } ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(wiphy->perm_addr, mac); if (!is_valid_ether_addr(ndev->dev_addr)) ether_addr_copy(ndev->dev_addr, mac); if (rf_status) {/* bad RF cable? */ wil_err(wil, "RF communication error 0x%04x", rf_status); return -EAGAIN; } return 0; } static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err) { u32 bl_assert_code, bl_assert_blink, bl_magic_number; u32 bl_ver = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v0, boot_loader_struct_version)); if (bl_ver < 2) return; bl_assert_code = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_code)); bl_assert_blink = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_assert_blink)); bl_magic_number = wil_r(wil, RGF_USER_BL + offsetof(struct bl_dedicated_registers_v1, bl_magic_number)); if (is_err) { wil_err(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } else { wil_dbg_misc(wil, "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", bl_assert_code, bl_assert_blink, bl_magic_number); } } static int wil_get_otp_info(struct wil6210_priv *wil) { struct net_device *ndev = wil->main_ndev; struct wiphy *wiphy = wil_to_wiphy(wil); u8 mac[8]; int mac_addr; /* OEM MAC has precedence */ mac_addr = RGF_OTP_OEM_MAC; wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac)); if (is_valid_ether_addr(mac)) { wil_info(wil, "using OEM MAC %pM\n", mac); } else { if (wil->hw_version >= HW_VER_TALYN_MB) mac_addr = RGF_OTP_MAC_TALYN_MB; else mac_addr = RGF_OTP_MAC; wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac)); } if (!is_valid_ether_addr(mac)) { wil_err(wil, "Invalid MAC %pM\n", mac); return -EINVAL; } ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(wiphy->perm_addr, mac); if (!is_valid_ether_addr(ndev->dev_addr)) ether_addr_copy(ndev->dev_addr, mac); return 0; } static int wil_wait_for_fw_ready(struct wil6210_priv *wil) { ulong to = msecs_to_jiffies(2000); ulong left = wait_for_completion_timeout(&wil->wmi_ready, to); if (0 == left) { wil_err(wil, "Firmware not ready\n"); return -ETIME; } else { wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n", jiffies_to_msecs(to-left), wil->hw_version); } return 0; } void wil_abort_scan(struct wil6210_vif *vif, bool sync) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct cfg80211_scan_info info = { .aborted = true, }; lockdep_assert_held(&wil->vif_mutex); if (!vif->scan_request) return; wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request); del_timer_sync(&vif->scan_timer); mutex_unlock(&wil->vif_mutex); rc = wmi_abort_scan(vif); if (!rc && sync) wait_event_interruptible_timeout(wil->wq, !vif->scan_request, msecs_to_jiffies( WAIT_FOR_SCAN_ABORT_MS)); mutex_lock(&wil->vif_mutex); if (vif->scan_request) { cfg80211_scan_done(vif->scan_request, &info); vif->scan_request = NULL; } } void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync) { int i; lockdep_assert_held(&wil->vif_mutex); for (i = 0; i < GET_MAX_VIFS(wil); i++) { struct wil6210_vif *vif = wil->vifs[i]; if (vif) wil_abort_scan(vif, sync); } } int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile) { int rc; if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) { wil_err(wil, "set_power_mgmt not supported\n"); return -EOPNOTSUPP; } rc = wmi_ps_dev_profile_cfg(wil, ps_profile); if (rc) wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc); else wil->ps_profile = ps_profile; return rc; } static void wil_pre_fw_config(struct wil6210_priv *wil) { wil_clear_fw_log_addr(wil); /* Mark FW as loaded from host */ wil_s(wil, RGF_USER_USAGE_6, 1); /* clear any interrupts which on-card-firmware * may have set */ wil6210_clear_irq(wil); /* CAF_ICR - clear and mask */ /* it is W1C, clear by writing back same value */ if (wil->hw_version < HW_VER_TALYN_MB) { wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0); wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0); } /* clear PAL_UNIT_ICR (potential D0->D3 leftover) * In Talyn-MB host cannot access this register due to * access control, hence PAL_UNIT_ICR is cleared by the FW */ if (wil->hw_version < HW_VER_TALYN_MB) wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 0); if (wil->fw_calib_result > 0) { __le32 val = cpu_to_le32(wil->fw_calib_result | (CALIB_RESULT_SIGNATURE << 8)); wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val); } } static int wil_restore_vifs(struct wil6210_priv *wil) { struct wil6210_vif *vif; struct net_device *ndev; struct wireless_dev *wdev; int i, rc; for (i = 0; i < GET_MAX_VIFS(wil); i++) { vif = wil->vifs[i]; if (!vif) continue; vif->ap_isolate = 0; if (vif->mid) { ndev = vif_to_ndev(vif); wdev = vif_to_wdev(vif); rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr, wdev->iftype); if (rc) { wil_err(wil, "fail to restore VIF %d type %d, rc %d\n", i, wdev->iftype, rc); return rc; } } } return 0; } /* * Clear FW and ucode log start addr to indicate FW log is not ready. The host * driver clears the addresses before FW starts and FW initializes the address * when it is ready to send logs. */ void wil_clear_fw_log_addr(struct wil6210_priv *wil) { /* FW log addr */ wil_w(wil, RGF_USER_USAGE_1, 0); /* ucode log addr */ wil_w(wil, RGF_USER_USAGE_2, 0); wil_dbg_misc(wil, "Cleared FW and ucode log address"); } /* * We reset all the structures, and we reset the UMAC. * After calling this routine, you're expected to reload * the firmware. */ int wil_reset(struct wil6210_priv *wil, bool load_fw) { int rc, i; unsigned long status_flags = BIT(wil_status_resetting); int no_flash; struct wil6210_vif *vif; wil_dbg_misc(wil, "reset\n"); WARN_ON(!mutex_is_locked(&wil->mutex)); WARN_ON(test_bit(wil_status_napi_en, wil->status)); if (debug_fw) { static const u8 mac[ETH_ALEN] = { 0x00, 0xde, 0xad, 0x12, 0x34, 0x56, }; struct net_device *ndev = wil->main_ndev; ether_addr_copy(ndev->perm_addr, mac); ether_addr_copy(ndev->dev_addr, ndev->perm_addr); return 0; } if (wil->hw_version == HW_VER_UNKNOWN) return -ENODEV; if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) && wil->hw_version < HW_VER_TALYN_MB) { wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n"); wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0); } if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) { wil_dbg_misc(wil, "Notify FW on ext clock configuration\n"); wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK); } if (wil->platform_ops.notify) { rc = wil->platform_ops.notify(wil->platform_handle, WIL_PLATFORM_EVT_PRE_RESET); if (rc) wil_err(wil, "PRE_RESET platform notify failed, rc %d\n", rc); } set_bit(wil_status_resetting, wil->status); mutex_lock(&wil->vif_mutex); wil_abort_scan_all_vifs(wil, false); mutex_unlock(&wil->vif_mutex); for (i = 0; i < GET_MAX_VIFS(wil); i++) { vif = wil->vifs[i]; if (vif) { cancel_work_sync(&vif->disconnect_worker); wil6210_disconnect(vif, NULL, WLAN_REASON_DEAUTH_LEAVING); } } wil_bcast_fini_all(wil); /* Disable device led before reset*/ wmi_led_cfg(wil, false); /* prevent NAPI from being scheduled and prevent wmi commands */ mutex_lock(&wil->wmi_mutex); if (test_bit(wil_status_suspending, wil->status)) status_flags |= BIT(wil_status_suspending); bitmap_and(wil->status, wil->status, &status_flags, wil_status_last); wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status); mutex_unlock(&wil->wmi_mutex); wil_mask_irq(wil); wmi_event_flush(wil); flush_workqueue(wil->wq_service); flush_workqueue(wil->wmi_wq); no_flash = test_bit(hw_capa_no_flash, wil->hw_capa); if (!no_flash) wil_bl_crash_info(wil, false); wil_disable_irq(wil); rc = wil_target_reset(wil, no_flash); wil6210_clear_irq(wil); wil_enable_irq(wil); wil->txrx_ops.rx_fini(wil); wil->txrx_ops.tx_fini(wil); if (rc) { if (!no_flash) wil_bl_crash_info(wil, true); goto out; } if (no_flash) { rc = wil_get_otp_info(wil); } else { rc = wil_get_bl_info(wil); if (rc == -EAGAIN && !load_fw) /* ignore RF error if not going up */ rc = 0; } if (rc) goto out; wil_set_oob_mode(wil, oob_mode); if (load_fw) { char board_file[WIL_BOARD_FILE_MAX_NAMELEN]; if (wil->secured_boot) { wil_err(wil, "secured boot is not supported\n"); return -ENOTSUPP; } board_file[0] = '\0'; wil_get_board_file(wil, board_file, sizeof(board_file)); wil_info(wil, "Use firmware <%s> + board <%s>\n", wil->wil_fw_name, board_file); if (!no_flash) wil_bl_prepare_halt(wil); wil_halt_cpu(wil); memset(wil->fw_version, 0, sizeof(wil->fw_version)); /* Loading f/w from the file */ rc = wil_request_firmware(wil, wil->wil_fw_name, true); if (rc) goto out; if (wil->num_of_brd_entries) rc = wil_request_board(wil, board_file); else rc = wil_request_firmware(wil, board_file, true); if (rc) goto out; wil_pre_fw_config(wil); wil_release_cpu(wil); } /* init after reset */ reinit_completion(&wil->wmi_ready); reinit_completion(&wil->wmi_call); reinit_completion(&wil->halp.comp); clear_bit(wil_status_resetting, wil->status); if (load_fw) { wil_unmask_irq(wil); /* we just started MAC, wait for FW ready */ rc = wil_wait_for_fw_ready(wil); if (rc) return rc; /* check FW is responsive */ rc = wmi_echo(wil); if (rc) { wil_err(wil, "wmi_echo failed, rc %d\n", rc); return rc; } wil->txrx_ops.configure_interrupt_moderation(wil); /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx * while there is back-pressure from Host during RX */ if (wil->hw_version >= HW_VER_TALYN_MB) wil_s(wil, RGF_DMA_MISC_CTL, BIT_OFUL34_RDY_VALID_BUG_FIX_EN); rc = wil_restore_vifs(wil); if (rc) { wil_err(wil, "failed to restore vifs, rc %d\n", rc); return rc; } wil_collect_fw_info(wil); if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT) wil_ps_update(wil, wil->ps_profile); if (wil->platform_ops.notify) { rc = wil->platform_ops.notify(wil->platform_handle, WIL_PLATFORM_EVT_FW_RDY); if (rc) { wil_err(wil, "FW_RDY notify failed, rc %d\n", rc); rc = 0; } } } return rc; out: clear_bit(wil_status_resetting, wil->status); return rc; } void wil_fw_error_recovery(struct wil6210_priv *wil) { wil_dbg_misc(wil, "starting fw error recovery\n"); if (test_bit(wil_status_resetting, wil->status)) { wil_info(wil, "Reset already in progress\n"); return; } wil->recovery_state = fw_recovery_pending; schedule_work(&wil->fw_error_worker); } int __wil_up(struct wil6210_priv *wil) { struct net_device *ndev = wil->main_ndev; struct wireless_dev *wdev = ndev->ieee80211_ptr; int rc; WARN_ON(!mutex_is_locked(&wil->mutex)); down_write(&wil->mem_lock); rc = wil_reset(wil, true); up_write(&wil->mem_lock); if (rc) return rc; /* Rx RING. After MAC and beacon */ if (rx_ring_order == 0) rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ? WIL_RX_RING_SIZE_ORDER_DEFAULT : WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT; rc = wil->txrx_ops.rx_init(wil, rx_ring_order); if (rc) return rc; rc = wil->txrx_ops.tx_init(wil); if (rc) return rc; switch (wdev->iftype) { case