Contributors: 1
Author Tokens Token Proportion Commits Commit Proportion
Yash Shah 1493 100.00% 1 100.00%
Total 1493 1


// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017-2018 SiFive
 * For SiFive's PWM IP block documentation please refer Chapter 14 of
 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
 *
 * Limitations:
 * - When changing both duty cycle and period, we cannot prevent in
 *   software that the output might produce a period with mixed
 *   settings (new period length and old duty cycle).
 * - The hardware cannot generate a 100% duty cycle.
 * - The hardware generates only inverted output.
 */
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/bitfield.h>

/* Register offsets */
#define PWM_SIFIVE_PWMCFG		0x0
#define PWM_SIFIVE_PWMCOUNT		0x8
#define PWM_SIFIVE_PWMS			0x10
#define PWM_SIFIVE_PWMCMP0		0x20

/* PWMCFG fields */
#define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
#define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
#define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
#define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
#define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
#define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
#define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
#define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
#define PWM_SIFIVE_PWMCFG_IP		BIT(28)

/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
#define PWM_SIFIVE_SIZE_PWMCMP		4
#define PWM_SIFIVE_CMPWIDTH		16
#define PWM_SIFIVE_DEFAULT_PERIOD	10000000

struct pwm_sifive_ddata {
	struct pwm_chip	chip;
	struct mutex lock; /* lock to protect user_count */
	struct notifier_block notifier;
	struct clk *clk;
	void __iomem *regs;
	unsigned int real_period;
	unsigned int approx_period;
	int user_count;
};

static inline
struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
{
	return container_of(c, struct pwm_sifive_ddata, chip);
}

static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);

	mutex_lock(&ddata->lock);
	ddata->user_count++;
	mutex_unlock(&ddata->lock);

	return 0;
}

static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);

	mutex_lock(&ddata->lock);
	ddata->user_count--;
	mutex_unlock(&ddata->lock);
}

static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
				    unsigned long rate)
{
	unsigned long long num;
	unsigned long scale_pow;
	int scale;
	u32 val;
	/*
	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
	 * period length is using pwmscale which provides the number of bits the
	 * counter is shifted before being feed to the comparators. A period
	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
	 */
	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);

	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);

	/* As scale <= 15 the shift operation cannot overflow. */
	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
	ddata->real_period = div64_ul(num, rate);
	dev_dbg(ddata->chip.dev,
		"New real_period = %u ns\n", ddata->real_period);
}

static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
				 struct pwm_state *state)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	u32 duty, val;

	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
		     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);

	state->enabled = duty > 0;

	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
		state->enabled = false;

	state->period = ddata->real_period;
	state->duty_cycle =
		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
	state->polarity = PWM_POLARITY_INVERSED;
}

static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	int ret;

	if (enable) {
		ret = clk_enable(ddata->clk);
		if (ret) {
			dev_err(ddata->chip.dev, "Enable clk failed\n");
			return ret;
		}
	}

	if (!enable)
		clk_disable(ddata->clk);

	return 0;
}

static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			    struct pwm_state *state)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	struct pwm_state cur_state;
	unsigned int duty_cycle;
	unsigned long long num;
	bool enabled;
	int ret = 0;
	u32 frac;

	if (state->polarity != PWM_POLARITY_INVERSED)
		return -EINVAL;

	ret = clk_enable(ddata->clk);
	if (ret) {
		dev_err(ddata->chip.dev, "Enable clk failed\n");
		return ret;
	}

	mutex_lock(&ddata->lock);
	cur_state = pwm->state;
	enabled = cur_state.enabled;

	duty_cycle = state->duty_cycle;
	if (!state->enabled)
		duty_cycle = 0;

