Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Björn Helgaas | 2094 | 47.04% | 38 | 55.07% |
Len Brown | 1719 | 38.61% | 6 | 8.70% |
Michael Karcher | 132 | 2.96% | 1 | 1.45% |
Rafael J. Wysocki | 125 | 2.81% | 1 | 1.45% |
Robert Moore | 89 | 2.00% | 2 | 2.90% |
Jagadish Krishnamoorthy | 73 | 1.64% | 1 | 1.45% |
Rui Zhang | 49 | 1.10% | 1 | 1.45% |
Vojtech Pavlik | 37 | 0.83% | 1 | 1.45% |
Lv Zheng | 24 | 0.54% | 1 | 1.45% |
Jiang Liu | 23 | 0.52% | 1 | 1.45% |
Joe Perches | 15 | 0.34% | 1 | 1.45% |
Thomas Renninger | 11 | 0.25% | 1 | 1.45% |
Yinghai Lu | 10 | 0.22% | 1 | 1.45% |
Witold Szczeponik | 9 | 0.20% | 1 | 1.45% |
Matthieu CASTET | 7 | 0.16% | 2 | 2.90% |
Erik Schmauss | 7 | 0.16% | 1 | 1.45% |
Fabian Frederick | 6 | 0.13% | 2 | 2.90% |
Harb Abdulhamid | 5 | 0.11% | 1 | 1.45% |
Liu ShuoX | 4 | 0.09% | 1 | 1.45% |
Andy Shevchenko | 4 | 0.09% | 1 | 1.45% |
Yakui Zhao | 3 | 0.07% | 1 | 1.45% |
Tejun Heo | 3 | 0.07% | 1 | 1.45% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.45% |
Robert P. J. Day | 1 | 0.02% | 1 | 1.45% |
Total | 4452 | 69 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * pnpacpi -- PnP ACPI driver * * Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr> * Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com> * Copyright (C) 2008 Hewlett-Packard Development Company, L.P. * Bjorn Helgaas <bjorn.helgaas@hp.com> */ #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/pnp.h> #include <linux/slab.h> #include "../base.h" #include "pnpacpi.h" static void decode_irq_flags(struct pnp_dev *dev, int flags, u8 *triggering, u8 *polarity, u8 *shareable) { switch (flags & (IORESOURCE_IRQ_LOWLEVEL | IORESOURCE_IRQ_HIGHLEVEL | IORESOURCE_IRQ_LOWEDGE | IORESOURCE_IRQ_HIGHEDGE)) { case IORESOURCE_IRQ_LOWLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; case IORESOURCE_IRQ_LOWEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; default: dev_err(&dev->dev, "can't encode invalid IRQ mode %#x\n", flags); *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; } if (flags & IORESOURCE_IRQ_SHAREABLE) *shareable = ACPI_SHARED; else *shareable = ACPI_EXCLUSIVE; } static int dma_flags(struct pnp_dev *dev, int type, int bus_master, int transfer) { int flags = 0; if (bus_master) flags |= IORESOURCE_DMA_MASTER; switch (type) { case ACPI_COMPATIBILITY: flags |= IORESOURCE_DMA_COMPATIBLE; break; case ACPI_TYPE_A: flags |= IORESOURCE_DMA_TYPEA; break; case ACPI_TYPE_B: flags |= IORESOURCE_DMA_TYPEB; break; case ACPI_TYPE_F: flags |= IORESOURCE_DMA_TYPEF; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_COMPATIBLE; dev_err(&dev->dev, "invalid DMA type %d\n", type); } switch (transfer) { case ACPI_TRANSFER_8: flags |= IORESOURCE_DMA_8BIT; break; case ACPI_TRANSFER_8_16: flags |= IORESOURCE_DMA_8AND16BIT; break; case ACPI_TRANSFER_16: flags |= IORESOURCE_DMA_16BIT; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_8AND16BIT; dev_err(&dev->dev, "invalid DMA transfer type %d\n", transfer); } return flags; } /* * Allocated Resources */ static void pnpacpi_add_irqresource(struct pnp_dev *dev, struct resource *r) { if (!(r->flags & IORESOURCE_DISABLED)) pcibios_penalize_isa_irq(r->start, 1); pnp_add_resource(dev, r); } /* * Device CSRs that do not appear in PCI config space should be described * via ACPI. This would normally be done with Address Space Descriptors * marked as "consumer-only," but old versions of Windows and Linux ignore * the producer/consumer flag, so HP invented a vendor-defined resource to * describe the location and size of CSR space. */ static struct acpi_vendor_uuid hp_ccsr_uuid = { .subtype = 2, .data = { 0xf9, 0xad, 0xe9, 0x69, 0x4f, 0x92, 0x5f, 0xab, 0xf6, 0x4a, 0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad }, }; static int vendor_resource_matches(struct pnp_dev *dev, struct acpi_resource_vendor_typed *vendor, struct acpi_vendor_uuid *match, int expected_len) { int