Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arend Van Spriel | 4508 | 67.27% | 18 | 26.47% |
Franky Lin | 1218 | 18.18% | 26 | 38.24% |
Hante Meuleman | 671 | 10.01% | 10 | 14.71% |
Rafał Miłecki | 144 | 2.15% | 4 | 5.88% |
Chi-Hsien Lin | 132 | 1.97% | 4 | 5.88% |
Syed Asifful Dayyan | 10 | 0.15% | 1 | 1.47% |
Hans de Goede | 6 | 0.09% | 1 | 1.47% |
Eric Caruso | 3 | 0.04% | 1 | 1.47% |
Christian Daudt | 3 | 0.04% | 1 | 1.47% |
Dan Haab | 3 | 0.04% | 1 | 1.47% |
Double Lo | 3 | 0.04% | 1 | 1.47% |
Total | 6701 | 68 |
// SPDX-License-Identifier: ISC /* * Copyright (c) 2014 Broadcom Corporation */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/list.h> #include <linux/ssb/ssb_regs.h> #include <linux/bcma/bcma.h> #include <linux/bcma/bcma_regs.h> #include <defs.h> #include <soc.h> #include <brcm_hw_ids.h> #include <brcmu_utils.h> #include <chipcommon.h> #include "debug.h" #include "chip.h" /* SOC Interconnect types (aka chip types) */ #define SOCI_SB 0 #define SOCI_AI 1 /* PL-368 DMP definitions */ #define DMP_DESC_TYPE_MSK 0x0000000F #define DMP_DESC_EMPTY 0x00000000 #define DMP_DESC_VALID 0x00000001 #define DMP_DESC_COMPONENT 0x00000001 #define DMP_DESC_MASTER_PORT 0x00000003 #define DMP_DESC_ADDRESS 0x00000005 #define DMP_DESC_ADDRSIZE_GT32 0x00000008 #define DMP_DESC_EOT 0x0000000F #define DMP_COMP_DESIGNER 0xFFF00000 #define DMP_COMP_DESIGNER_S 20 #define DMP_COMP_PARTNUM 0x000FFF00 #define DMP_COMP_PARTNUM_S 8 #define DMP_COMP_CLASS 0x000000F0 #define DMP_COMP_CLASS_S 4 #define DMP_COMP_REVISION 0xFF000000 #define DMP_COMP_REVISION_S 24 #define DMP_COMP_NUM_SWRAP 0x00F80000 #define DMP_COMP_NUM_SWRAP_S 19 #define DMP_COMP_NUM_MWRAP 0x0007C000 #define DMP_COMP_NUM_MWRAP_S 14 #define DMP_COMP_NUM_SPORT 0x00003E00 #define DMP_COMP_NUM_SPORT_S 9 #define DMP_COMP_NUM_MPORT 0x000001F0 #define DMP_COMP_NUM_MPORT_S 4 #define DMP_MASTER_PORT_UID 0x0000FF00 #define DMP_MASTER_PORT_UID_S 8 #define DMP_MASTER_PORT_NUM 0x000000F0 #define DMP_MASTER_PORT_NUM_S 4 #define DMP_SLAVE_ADDR_BASE 0xFFFFF000 #define DMP_SLAVE_ADDR_BASE_S 12 #define DMP_SLAVE_PORT_NUM 0x00000F00 #define DMP_SLAVE_PORT_NUM_S 8 #define DMP_SLAVE_TYPE 0x000000C0 #define DMP_SLAVE_TYPE_S 6 #define DMP_SLAVE_TYPE_SLAVE 0 #define DMP_SLAVE_TYPE_BRIDGE 1 #define DMP_SLAVE_TYPE_SWRAP 2 #define DMP_SLAVE_TYPE_MWRAP 3 #define DMP_SLAVE_SIZE_TYPE 0x00000030 #define DMP_SLAVE_SIZE_TYPE_S 4 #define DMP_SLAVE_SIZE_4K 0 #define DMP_SLAVE_SIZE_8K 1 #define DMP_SLAVE_SIZE_16K 2 #define DMP_SLAVE_SIZE_DESC 3 /* EROM CompIdentB */ #define CIB_REV_MASK 0xff000000 #define CIB_REV_SHIFT 24 /* ARM CR4 core specific control flag bits */ #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020 /* D11 core specific control flag bits */ #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004 #define D11_BCMA_IOCTL_PHYRESET 0x0008 /* chip core base & ramsize */ /* bcm4329 */ /* SDIO device core, ID 0x829 */ #define BCM4329_CORE_BUS_BASE 0x18011000 /* internal memory core, ID 0x80e */ #define BCM4329_CORE_SOCRAM_BASE 0x18003000 /* ARM Cortex M3 core, ID 0x82a */ #define BCM4329_CORE_ARM_BASE 0x18002000 /* Max possibly supported memory size (limited by IO mapped memory) */ #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024) #define CORE_SB(base, field) \ (base + SBCONFIGOFF + offsetof(struct sbconfig, field)) #define SBCOREREV(sbidh) \ ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \ ((sbidh) & SSB_IDHIGH_RCLO)) struct sbconfig { u32 PAD[2]; u32 sbipsflag; /* initiator port ocp slave flag */ u32 PAD[3]; u32 sbtpsflag; /* target port ocp slave flag */ u32 PAD[11]; u32 sbtmerrloga; /* (sonics >= 2.3) */ u32 PAD; u32 sbtmerrlog; /* (sonics >= 2.3) */ u32 PAD[3]; u32 sbadmatch3; /* address match3 */ u32 PAD; u32 sbadmatch2; /* address match2 */ u32 PAD; u32 sbadmatch1; /* address match1 */ u32 PAD[7]; u32 sbimstate; /* initiator agent state */ u32 sbintvec; /* interrupt mask */ u32 sbtmstatelow; /* target state */ u32 sbtmstatehigh; /* target state */ u32 sbbwa0; /* bandwidth allocation table0 */ u32 PAD; u32 sbimconfiglow; /* initiator configuration */ u32 sbimconfighigh; /* initiator configuration */ u32 sbadmatch0; /* address match0 */ u32 PAD; u32 sbtmconfiglow; /* target configuration */ u32 sbtmconfighigh; /* target configuration */ u32 sbbconfig; /* broadcast