Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 827 | 49.26% | 11 | 45.83% |
Chaitanya Kulkarni | 625 | 37.22% | 4 | 16.67% |
Bart Van Assche | 145 | 8.64% | 1 | 4.17% |
Sagi Grimberg | 39 | 2.32% | 2 | 8.33% |
Logan Gunthorpe | 16 | 0.95% | 1 | 4.17% |
Israel Rukshin | 9 | 0.54% | 1 | 4.17% |
Parav Pandit | 8 | 0.48% | 1 | 4.17% |
Minwoo Im | 6 | 0.36% | 1 | 4.17% |
Alexander Solganik | 2 | 0.12% | 1 | 4.17% |
Rodrigo R. Galvao | 2 | 0.12% | 1 | 4.17% |
Total | 1679 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* * NVMe I/O command implementation. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/blkdev.h> #include <linux/module.h> #include "nvmet.h" void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) { const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; /* Number of physical blocks per logical block. */ const u32 ppl = ql->physical_block_size / ql->logical_block_size; /* Physical blocks per logical block, 0's based. */ const __le16 ppl0b = to0based(ppl); /* * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, * NAWUPF, and NACWU are defined for this namespace and should be * used by the host for this namespace instead of the AWUN, AWUPF, * and ACWU fields in the Identify Controller data structure. If * any of these fields are zero that means that the corresponding * field from the identify controller data structure should be used. */ id->nsfeat |= 1 << 1; id->nawun = ppl0b; id->nawupf = ppl0b; id->nacwu = ppl0b; /* * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and * NOWS are defined for this namespace and should be used by * the host for I/O optimization. */ id->nsfeat |= 1 << 4; /* NPWG = Namespace Preferred Write Granularity. 0's based */ id->npwg = ppl0b; /* NPWA = Namespace Preferred Write Alignment. 0's based */ id->npwa = id->npwg; /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); /* NPDG = Namespace Preferred Deallocate Alignment */ id->npda = id->npdg; /* NOWS = Namespace Optimal Write Size */ id->nows = to0based(ql->io_opt / ql->logical_block_size); } int nvmet_bdev_ns_enable(struct nvmet_ns *ns) { int ret; ns->bdev = blkdev_get_by_path(ns->device_path, FMODE_READ | FMODE_WRITE, NULL); if (IS_ERR(ns->bdev)) { ret = PTR_ERR(ns->bdev); if (ret != -ENOTBLK) { pr_err("failed to open block device %s: (%ld)\n", ns->device_path, PTR_ERR(ns->bdev)); } ns->bdev = NULL; return ret; } ns->size = i_size_read(ns->bdev->bd_inode); ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); return 0; } void nvmet_bdev_ns_disable(struct nvmet_ns *ns) { if (ns->bdev) { blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); ns->bdev = NULL; } } static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) { u16 status = NVME_SC_SUCCESS; if (likely(blk_sts == BLK_STS_OK)) return status; /* * Right now there exists M : 1 mapping between block layer error * to the NVMe status code (see nvme_error_status()). For consistency, * when we reverse map we use most appropriate NVMe Status code from * the group of the NVMe staus codes used in the nvme_error_status(). */ switch (blk_sts) { case BLK_STS_NOSPC: status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_rw_command, length); break; case BLK_STS_TARGET: status = NVME_SC_LBA_RANGE | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_rw_command, slba); break; case BLK_STS_NOTSUPP: req->error_loc = offsetof(struct nvme_common_command, opcode); switch (req->cmd->common.opcode) { case nvme_cmd_dsm: case nvme_cmd_write_zeroes: status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; break; default: status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } break; case BLK_STS_MEDIUM: status = NVME_SC_ACCESS_DENIED; req->error_loc = offsetof(struct nvme_rw_command, nsid); break; case BLK_STS_IOERR: /* fallthru */ default: status = NVME_SC_INTERNAL | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_common_command, opcode); } switch (req->cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_write: req->error_slba = le64_to_cpu(req->cmd->rw.slba); break; case nvme_cmd_write_zeroes: req->error_slba = le64_to_cpu(req->cmd->write_zeroes.slba); break; default: req->error_slba = 0; } return status; } static void nvmet_bio_done(struct bio *bio) { struct nvmet_req *req = bio->bi_private; nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); if (bio != &req->b.inline_bio) bio_put(bio); } static void nvmet_bdev_execute_rw(struct