uuid_len = sizeof(vendor->uuid); u8 uuid_subtype = vendor->uuid_subtype; u8 *uuid = vendor->uuid; int actual_len; /* byte_length includes uuid_subtype and uuid */ actual_len = vendor->byte_length - uuid_len - 1; if (uuid_subtype == match->subtype && uuid_len == sizeof(match->data) && memcmp(uuid, match->data, uuid_len) == 0) { if (expected_len && expected_len != actual_len) { dev_err(&dev->dev, "wrong vendor descriptor size; expected %d, found %d bytes\n", expected_len, actual_len); return 0; } return 1; } return 0; } static void pnpacpi_parse_allocated_vendor(struct pnp_dev *dev, struct acpi_resource_vendor_typed *vendor) { if (vendor_resource_matches(dev, vendor, &hp_ccsr_uuid, 16)) { u64 start, length; memcpy(&start, vendor->byte_data, sizeof(start)); memcpy(&length, vendor->byte_data + 8, sizeof(length)); pnp_add_mem_resource(dev, start, start + length - 1, 0); } } static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res, void *data) { struct pnp_dev *dev = data; struct acpi_resource_dma *dma; struct acpi_resource_vendor_typed *vendor_typed; struct acpi_resource_gpio *gpio; struct resource_win win = {{0}, 0}; struct resource *r = &win.res; int i, flags; if (acpi_dev_resource_address_space(res, &win) || acpi_dev_resource_ext_address_space(res, &win)) { pnp_add_resource(dev, &win.res); return AE_OK; } r->flags = 0; if (acpi_dev_resource_interrupt(res, 0, r)) { pnpacpi_add_irqresource(dev, r); for (i = 1; acpi_dev_resource_interrupt(res, i, r); i++) pnpacpi_add_irqresource(dev, r); if (i > 1) { /* * The IRQ encoder puts a single interrupt in each * descriptor, so if a _CRS descriptor has more than * one interrupt, we won't be able to re-encode it. */ if (pnp_can_write(dev)) { dev_warn(&dev->dev, "multiple interrupts in _CRS descriptor; configuration can't be changed\n"); dev->capabilities &= ~PNP_WRITE; } } return AE_OK; } else if (acpi_gpio_get_irq_resource(res, &gpio)) { /* * If the resource is GpioInt() type then extract the IRQ * from GPIO resource and fill it into IRQ resource type. */ i = acpi_dev_gpio_irq_get(dev->data, 0); if (i >= 0) { flags = acpi_dev_irq_flags(gpio->triggering, gpio->polarity, gpio->shareable); } else { flags = IORESOURCE_DISABLED; } pnp_add_irq_resource(dev, i, flags); return AE_OK; } else if (r->flags & IORESOURCE_DISABLED) { pnp_add_irq_resource(dev, 0, IORESOURCE_DISABLED); return AE_OK; } switch (res->type) { case ACPI_RESOURCE_TYPE_MEMORY24: case ACPI_RESOURCE_TYPE_MEMORY32: case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: if (acpi_dev_resource_memory(res, r)) pnp_add_resource(dev, r); break; case ACPI_RESOURCE_TYPE_IO: case ACPI_RESOURCE_TYPE_FIXED_IO: if (acpi_dev_resource_io(res, r)) pnp_add_resource(dev, r); break; case ACPI_RESOURCE_TYPE_DMA: dma = &res->data.dma; if (dma->channel_count > 0 && dma->channels[0] != (u8) -1) flags = dma_flags(dev, dma->type, dma->bus_master, dma->transfer); else flags = IORESOURCE_DISABLED; pnp_add_dma_resource(dev, dma->channels[0], flags); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: break; case ACPI_RESOURCE_TYPE_VENDOR: vendor_typed = &res->data.vendor_typed; pnpacpi_parse_allocated_vendor(dev, vendor_typed); break; case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; case ACPI_RESOURCE_TYPE_SERIAL_BUS: /* serial bus connections (I2C/SPI/UART) are not pnp */ break; default: dev_warn(&dev->dev, "unknown resource type %d in _CRS\n", res->type); return AE_ERROR; } return AE_OK; } int pnpacpi_parse_allocated_resource(struct pnp_dev *dev) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; acpi_status status; pnp_dbg(&dev->dev, "parse allocated resources\n"); pnp_init_resources(dev); status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_allocated_resource, dev); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) dev_err(&dev->dev, "can't evaluate _CRS: %d", status); return -EPERM; } return 0; } static __init void pnpacpi_parse_dma_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_dma *p) { int i; unsigned char map = 0, flags; for (i = 0; i < p->channel_count; i++) map |= 1 << p->channels[i]; flags = dma_flags(dev, p->type, p->bus_master, p->transfer); pnp_register_dma_resource(dev, option_flags, map, flags); } static __init void pnpacpi_parse_irq_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_irq *p) { int i; pnp_irq_mask_t map; unsigned char flags; bitmap_zero(map.bits, PNP_IRQ_NR); for (i = 0; i < p->interrupt_count; i++) if (p->interrupts[i]) __set_bit(p->interrupts[i], map.bits); flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->shareable); pnp_register_irq_resource(dev, option_flags, &map, flags); } static __init void pnpacpi_parse_ext_irq_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_extended_irq *p) { int i; pnp_irq_mask_t map; unsigned char flags; bitmap_zero(map.bits, PNP_IRQ_NR); for (i = 0; i < p->interrupt_count; i++) { if (p->interrupts[i]) { if (p->interrupts[i] < PNP_IRQ_NR) __set_bit(p->interrupts[i], map.bits); else dev_err(&dev->dev, "ignoring IRQ %d option (too large for %d entry bitmap)\n", p->interrupts[i], PNP_IRQ_NR); } } flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->shareable); pnp_register_irq_resource(dev, option_flags, &map, flags); } static __init void pnpacpi_parse_port_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_io *io) { unsigned char flags = 0; if (io->io_decode == ACPI_DECODE_16) flags = IORESOURCE_IO_16BIT_ADDR; pnp_register_port_resource(dev, option_flags, io->minimum, io->maximum, io->alignment, io->address_length, flags); } static __init void pnpacpi_parse_fixed_port_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_fixed_io *io) { pnp_register_port_resource(dev, option_flags, io->address, io->address, 0, io->address_length, IORESOURCE_IO_FIXED); } static __init void pnpacpi_parse_mem24_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_memory24 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum, p->alignment, p->address_length, flags); } static __init void pnpacpi_parse_mem32_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_memory32 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum, p->alignment, p->address_length, flags); } static __init void pnpacpi_parse_fixed_mem32_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_fixed_memory32 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->address, p->address, 0, p->address_length, flags); } static __init void pnpacpi_parse_address_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource *r) { struct acpi_resource_address64 addr, *p = &addr; acpi_status status; unsigned char flags = 0; status = acpi_resource_to_address64(r, p); if (ACPI_FAILURE(status)) { dev_warn(&dev->dev, "can't convert resource type %d\n", r->type); return; } if (p->resource_type == ACPI_MEMORY_RANGE) { if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->address.minimum, p->address.minimum, 0, p->address.address_length, flags); } else if (p->resource_type == ACPI_IO_RANGE) pnp_register_port_resource(dev, option_flags, p->address.minimum, p->address.minimum, 0, p->address.address_length, IORESOURCE_IO_FIXED); } static __init void pnpacpi_parse_ext_address_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource *r) { struct acpi_resource_extended_address64 *p = &r->data.ext_address64; unsigned char flags = 0; if (p->resource_type == ACPI_MEMORY_RANGE) { if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->address.minimum, p->address.minimum, 0, p->address.address_length, flags); } else if (p->resource_type == ACPI_IO_RANGE) pnp_register_port_resource(dev, option_flags, p->address.minimum, p->address.minimum, 0, p->address.address_length, IORESOURCE_IO_FIXED); } struct acpipnp_parse_option_s { struct pnp_dev *dev; unsigned int option_flags; }; static __init acpi_status