configuration */ u32 PAD; u32 sbbstate; /* broadcast state */ u32 PAD[3]; u32 sbactcnfg; /* activate configuration */ u32 PAD[3]; u32 sbflagst; /* current sbflags */ u32 PAD[3]; u32 sbidlow; /* identification */ u32 sbidhigh; /* identification */ }; /* bankidx and bankinfo reg defines corerev >= 8 */ #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000 #define SOCRAM_BANKINFO_SZMASK 0x0000007f #define SOCRAM_BANKIDX_ROM_MASK 0x00000100 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8 /* socram bankinfo memtype */ #define SOCRAM_MEMTYPE_RAM 0 #define SOCRAM_MEMTYPE_R0M 1 #define SOCRAM_MEMTYPE_DEVRAM 2 #define SOCRAM_BANKINFO_SZBASE 8192 #define SRCI_LSS_MASK 0x00f00000 #define SRCI_LSS_SHIFT 20 #define SRCI_SRNB_MASK 0xf0 #define SRCI_SRNB_MASK_EXT 0x100 #define SRCI_SRNB_SHIFT 4 #define SRCI_SRBSZ_MASK 0xf #define SRCI_SRBSZ_SHIFT 0 #define SR_BSZ_BASE 14 struct sbsocramregs { u32 coreinfo; u32 bwalloc; u32 extracoreinfo; u32 biststat; u32 bankidx; u32 standbyctrl; u32 errlogstatus; /* rev 6 */ u32 errlogaddr; /* rev 6 */ /* used for patching rev 3 & 5 */ u32 cambankidx; u32 cambankstandbyctrl; u32 cambankpatchctrl; u32 cambankpatchtblbaseaddr; u32 cambankcmdreg; u32 cambankdatareg; u32 cambankmaskreg; u32 PAD[1]; u32 bankinfo; /* corev 8 */ u32 bankpda; u32 PAD[14]; u32 extmemconfig; u32 extmemparitycsr; u32 extmemparityerrdata; u32 extmemparityerrcnt; u32 extmemwrctrlandsize; u32 PAD[84]; u32 workaround; u32 pwrctl; /* corerev >= 2 */ u32 PAD[133]; u32 sr_control; /* corerev >= 15 */ u32 sr_status; /* corerev >= 15 */ u32 sr_address; /* corerev >= 15 */ u32 sr_data; /* corerev >= 15 */ }; #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f) #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f) #define ARMCR4_CAP (0x04) #define ARMCR4_BANKIDX (0x40) #define ARMCR4_BANKINFO (0x44) #define ARMCR4_BANKPDA (0x4C) #define ARMCR4_TCBBNB_MASK 0xf0 #define ARMCR4_TCBBNB_SHIFT 4 #define ARMCR4_TCBANB_MASK 0xf #define ARMCR4_TCBANB_SHIFT 0 #define ARMCR4_BSZ_MASK 0x3f #define ARMCR4_BSZ_MULT 8192 struct brcmf_core_priv { struct brcmf_core pub; u32 wrapbase; struct list_head list; struct brcmf_chip_priv *chip; }; struct brcmf_chip_priv { struct brcmf_chip pub; const struct brcmf_buscore_ops *ops; void *ctx; /* assured first core is chipcommon, second core is buscore */ struct list_head cores; u16 num_cores; bool (*iscoreup)(struct brcmf_core_priv *core); void (*coredisable)(struct brcmf_core_priv *core, u32 prereset, u32 reset); void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset, u32 postreset); }; static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci, struct brcmf_core *core) { u32 regdata; regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh)); core->rev = SBCOREREV(regdata); } static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core) { struct brcmf_chip_priv *ci; u32 regdata; u32 address; ci = core->chip; address = CORE_SB(core->pub.base, sbtmstatelow); regdata = ci->ops->read32(ci->ctx, address); regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT | SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK); return SSB_TMSLOW_CLOCK == regdata; } static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core) { struct brcmf_chip_priv *ci; u32 regdata; bool ret; ci = core->chip; regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK; regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0); return ret; } static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core, u32 prereset, u32 reset) { struct brcmf_chip_priv *ci; u32 val, base; ci = core->chip; base = core->pub.base; val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); if (val & SSB_TMSLOW_RESET) return; val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); if ((val & SSB_TMSLOW_CLOCK) != 0) { /* * set target reject and spin until busy is clear * (preserve core-specific bits) */ val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val | SSB_TMSLOW_REJECT); val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); udelay(1); SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)) & SSB_TMSHIGH_BUSY), 100000); val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); if (val & SSB_TMSHIGH_BUSY) brcmf_err("core state still busy\n"); val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); if (val & SSB_IDLOW_INITIATOR) { val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); val |= SSB_IMSTATE_REJECT; ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), val); val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); udelay(1); SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)) & SSB_IMSTATE_BUSY), 100000); } /* set reset and reject while enabling the clocks */ val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET; ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val); val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); udelay(10); /* clear the initiator reject bit */ val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow)); if (val & SSB_IDLOW_INITIATOR) { val = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); val &= ~SSB_IMSTATE_REJECT; ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), val); } } /* leave reset and reject asserted */ ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET)); udelay(1); } static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core, u32 prereset, u32 reset) { struct brcmf_chip_priv *ci; u32 regdata; ci = core->chip; /* if core is already in reset, skip reset */ regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL); if ((regdata & BCMA_RESET_CTL_RESET) != 0) goto in_reset_configure; /* configure reset */ ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); /* put in reset */ ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, BCMA_RESET_CTL_RESET); usleep_range(10, 20); /* wait till reset is 1 */ SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) != BCMA_RESET_CTL_RESET, 300); in_reset_configure: /* in-reset configure */ ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK); ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); } static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset, u32 reset, u32 postreset) { struct brcmf_chip_priv *ci; u32 regdata; u32 base; ci = core->chip; base = core->pub.base; /* * Must do the disable sequence first to work for * arbitrary current core state. */ brcmf_chip_sb_coredisable(core, 0, 0); /* * Now do the initialization sequence. * set reset while enabling the clock and * forcing them on throughout the core */ ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET); regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); udelay(1); /* clear any serror */ regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh)); if (regdata & SSB_TMSHIGH_SERR) ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0); regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate)); if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) { regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO); ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata); } /* clear reset and allow it to propagate throughout the core */ ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK); regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); udelay(1); /* leave clock enabled */ ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), SSB_TMSLOW_CLOCK); regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow)); udelay(1); } static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset, u32 reset, u32 postreset) { struct brcmf_chip_priv *ci; int count; ci = core->chip; /* must disable first to work for arbitrary current core state */ brcmf_chip_ai_coredisable(core, prereset, reset); count = 0; while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) & BCMA_RESET_CTL_RESET) { ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0); count++; if (count > 50) break; usleep_range(40, 60); } ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL, postreset | BCMA_IOCTL_CLK); ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL); } char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len) { const char *fmt; fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u"; snprintf(buf, len, fmt, id, rev); return buf; } static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci, u16 coreid, u32 base, u32 wrapbase) { struct brcmf_core_priv *core; core = kzalloc(sizeof(*core), GFP_KERNEL); if (!core) return ERR_PTR(-ENOMEM); core->pub.id = coreid; core->pub.base = base; core->chip = ci; core->wrapbase = wrapbase; list_add_tail(&core->list, &ci->cores); return &core->pub; } /* safety check for chipinfo */ static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci) { struct brcmf_core_priv *core; bool need_socram = false; bool has_socram = false; bool cpu_found = false; int idx = 1; list_for_each_entry(core, &ci->cores, list) { brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n", idx++, core->pub.id, core->pub.rev, core->pub.base, core->wrapbase); switch (core->pub.id) { case BCMA_CORE_ARM_CM3: cpu_found = true; need_socram = true; break; case BCMA_CORE_INTERNAL_MEM: has_socram = true; break; case BCMA_CORE_ARM_CR4: cpu_found = true; break; case BCMA_CORE_ARM_CA7: cpu_found = true; break; default: break; } } if (!cpu_found) { brcmf_err("CPU core not detected\n"); return -ENXIO; } /* check RAM core presence for ARM CM3 core */ if (need_socram && !has_socram) { brcmf_err("RAM core not provided with ARM CM3 core\n"); return -ENODEV; } return 0; } static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg) { return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg); } static void brcmf_chip_core_write32(struct brcmf_core_priv *core, u16 reg, u32 val) { core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val); } static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx, u32 *banksize) { u32 bankinfo; u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT); bankidx |= idx; brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx); bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo)); *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1; *banksize *= SOCRAM_BANKINFO_SZBASE; return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK); } static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize, u32 *srsize) { u32 coreinfo; uint nb, banksize, lss; bool retent; int i; *ramsize = 0; *srsize = 0; if (WARN_ON(sr->pub.rev < 4)) return; if (!brcmf_chip_iscoreup(&sr->pub)) brcmf_chip_resetcore(&sr->pub, 0, 0, 0); /* Get info for determining size */ coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo)); nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) { banksize = (coreinfo & SRCI_SRBSZ_MASK); lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; if (lss != 0) nb--; *ramsize = nb * (1 << (banksize + SR_BSZ_BASE)); if (lss != 0) *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE)); } else { /* length of SRAM Banks increased for corerev greater than 23 */ if (sr->pub.rev >= 23) { nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT)) >> SRCI_SRNB_SHIFT; } else { nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; } for (i = 0; i < nb; i++) { retent = brcmf_chip_socram_banksize(sr, i, &banksize); *ramsize += banksize; if (retent) *srsize += banksize; } } /* hardcoded save&restore memory sizes */ switch (sr->chip->pub.chip) { case BRCM_CC_4334_CHIP_ID: if (sr->chip->pub.chiprev < 2) *srsize = (32 * 1024); break; case BRCM_CC_43430_CHIP_ID: /* assume sr for now as we can not check * firmware sr capability at this point. */ *srsize = (64 * 1024); break; default: break; } } /** Return the SYS MEM size */ static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem) { u32 memsize = 0; u32 coreinfo; u32 idx; u32 nb; u32 banksize; if (!brcmf_chip_iscoreup(&sysmem->pub)) brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0); coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo)); nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; for (idx = 0; idx < nb; idx++) { brcmf_chip_socram_banksize(sysmem, idx, &banksize); memsize += banksize; } return memsize; } /** Return the TCM-RAM size of the ARMCR4 core. */ static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4) { u32 corecap; u32 memsize = 0; u32 nab; u32 nbb; u32 totb; u32 bxinfo; u32 idx; corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP); nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT; nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT; totb = nab + nbb; for (idx = 0; idx < totb; idx++) { brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx); bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO); memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT; } return memsize; } static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci) { switch (ci->pub.chip) { case BRCM_CC_4345_CHIP_ID: return 0x198000; case BRCM_CC_4335_CHIP_ID: case BRCM_CC_4339_CHIP_ID: case BRCM_CC_4350_CHIP_ID: case