	/*
	 * The problem of output producing mixed setting as mentioned at top,
	 * occurs here. To minimize the window for this problem, we are
	 * calculating the register values first and then writing them
	 * consecutively
	 */
	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
	frac = DIV_ROUND_CLOSEST_ULL(num, state->period);
	/* The hardware cannot generate a 100% duty cycle */
	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);

	if (state->period != ddata->approx_period) {
		if (ddata->user_count != 1) {
			ret = -EBUSY;
			goto exit;
		}
		ddata->approx_period = state->period;
		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
	}

	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
	       pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);

	if (state->enabled != enabled)
		pwm_sifive_enable(chip, state->enabled);

exit:
	clk_disable(ddata->clk);
	mutex_unlock(&ddata->lock);
	return ret;
}

static const struct pwm_ops pwm_sifive_ops = {
	.request = pwm_sifive_request,
	.free = pwm_sifive_free,
	.get_state = pwm_sifive_get_state,
	.apply = pwm_sifive_apply,
	.owner = THIS_MODULE,
};

static int pwm_sifive_clock_notifier(struct notifier_block *nb,
				     unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct pwm_sifive_ddata *ddata =
		container_of(nb, struct pwm_sifive_ddata, notifier);

	if (event == POST_RATE_CHANGE)
		pwm_sifive_update_clock(ddata, ndata->new_rate);

	return NOTIFY_OK;
}

static int pwm_sifive_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct pwm_sifive_ddata *ddata;
	struct pwm_chip *chip;
	struct resource *res;
	int ret;

	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
	if (!ddata)
		return -ENOMEM;

	mutex_init(&ddata->lock);
	chip = &ddata->chip;
	chip->dev = dev;
	chip->ops = &pwm_sifive_ops;
	chip->of_xlate = of_pwm_xlate_with_flags;
	chip->of_pwm_n_cells = 3;
	chip->base = -1;
	chip->npwm = 4;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ddata->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(ddata->regs)) {
		dev_err(dev, "Unable to map IO resources\n");
		return PTR_ERR(ddata->regs);
	}

	ddata->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(ddata->clk)) {
		if (PTR_ERR(ddata->clk) != -EPROBE_DEFER)
			dev_err(dev, "Unable to find controller clock\n");
		return PTR_ERR(ddata->clk);
	}

	ret = clk_prepare_enable(ddata->clk);
	if (ret) {
		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
		return ret;
	}

	/* Watch for changes to underlying clock frequency */
	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
	if (ret) {
		dev_err(dev, "failed to register clock notifier: %d\n", ret);
		goto disable_clk;
	}

	ret = pwmchip_add(chip);
	if (ret < 0) {
		dev_err(dev, "cannot register PWM: %d\n", ret);
		goto unregister_clk;
	}

	platform_set_drvdata(pdev, ddata);
	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);

	return 0;

unregister_clk:
	clk_notifier_unregister(ddata->clk, &ddata->notifier);
disable_clk:
	clk_disable_unprepare(ddata->clk);

	return ret;
}

static int pwm_sifive_remove(struct platform_device *dev)
{
	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
	bool is_enabled = false;
	struct pwm_device *pwm;
	int ret, ch;

	for (ch = 0; ch < ddata->chip.npwm; ch++) {
		pwm = &ddata->chip.pwms[ch];
		if (pwm->state.enabled) {
			is_enabled = true;
			break;
		}
	}
	if (is_enabled)
		clk_disable(ddata->clk);

	clk_disable_unprepare(ddata->clk);
	ret = pwmchip_remove(&ddata->chip);
	clk_notifier_unregister(ddata->clk, &ddata->notifier);

	return ret;
}

static const struct of_device_id pwm_sifive_of_match[] = {
	{ .compatible = "sifive,pwm0" },
	{},
};
MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);

static struct platform_driver pwm_sifive_driver = {
	.probe = pwm_sifive_probe,
	.remove = pwm_sifive_remove,
	.driver = {
		.name = "pwm-sifive",
		.of_match_table = pwm_sifive_of_match,
	},
};
module_platform_driver(pwm_sifive_driver);

MODULE_DESCRIPTION("SiFive PWM driver");
MODULE_LICENSE("GPL v2");