NL80211_IFTYPE_STATION: wil_dbg_misc(wil, "type: STATION\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_AP: wil_dbg_misc(wil, "type: AP\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_CLIENT: wil_dbg_misc(wil, "type: P2P_CLIENT\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_P2P_GO: wil_dbg_misc(wil, "type: P2P_GO\n"); ndev->type = ARPHRD_ETHER; break; case NL80211_IFTYPE_MONITOR: wil_dbg_misc(wil, "type: Monitor\n"); ndev->type = ARPHRD_IEEE80211_RADIOTAP; /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */ break; default: return -EOPNOTSUPP; } /* MAC address - pre-requisite for other commands */ wmi_set_mac_address(wil, ndev->dev_addr); wil_dbg_misc(wil, "NAPI enable\n"); napi_enable(&wil->napi_rx); napi_enable(&wil->napi_tx); set_bit(wil_status_napi_en, wil->status); wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); return 0; } int wil_up(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "up\n"); mutex_lock(&wil->mutex); rc = __wil_up(wil); mutex_unlock(&wil->mutex); return rc; } int __wil_down(struct wil6210_priv *wil) { int rc; WARN_ON(!mutex_is_locked(&wil->mutex)); set_bit(wil_status_resetting, wil->status); wil6210_bus_request(wil, 0); wil_disable_irq(wil); if (test_and_clear_bit(wil_status_napi_en, wil->status)) { napi_disable(&wil->napi_rx); napi_disable(&wil->napi_tx); wil_dbg_misc(wil, "NAPI disable\n"); } wil_enable_irq(wil); mutex_lock(&wil->vif_mutex); wil_p2p_stop_radio_operations(wil); wil_abort_scan_all_vifs(wil, false); mutex_unlock(&wil->vif_mutex); down_write(&wil->mem_lock); rc = wil_reset(wil, false); up_write(&wil->mem_lock); return rc; } int wil_down(struct wil6210_priv *wil) { int rc; wil_dbg_misc(wil, "down\n"); wil_set_recovery_state(wil, fw_recovery_idle); mutex_lock(&wil->mutex); rc = __wil_down(wil); mutex_unlock(&wil->mutex); return rc; } int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac) { int i; int rc = -ENOENT; for (i = 0; i < wil->max_assoc_sta; i++) { if (wil->sta[i].mid == mid && wil->sta[i].status != wil_sta_unused && ether_addr_equal(wil->sta[i].addr, mac)) { rc = i; break; } } return rc; } void wil_halp_vote(struct wil6210_priv *wil) { unsigned long rc; unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS); if (wil->hw_version >= HW_VER_TALYN_MB) return; mutex_lock(&wil->halp.lock); wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); if (++wil->halp.ref_cnt == 1) { reinit_completion(&wil->halp.comp); /* mark to IRQ context to handle HALP ICR */ wil->halp.handle_icr = true; wil6210_set_halp(wil); rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies); if (!rc) { wil_err(wil, "HALP vote timed out\n"); /* Mask HALP as done in case the interrupt is raised */ wil->halp.handle_icr = false; wil6210_mask_halp(wil); } else { wil_dbg_irq(wil, "halp_vote: HALP vote completed after %d ms\n", jiffies_to_msecs(to_jiffies - rc)); } } wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); mutex_unlock(&wil->halp.lock); } void wil_halp_unvote(struct wil6210_priv *wil) { if (wil->hw_version >= HW_VER_TALYN_MB) return; WARN_ON(wil->halp.ref_cnt == 0); mutex_lock(&wil->halp.lock); wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); if (--wil->halp.ref_cnt == 0) { wil6210_clear_halp(wil); wil_dbg_irq(wil, "HALP unvote\n"); } wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n", wil->halp.ref_cnt); mutex_unlock(&wil->halp.lock); } void wil_init_txrx_ops(struct wil6210_priv *wil) { if (wil->use_enhanced_dma_hw) wil_init_txrx_ops_edma(wil); else wil_init_txrx_ops_legacy_dma(wil); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1