BRCM_CC_4354_CHIP_ID: case BRCM_CC_4356_CHIP_ID: case BRCM_CC_43567_CHIP_ID: case BRCM_CC_43569_CHIP_ID: case BRCM_CC_43570_CHIP_ID: case BRCM_CC_4358_CHIP_ID: case BRCM_CC_4359_CHIP_ID: case BRCM_CC_43602_CHIP_ID: case BRCM_CC_4371_CHIP_ID: return 0x180000; case BRCM_CC_43465_CHIP_ID: case BRCM_CC_43525_CHIP_ID: case BRCM_CC_4365_CHIP_ID: case BRCM_CC_4366_CHIP_ID: case BRCM_CC_43664_CHIP_ID: return 0x200000; case CY_CC_4373_CHIP_ID: return 0x160000; default: brcmf_err("unknown chip: %s\n", ci->pub.name); break; } return 0; } static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci) { struct brcmf_core_priv *mem_core; struct brcmf_core *mem; mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4); if (mem) { mem_core = container_of(mem, struct brcmf_core_priv, pub); ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core); ci->pub.rambase = brcmf_chip_tcm_rambase(ci); if (!ci->pub.rambase) { brcmf_err("RAM base not provided with ARM CR4 core\n"); return -EINVAL; } } else { mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM); if (mem) { mem_core = container_of(mem, struct brcmf_core_priv, pub); ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core); ci->pub.rambase = brcmf_chip_tcm_rambase(ci); if (!ci->pub.rambase) { brcmf_err("RAM base not provided with ARM CA7 core\n"); return -EINVAL; } } else { mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_INTERNAL_MEM); if (!mem) { brcmf_err("No memory cores found\n"); return -ENOMEM; } mem_core = container_of(mem, struct brcmf_core_priv, pub); brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize, &ci->pub.srsize); } } brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n", ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize, ci->pub.srsize, ci->pub.srsize); if (!ci->pub.ramsize) { brcmf_err("RAM size is undetermined\n"); return -ENOMEM; } if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) { brcmf_err("RAM size is incorrect\n"); return -ENOMEM; } return 0; } static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr, u8 *type) { u32 val; /* read next descriptor */ val = ci->ops->read32(ci->ctx, *eromaddr); *eromaddr += 4; if (!type) return val; /* determine descriptor type */ *type = (val & DMP_DESC_TYPE_MSK); if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS) *type = DMP_DESC_ADDRESS; return val; } static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr, u32 *regbase, u32 *wrapbase) { u8 desc; u32 val, szdesc; u8 mpnum = 0; u8 stype, sztype, wraptype; *regbase = 0; *wrapbase = 0; val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); if (desc == DMP_DESC_MASTER_PORT) { mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S; wraptype = DMP_SLAVE_TYPE_MWRAP; } else if (desc == DMP_DESC_ADDRESS) { /* revert erom address */ *eromaddr -= 4; wraptype = DMP_SLAVE_TYPE_SWRAP; } else { *eromaddr -= 4; return -EILSEQ; } do { /* locate address descriptor */ do { val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc); /* unexpected table end */ if (desc == DMP_DESC_EOT) { *eromaddr -= 4; return -EFAULT; } } while (desc != DMP_DESC_ADDRESS && desc != DMP_DESC_COMPONENT); /* stop if we crossed current component border */ if (desc == DMP_DESC_COMPONENT) { *eromaddr -= 4; return 0; } /* skip upper 32-bit address descriptor */ if (val & DMP_DESC_ADDRSIZE_GT32) brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S; /* next size descriptor can be skipped */ if (sztype == DMP_SLAVE_SIZE_DESC) { szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); /* skip upper size descriptor if present */ if (szdesc & DMP_DESC_ADDRSIZE_GT32) brcmf_chip_dmp_get_desc(ci, eromaddr, NULL); } /* look for 4K or 8K register regions */ if (sztype != DMP_SLAVE_SIZE_4K && sztype != DMP_SLAVE_SIZE_8K) continue; stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S; /* only regular slave and wrapper */ if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE) *regbase = val & DMP_SLAVE_ADDR_BASE; if (*wrapbase == 0 && stype == wraptype) *wrapbase = val & DMP_SLAVE_ADDR_BASE; } while (*regbase == 0 || *wrapbase == 0); return 0; } static int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci) { struct brcmf_core *core; u32 eromaddr; u8 desc_type = 0; u32 val; u16 id; u8 nmp, nsp, nmw, nsw, rev; u32 base, wrap; int err; eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr)); while (desc_type != DMP_DESC_EOT) { val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); if (!