pnpacpi_option_resource(struct acpi_resource *res, void *data) { int priority; struct acpipnp_parse_option_s *parse_data = data; struct pnp_dev *dev = parse_data->dev; unsigned int option_flags = parse_data->option_flags; switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: pnpacpi_parse_irq_option(dev, option_flags, &res->data.irq); break; case ACPI_RESOURCE_TYPE_DMA: pnpacpi_parse_dma_option(dev, option_flags, &res->data.dma); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (res->data.start_dpf.compatibility_priority) { case ACPI_GOOD_CONFIGURATION: priority = PNP_RES_PRIORITY_PREFERRED; break; case ACPI_ACCEPTABLE_CONFIGURATION: priority = PNP_RES_PRIORITY_ACCEPTABLE; break; case ACPI_SUB_OPTIMAL_CONFIGURATION: priority = PNP_RES_PRIORITY_FUNCTIONAL; break; default: priority = PNP_RES_PRIORITY_INVALID; break; } parse_data->option_flags = pnp_new_dependent_set(dev, priority); break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: parse_data->option_flags = 0; break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_parse_port_option(dev, option_flags, &res->data.io); break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_parse_fixed_port_option(dev, option_flags, &res->data.fixed_io); break; case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_parse_mem24_option(dev, option_flags, &res->data.memory24); break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_parse_mem32_option(dev, option_flags, &res->data.memory32); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_parse_fixed_mem32_option(dev, option_flags, &res->data.fixed_memory32); break; case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: pnpacpi_parse_address_option(dev, option_flags, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: pnpacpi_parse_ext_address_option(dev, option_flags, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnpacpi_parse_ext_irq_option(dev, option_flags, &res->data.extended_irq); break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; default: dev_warn(&dev->dev, "unknown resource type %d in _PRS\n", res->type); return AE_ERROR; } return AE_OK; } int __init pnpacpi_parse_resource_option_data(struct pnp_dev *dev) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; acpi_status status; struct acpipnp_parse_option_s parse_data; pnp_dbg(&dev->dev, "parse resource options\n"); parse_data.dev = dev; parse_data.option_flags = 0; status = acpi_walk_resources(handle, METHOD_NAME__PRS, pnpacpi_option_resource, &parse_data); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) dev_err(&dev->dev, "can't evaluate _PRS: %d", status); return -EPERM; } return 0; } static int pnpacpi_supported_resource(struct acpi_resource *res) { switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: case ACPI_RESOURCE_TYPE_DMA: case ACPI_RESOURCE_TYPE_IO: case ACPI_RESOURCE_TYPE_FIXED_IO: case ACPI_RESOURCE_TYPE_MEMORY24: case ACPI_RESOURCE_TYPE_MEMORY32: case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: return 1; } return 0; } /* * Set resource */ static acpi_status pnpacpi_count_resources(struct acpi_resource *res, void *data) { int *res_cnt = data; if (pnpacpi_supported_resource(res)) (*res_cnt)++; return AE_OK; } static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data) { struct acpi_resource **resource = data; if (pnpacpi_supported_resource(res)) { (*resource)->type = res->type; (*resource)->length = sizeof(struct acpi_resource); if (res->type == ACPI_RESOURCE_TYPE_IRQ) (*resource)->data.irq.descriptor_length = res->data.irq.descriptor_length; (*resource)++; } return AE_OK; } int pnpacpi_build_resource_template(struct pnp_dev *dev, struct acpi_buffer *buffer) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; struct acpi_resource *resource; int res_cnt = 0; acpi_status status; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_count_resources, &res_cnt); if (ACPI_FAILURE(status)) { dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status); return -EINVAL; } if (!res_cnt) return -EINVAL; buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1; buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL); if (!buffer->pointer) return -ENOMEM; resource = (struct acpi_resource *)buffer->pointer; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_type_resources, &resource); if (ACPI_FAILURE(status)) { kfree(buffer->pointer); dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status); return -EINVAL; } /* resource will pointer the end resource now */ resource->type = ACPI_RESOURCE_TYPE_END_TAG; resource->length = sizeof(struct acpi_resource); return 0; } static void pnpacpi_encode_irq(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_irq *irq = &resource->data.irq; u8 triggering, polarity, shareable; if (!pnp_resource_enabled(p)) { irq->interrupt_count = 0; pnp_dbg(&dev->dev, " encode irq (%s)\n", p ? "disabled" : "missing"); return; } decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable); irq->triggering = triggering; irq->polarity = polarity; irq->shareable = shareable; irq->interrupt_count = 1; irq->interrupts[0] = p->start; pnp_dbg(&dev->dev, " encode irq %d %s %s %s (%d-byte descriptor)\n", (int) p->start, triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge", polarity == ACPI_ACTIVE_LOW ? "low" : "high", irq->shareable == ACPI_SHARED ? "shared" : "exclusive", irq->descriptor_length); } static void pnpacpi_encode_ext_irq(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_extended_irq *extended_irq = &resource->data.extended_irq; u8 triggering, polarity, shareable; if (!pnp_resource_enabled(p)) { extended_irq->interrupt_count = 0; pnp_dbg(&dev->dev, " encode extended irq (%s)\n", p ? "disabled" : "missing"); return; } decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable); extended_irq->producer_consumer = ACPI_CONSUMER; extended_irq->triggering = triggering; extended_irq->polarity = polarity; extended_irq->shareable = shareable; extended_irq->interrupt_count = 1; extended_irq->interrupts[0] = p->start; pnp_dbg(&dev->dev, " encode irq %d %s %s %s\n", (int) p->start, triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge", polarity == ACPI_ACTIVE_LOW ? "low" : "high", extended_irq->shareable == ACPI_SHARED ? "shared" : "exclusive"); } static void pnpacpi_encode_dma(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_dma *dma = &resource->data.dma; if (!pnp_resource_enabled(p)) { dma->channel_count = 0; pnp_dbg(&dev->dev, " encode dma (%s)\n", p ? "disabled" : "missing"); return; } /* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */ switch (p->flags & IORESOURCE_DMA_SPEED_MASK) { case IORESOURCE_DMA_TYPEA: dma->type = ACPI_TYPE_A; break; case IORESOURCE_DMA_TYPEB: dma->type = ACPI_TYPE_B; break; case IORESOURCE_DMA_TYPEF: dma->type = ACPI_TYPE_F; break; default: dma->type = ACPI_COMPATIBILITY; } switch (p->flags & IORESOURCE_DMA_TYPE_MASK) { case IORESOURCE_DMA_8BIT: dma->transfer = ACPI_TRANSFER_8; break; case IORESOURCE_DMA_8AND16BIT: dma->transfer = ACPI_TRANSFER_8_16; break; default: dma->transfer = ACPI_TRANSFER_16; } dma->bus_master = !!(p->flags & IORESOURCE_DMA_MASTER); dma->channel_count = 1; dma->channels[0] = p->start; pnp_dbg(&dev->dev, " encode dma %d " "type %#x transfer %#x master %d\n", (int) p->start, dma->type, dma->transfer, dma->bus_master); } static void pnpacpi_encode_io(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_io *io = &resource->data.io; if (pnp_resource_enabled(p)) { /* Note: pnp_assign_port copies pnp_port->flags into p->flags */ io->io_decode = (p->flags & IORESOURCE_IO_16BIT_ADDR) ? ACPI_DECODE_16 : ACPI_DECODE_10; io->minimum = p->start; io->maximum = p->end; io->alignment = 0; /* Correct? */ io->address_length = resource_size(p); } else { io->minimum = 0; io->address_length = 0; } pnp_dbg(&dev->dev, " encode io %#x-%#x decode %#x\n", io->minimum, io->minimum + io->address_length - 1, io->io_decode); } static void pnpacpi_encode_fixed_io(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_fixed_io *fixed_io = &resource->data.fixed_io; if (pnp_resource_enabled(p)) { fixed_io->address = p->start; fixed_io->address_length = resource_size(p); } else { fixed_io->address = 0; fixed_io->address_length = 0; } pnp_dbg(&dev->dev, " encode fixed_io %#x-%#x\n", fixed_io->address, fixed_io->address + fixed_io->address_length - 1); } static void pnpacpi_encode_mem24(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_memory24 *memory24 = &resource->data.memory24; if (pnp_resource_enabled(p)) { /* Note: pnp_assign_mem copies pnp_mem->flags into p->flags */ memory24->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; memory24->minimum = p->start; memory24->maximum = p->end; memory24->alignment = 0; memory24->address_length = resource_size(p); } else { memory24->minimum = 0; memory24->address_length = 0; } pnp_dbg(&dev->dev, " encode mem24 %#x-%#x write_protect %#x\n", memory24->minimum, memory24->minimum + memory24->address_length - 1, memory24->write_protect); } static void pnpacpi_encode_mem32(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_memory32 *memory32 = &resource->data.memory32; if (pnp_resource_enabled(p)) { memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; memory32->minimum = p->start; memory32->maximum = p->end; memory32->alignment = 0; memory32->address_length = resource_size(p); } else { memory32->minimum = 0; memory32->alignment = 0; } pnp_dbg(&dev->dev, " encode mem32 %#x-%#x write_protect %#x\n", memory32->minimum, memory32->minimum + memory32->address_length - 1, memory32->write_protect); } static void pnpacpi_encode_fixed_mem32(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_fixed_memory32 *fixed_memory32 = &resource->data.fixed_memory32; if (pnp_resource_enabled(p)) { fixed_memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; fixed_memory32->address = p->start; fixed_memory32->address_length = resource_size(p); } else { fixed_memory32->address = 0; fixed_memory32->address_length = 0; } pnp_dbg(&dev->dev, " encode fixed_mem32 %#x-%#x write_protect %#x\n", fixed_memory32->address, fixed_memory32->address + fixed_memory32->address_length - 1, fixed_memory32->write_protect); } int pnpacpi_encode_resources(struct pnp_dev *dev, struct acpi_buffer *buffer) { int i = 0; /* pnpacpi_build_resource_template allocates extra mem */ int res_cnt = (buffer->length - 1) / sizeof(struct acpi_resource) - 1; struct acpi_resource *resource = buffer->pointer; unsigned int port = 0, irq = 0, dma = 0, mem = 0; pnp_dbg(&dev->dev, "encode %d resources\n", res_cnt); while (i < res_cnt) { switch (resource->type) { case ACPI_RESOURCE_TYPE_IRQ: pnpacpi_encode_irq(dev, resource, pnp_get_resource(dev, IORESOURCE_IRQ, irq)); irq++; break; case ACPI_RESOURCE_TYPE_DMA: pnpacpi_encode_dma(dev, resource, pnp_get_resource(dev, IORESOURCE_DMA, dma)); dma++; break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_encode_io(dev, resource, pnp_get_resource(dev, IORESOURCE_IO, port)); port++; break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_encode_fixed_io(dev, resource, pnp_get_resource(dev, IORESOURCE_IO, port)); port++; break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_encode_mem24(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_encode_mem32(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_encode_fixed_mem32(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnpacpi_encode_ext_irq(dev, resource, pnp_get_resource(dev, IORESOURCE_IRQ, irq)); irq++; break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: default: /* other type */ dev_warn(&dev->dev, "can't encode unknown resource type %d\n", resource->type); return -EINVAL; } resource++; i++; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1