nvmet_req *req) { int sg_cnt = req->sg_cnt; struct bio *bio; struct scatterlist *sg; sector_t sector; int op, op_flags = 0, i; if (!req->sg_cnt) { nvmet_req_complete(req, 0); return; } if (req->cmd->rw.opcode == nvme_cmd_write) { op = REQ_OP_WRITE; op_flags = REQ_SYNC | REQ_IDLE; if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) op_flags |= REQ_FUA; } else { op = REQ_OP_READ; } if (is_pci_p2pdma_page(sg_page(req->sg))) op_flags |= REQ_NOMERGE; sector = le64_to_cpu(req->cmd->rw.slba); sector <<= (req->ns->blksize_shift - 9); if (req->data_len <= NVMET_MAX_INLINE_DATA_LEN) { bio = &req->b.inline_bio; bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); } else { bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); } bio_set_dev(bio, req->ns->bdev); bio->bi_iter.bi_sector = sector; bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; bio_set_op_attrs(bio, op, op_flags); for_each_sg(req->sg, sg, req->sg_cnt, i) { while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) != sg->length) { struct bio *prev = bio; bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); bio_set_dev(bio, req->ns->bdev); bio->bi_iter.bi_sector = sector; bio_set_op_attrs(bio, op, op_flags); bio_chain(bio, prev); submit_bio(prev); } sector += sg->length >> 9; sg_cnt--; } submit_bio(bio); } static void nvmet_bdev_execute_flush(struct nvmet_req *req) { struct bio *bio = &req->b.inline_bio; bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); bio_set_dev(bio, req->ns->bdev); bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; submit_bio(bio); } u16 nvmet_bdev_flush(struct nvmet_req *req) { if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL)) return NVME_SC_INTERNAL | NVME_SC_DNR; return 0; } static u16 nvmet_bdev_discard_range(struct nvmet_req *req, struct nvme_dsm_range *range, struct bio **bio) { struct nvmet_ns *ns = req->ns; int ret; ret = __blkdev_issue_discard(ns->bdev, le64_to_cpu(range->slba) << (ns->blksize_shift - 9), le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), GFP_KERNEL, 0, bio); if (ret && ret != -EOPNOTSUPP) { req->error_slba = le64_to_cpu(range->slba); return errno_to_nvme_status(req, ret); } return NVME_SC_SUCCESS; } static void nvmet_bdev_execute_discard(struct nvmet_req *req) { struct nvme_dsm_range range; struct bio *bio = NULL; int i; u16 status; for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, sizeof(range)); if (status) break; status = nvmet_bdev_discard_range(req, &range, &bio); if (status) break; } if (bio) { bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; if (status) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } else { submit_bio(bio); } } else { nvmet_req_complete(req, status); } } static void nvmet_bdev_execute_dsm(struct nvmet_req *req) { switch (le32_to_cpu(req->cmd->dsm.attributes)) { case NVME_DSMGMT_AD: nvmet_bdev_execute_discard(req); return; case NVME_DSMGMT_IDR: case NVME_DSMGMT_IDW: default: /* Not supported yet */ nvmet_req_complete(req, 0); return; } } static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) { struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; struct bio *bio = NULL; sector_t sector; sector_t nr_sector; int ret; sector = le64_to_cpu(write_zeroes->slba) << (req->ns->blksize_shift - 9); nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << (req->ns->blksize_shift - 9)); ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, GFP_KERNEL, &bio, 0); if (bio) { bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; submit_bio(bio); } else { nvmet_req_complete(req, errno_to_nvme_status(req, ret)); } } u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) { struct nvme_command *cmd = req->cmd; switch (cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_write: req->execute = nvmet_bdev_execute_rw; req->data_len = nvmet_rw_len(req); return 0; case nvme_cmd_flush: req->execute = nvmet_bdev_execute_flush; req->data_len = 0; return 0; case nvme_cmd_dsm: req->execute = nvmet_bdev_execute_dsm; req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) * sizeof(struct nvme_dsm_range); return 0; case nvme_cmd_write_zeroes: req->execute = nvmet_bdev_execute_write_zeroes; req->data_len = 0; return 0; default: pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, req->sq->qid); req->error_loc = offsetof(struct nvme_common_command, opcode); return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1