(val & DMP_DESC_VALID)) continue; if (desc_type == DMP_DESC_EMPTY) continue; /* need a component descriptor */ if (desc_type != DMP_DESC_COMPONENT) continue; id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S; /* next descriptor must be component as well */ val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type); if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT)) return -EFAULT; /* only look at cores with master port(s) */ nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S; nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S; nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S; nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S; rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S; /* need core with ports */ if (nmw + nsw == 0 && id != BCMA_CORE_PMU && id != BCMA_CORE_GCI) continue; /* try to obtain register address info */ err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap); if (err) continue; /* finally a core to be added */ core = brcmf_chip_add_core(ci, id, base, wrap); if (IS_ERR(core)) return PTR_ERR(core); core->rev = rev; } return 0; } static int brcmf_chip_recognition(struct brcmf_chip_priv *ci) { struct brcmf_core *core; u32 regdata; u32 socitype; int ret; /* Get CC core rev * Chipid is assume to be at offset 0 from SI_ENUM_BASE * For different chiptypes or old sdio hosts w/o chipcommon, * other ways of recognition should be added here. */ regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid)); ci->pub.chip = regdata & CID_ID_MASK; ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT; socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT; brcmf_chip_name(ci->pub.chip, ci->pub.chiprev, ci->pub.name, sizeof(ci->pub.name)); brcmf_dbg(INFO, "found %s chip: %s\n", socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name); if (socitype == SOCI_SB) { if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) { brcmf_err("SB chip is not supported\n"); return -ENODEV; } ci->iscoreup = brcmf_chip_sb_iscoreup; ci->coredisable = brcmf_chip_sb_coredisable; ci->resetcore = brcmf_chip_sb_resetcore; core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON, SI_ENUM_BASE, 0); brcmf_chip_sb_corerev(ci, core); core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV, BCM4329_CORE_BUS_BASE, 0); brcmf_chip_sb_corerev(ci, core); core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM, BCM4329_CORE_SOCRAM_BASE, 0); brcmf_chip_sb_corerev(ci, core); core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3, BCM4329_CORE_ARM_BASE, 0); brcmf_chip_sb_corerev(ci, core); core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0); brcmf_chip_sb_corerev(ci, core); } else if (socitype == SOCI_AI) { ci->iscoreup = brcmf_chip_ai_iscoreup; ci->coredisable = brcmf_chip_ai_coredisable; ci->resetcore = brcmf_chip_ai_resetcore; brcmf_chip_dmp_erom_scan(ci); } else { brcmf_err("chip backplane type %u is not supported\n", socitype); return -ENODEV; } ret = brcmf_chip_cores_check(ci); if (ret) return ret; /* assure chip is passive for core access */ brcmf_chip_set_passive(&ci->pub); /* Call bus specific reset function now. Cores have been determined * but further access may require a chip specific reset at this point. */ if (ci->ops->reset) { ci->ops->reset(ci->ctx, &ci->pub); brcmf_chip_set_passive(&ci->pub); } return brcmf_chip_get_raminfo(ci); } static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id) { struct brcmf_core *core; struct brcmf_core_priv *cpu; u32 val; core = brcmf_chip_get_core(&chip->pub, id); if (!core) return; switch (id) { case BCMA_CORE_ARM_CM3: brcmf_chip_coredisable(core, 0, 0); break; case BCMA_CORE_ARM_CR4: case BCMA_CORE_ARM_CA7: cpu = container_of(core, struct brcmf_core_priv, pub); /* clear all IOCTL bits except HALT bit */ val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL); val &= ARMCR4_BCMA_IOCTL_CPUHALT; brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT, ARMCR4_BCMA_IOCTL_CPUHALT); break; default: brcmf_err("unknown id: %u\n", id); break; } } static int brcmf_chip_setup(struct brcmf_chip_priv *chip) { struct brcmf_chip *pub; struct brcmf_core_priv *cc; struct brcmf_core *pmu; u32 base; u32 val; int ret = 0; pub = &chip->pub; cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); base = cc->pub.base; /* get chipcommon capabilites */ pub->cc_caps = chip->ops->read32(chip->ctx, CORE_CC_REG(base, capabilities)); pub->cc_caps_ext = chip->ops->read32(chip->ctx, CORE_CC_REG(base, capabilities_ext)); /* get pmu caps & rev */ pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */ if (pub->cc_caps & CC_CAP_PMU) { val = chip->ops->read32(chip->ctx, CORE_CC_REG(pmu->base, pmucapabilities)); pub->pmurev = val & PCAP_REV_MASK; pub->pmucaps = val; } brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n", cc->pub.rev, pub->pmurev, pub->pmucaps); /* execute bus core specific setup */ if (chip->ops->setup) ret = chip->ops->setup(chip->ctx, pub); return ret; } struct brcmf_chip *brcmf_chip_attach(void *ctx, const struct brcmf_buscore_ops *ops) { struct brcmf_chip_priv *chip; int err = 0; if (WARN_ON(!ops->read32)) err = -EINVAL; if (WARN_ON(!ops->write32)) err = -EINVAL; if (WARN_ON(!ops->prepare)) err = -EINVAL; if (WARN_ON(!ops->activate)) err = -EINVAL; if (err < 0) return ERR_PTR(-EINVAL); chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&chip->cores); chip->num_cores = 0; chip->ops = ops; chip->ctx = ctx; err = ops->prepare(ctx); if (err < 0) goto fail; err = brcmf_chip_recognition(chip); if (err < 0) goto fail; err = brcmf_chip_setup(chip); if (err < 0) goto fail; return &chip->pub; fail: brcmf_chip_detach(&chip->pub); return ERR_PTR(err); } void brcmf_chip_detach(struct brcmf_chip *pub) { struct brcmf_chip_priv *chip; struct brcmf_core_priv *core; struct brcmf_core_priv *tmp; chip = container_of(pub, struct brcmf_chip_priv, pub); list_for_each_entry_safe(core, tmp, &chip->cores, list) { list_del(&core->list); kfree(core); } kfree(chip); } struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid) { struct brcmf_chip_priv *chip; struct brcmf_core_priv *core; chip = container_of(pub, struct brcmf_chip_priv, pub); list_for_each_entry(core, &chip->cores, list) if (core->pub.id == coreid) return &core->pub; return NULL; } struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub) { struct brcmf_chip_priv *chip; struct brcmf_core_priv *cc; chip = container_of(pub, struct brcmf_chip_priv, pub); cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list); if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON)) return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON); return &cc->pub; } struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub) { struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub); struct brcmf_core *pmu; /* See if there is separated PMU core available */ if (cc->rev >= 35 && pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) { pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU); if (pmu) return pmu; } /* Fallback to ChipCommon core for older hardware */ return cc; } bool brcmf_chip_iscoreup(struct brcmf_core *pub) { struct brcmf_core_priv *core; core = container_of(pub, struct brcmf_core_priv, pub); return core->chip->iscoreup(core); } void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset) { struct brcmf_core_priv *core; core = container_of(pub, struct brcmf_core_priv, pub); core->chip->coredisable(core, prereset, reset); } void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset, u32 postreset) { struct brcmf_core_priv *core; core = container_of(pub, struct brcmf_core_priv, pub); core->chip->resetcore(core, prereset, reset, postreset); } static void brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip) { struct brcmf_core *core; struct brcmf_core_priv *sr; brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3); core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN); core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); brcmf_chip_resetcore(core, 0, 0, 0); /* disable bank #3 remap for this device */ if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) { sr = container_of(core, struct brcmf_core_priv, pub); brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3); brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0); } } static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip) { struct brcmf_core *core; core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM); if (!brcmf_chip_iscoreup(core)) { brcmf_err("SOCRAM core is down after reset?\n"); return false; } chip->ops->activate(chip->ctx, &chip->pub, 0); core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3); brcmf_chip_resetcore(core, 0, 0, 0); return true; } static inline void brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip) { struct brcmf_core *core; brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4); core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN); } static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec) { struct brcmf_core *core; chip->ops->activate(chip->ctx, &chip->pub, rstvec); /* restore ARM */ core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4); brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); return true; } static inline void brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip) { struct brcmf_core *core; brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7); core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211); brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET | D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN, D11_BCMA_IOCTL_PHYCLOCKEN); } static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec) { struct brcmf_core *core; chip->ops->activate(chip->ctx, &chip->pub, rstvec); /* restore ARM */ core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7); brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0); return true; } void brcmf_chip_set_passive(struct brcmf_chip *pub) { struct brcmf_chip_priv *chip; struct brcmf_core *arm; brcmf_dbg(TRACE, "Enter\n"); chip = container_of(pub, struct brcmf_chip_priv, pub); arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); if (arm) { brcmf_chip_cr4_set_passive(chip); return; } arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); if (arm) { brcmf_chip_ca7_set_passive(chip); return; } arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); if (arm) { brcmf_chip_cm3_set_passive(chip); return; } } bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec) { struct brcmf_chip_priv *chip; struct brcmf_core *arm; brcmf_dbg(TRACE, "Enter\n"); chip = container_of(pub, struct brcmf_chip_priv, pub); arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4); if (arm) return brcmf_chip_cr4_set_active(chip, rstvec); arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7); if (arm) return brcmf_chip_ca7_set_active(chip, rstvec); arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3); if (arm) return brcmf_chip_cm3_set_active(chip); return false; } bool brcmf_chip_sr_capable(struct brcmf_chip *pub) { u32 base, addr, reg, pmu_cc3_mask = ~0; struct brcmf_chip_priv *chip; struct brcmf_core *pmu = brcmf_chip_get_pmu(pub); brcmf_dbg(TRACE, "Enter\n"); /* old chips with PMU version less than 17 don't support save restore */ if (pub->pmurev < 17) return false; base = brcmf_chip_get_chipcommon(pub)->base; chip = container_of(pub, struct brcmf_chip_priv, pub); switch (pub->chip) { case BRCM_CC_4354_CHIP_ID: case BRCM_CC_4356_CHIP_ID: case BRCM_CC_4345_CHIP_ID: /* explicitly check SR engine enable bit */ pmu_cc3_mask = BIT(2); /* fall-through */ case BRCM_CC_43241_CHIP_ID: case BRCM_CC_4335_CHIP_ID: case BRCM_CC_4339_CHIP_ID: /* read PMU chipcontrol register 3 */ addr = CORE_CC_REG(pmu->base, chipcontrol_addr); chip->ops->write32(chip->ctx, addr, 3); addr = CORE_CC_REG(pmu->base, chipcontrol_data); reg = chip->ops->read32(chip->ctx, addr); return (reg & pmu_cc3_mask) != 0; case BRCM_CC_43430_CHIP_ID: addr = CORE_CC_REG(base, sr_control1); reg = chip->ops->read32(chip->ctx, addr); return reg != 0; case CY_CC_4373_CHIP_ID: /* explicitly check SR engine enable bit */ addr = CORE_CC_REG(base, sr_control0); reg = chip->ops->read32(chip->ctx, addr); return (reg & CC_SR_CTL0_ENABLE_MASK) != 0; case CY_CC_43012_CHIP_ID: addr = CORE_CC_REG(pmu->base, retention_ctl); reg = chip->ops->read32(chip->ctx, addr); return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; default: addr = CORE_CC_REG(pmu->base, pmucapabilities_ext); reg = chip->ops->read32(chip->ctx, addr); if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0) return false; addr = CORE_CC_REG(pmu->base, retention_ctl); reg = chip->ops->read32(chip->ctx, addr); return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK | PMU_RCTL_LOGIC_DISABLE_MASK)) == 0; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1