Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Bounine | 6667 | 82.27% | 36 | 69.23% |
Matt Porter | 1298 | 16.02% | 2 | 3.85% |
SF Markus Elfring | 116 | 1.43% | 5 | 9.62% |
Toshi Kani | 4 | 0.05% | 1 | 1.92% |
Zhang Wei | 4 | 0.05% | 1 | 1.92% |
Dan Carpenter | 3 | 0.04% | 1 | 1.92% |
Kumar Gala | 3 | 0.04% | 1 | 1.92% |
Randy Dunlap | 3 | 0.04% | 2 | 3.85% |
Tim Schmielau | 3 | 0.04% | 1 | 1.92% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.92% |
Uwe Kleine-König | 1 | 0.01% | 1 | 1.92% |
Total | 8104 | 52 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * RapidIO interconnect services * (RapidIO Interconnect Specification, http://www.rapidio.org) * * Copyright 2005 MontaVista Software, Inc. * Matt Porter <mporter@kernel.crashing.org> * * Copyright 2009 - 2013 Integrated Device Technology, Inc. * Alex Bounine <alexandre.bounine@idt.com> */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/rio.h> #include <linux/rio_drv.h> #include <linux/rio_ids.h> #include <linux/rio_regs.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/interrupt.h> #include "rio.h" /* * struct rio_pwrite - RIO portwrite event * @node: Node in list of doorbell events * @pwcback: Doorbell event callback * @context: Handler specific context to pass on event */ struct rio_pwrite { struct list_head node; int (*pwcback)(struct rio_mport *mport, void *context, union rio_pw_msg *msg, int step); void *context; }; MODULE_DESCRIPTION("RapidIO Subsystem Core"); MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>"); MODULE_LICENSE("GPL"); static int hdid[RIO_MAX_MPORTS]; static int ids_num; module_param_array(hdid, int, &ids_num, 0); MODULE_PARM_DESC(hdid, "Destination ID assignment to local RapidIO controllers"); static LIST_HEAD(rio_devices); static LIST_HEAD(rio_nets); static DEFINE_SPINLOCK(rio_global_list_lock); static LIST_HEAD(rio_mports); static LIST_HEAD(rio_scans); static DEFINE_MUTEX(rio_mport_list_lock); static unsigned char next_portid; static DEFINE_SPINLOCK(rio_mmap_lock); /** * rio_local_get_device_id - Get the base/extended device id for a port * @port: RIO master port from which to get the deviceid * * Reads the base/extended device id from the local device * implementing the master port. Returns the 8/16-bit device * id. */ u16 rio_local_get_device_id(struct rio_mport *port) { u32 result; rio_local_read_config_32(port, RIO_DID_CSR, &result); return (RIO_GET_DID(port->sys_size, result)); } EXPORT_SYMBOL_GPL(rio_local_get_device_id); /** * rio_query_mport - Query mport device attributes * @port: mport device to query * @mport_attr: mport attributes data structure * * Returns attributes of specified mport through the * pointer to attributes data structure. */ int rio_query_mport(struct rio_mport *port, struct rio_mport_attr *mport_attr) { if (!port->ops->query_mport) return -ENODATA; return port->ops->query_mport(port, mport_attr); } EXPORT_SYMBOL(rio_query_mport); /** * rio_alloc_net- Allocate and initialize a new RIO network data structure * @mport: Master port associated with the RIO network * * Allocates a RIO network structure, initializes per-network * list heads, and adds the associated master port to the * network list of associated master ports. Returns a * RIO network pointer on success or %NULL on failure. */ struct rio_net *rio_alloc_net(struct rio_mport *mport) { struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL); if (net) { INIT_LIST_HEAD(&net->node); INIT_LIST_HEAD(&net->devices); INIT_LIST_HEAD(&net->switches); INIT_LIST_HEAD(&net->mports); mport->net = net; } return net; } EXPORT_SYMBOL_GPL(rio_alloc_net); int rio_add_net(struct rio_net *net) { int err; err = device_register(&net->dev); if (err) return err; spin_lock(&rio_global_list_lock); list_add_tail(&net->node, &rio_nets); spin_unlock(&rio_global_list_lock); return 0; } EXPORT_SYMBOL_GPL(rio_add_net); void rio_free_net(struct rio_net *net) { spin_lock(&rio_global_list_lock); if (!list_empty(&net->node)) list_del(&net->node); spin_unlock(&rio_global_list_lock); if (net->release) net->release(net); device_unregister(&net->dev); } EXPORT_SYMBOL_GPL(rio_free_net); /** * rio_local_set_device_id - Set the base/extended device id for a port * @port: RIO master port * @did: Device ID value to be written * * Writes the base/extended device id from a device. */ void rio_local_set_device_id(struct rio_mport *port, u16 did) { rio_local_write_config_32(port, RIO_DID_CSR, RIO_SET_DID(port->sys_size, did)); } EXPORT_SYMBOL_GPL(rio_local_set_device_id); /** * rio_add_device- Adds a RIO device to the device model * @rdev: RIO device * * Adds the RIO device to the global device list and adds the RIO * device to the RIO device list. Creates the generic sysfs nodes * for an RIO device. */ int rio_add_device(struct rio_dev *rdev) { int err; atomic_set(&rdev->state, RIO_DEVICE_RUNNING); err = device_register(&rdev->dev); if (err) return err; spin_lock(&rio_global_list_lock); list_add_tail(&rdev->global_list, &rio_devices); if (rdev->net) { list_add_tail(&rdev->net_list, &rdev->net->devices); if (rdev->pef & RIO_PEF_SWITCH) list_add_tail(&rdev->rswitch->node, &rdev->net->switches); } spin_unlock(&rio_global_list_lock); return 0; } EXPORT_SYMBOL_GPL(rio_add_device); /* * rio_del_device - removes a RIO device from the device model * @rdev: RIO device * @state: device state to set during removal process * * Removes the RIO device to the kernel device list and subsystem's device list. * Clears sysfs entries for the removed device. */ void rio_del_device(struct rio_dev *rdev, enum rio_device_state state) { pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev)); atomic_set(&rdev->state, state); spin_lock(&rio_global_list_lock); list_del(&rdev->global_list); if (rdev->net) { list_del(&rdev->net_list); if (rdev->pef & RIO_PEF_SWITCH) { list_del(&rdev->rswitch->node); kfree(rdev->rswitch->route_table); } } spin_unlock(&rio_global_list_lock); device_unregister(&rdev->dev); } EXPORT_SYMBOL_GPL(rio_del_device); /** * rio_request_inb_mbox - request inbound mailbox service * @mport: RIO master port from which to allocate the mailbox resource * @dev_id: Device specific pointer to pass on event * @mbox: Mailbox number to claim * @entries: Number of entries in inbound mailbox queue * @minb: Callback to execute when inbound message is received * * Requests ownership of an inbound mailbox resource and binds * a callback function to the resource. Returns %0 on success. */ int rio_request_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries, void (*minb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)) { int rc = -ENOSYS; struct resource *res; if (!mport->ops->open_inb_mbox) goto out; res = kzalloc(sizeof(*res), GFP_KERNEL); if (res) { rio_init_mbox_res(res, mbox, mbox); /* Make sure this mailbox isn't in use */ rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE], res); if (rc < 0) { kfree(res); goto out; } mport->inb_msg[mbox].res = res; /* Hook the inbound message callback */ mport->inb_msg[mbox].mcback = minb; rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries); if (rc) { mport->inb_msg[mbox].mcback = NULL; mport->inb_msg[mbox].res = NULL; release_resource(res); kfree(res); } } else rc = -ENOMEM; out: return rc; } EXPORT_SYMBOL_GPL(rio_request_inb_mbox); /** * rio_release_inb_mbox - release inbound mailbox message service * @mport: RIO master port from which to release the mailbox resource * @mbox: Mailbox number to release * * Releases ownership of an inbound mailbox resource. Returns 0 * if the request has been satisfied. */ int rio_release_inb_mbox(struct rio_mport *mport, int mbox) { int rc; if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res) return -EINVAL; mport->ops->close_inb_mbox(mport, mbox); mport->inb_msg[mbox].mcback = NULL; rc = release_resource(mport->inb_msg[mbox].res); if (rc) return rc; kfree(mport->inb_msg[mbox].res); mport->inb_msg[mbox].res = NULL; return 0; } EXPORT_SYMBOL_GPL(rio_release_inb_mbox); /** * rio_request_outb_mbox - request outbound mailbox service * @mport: RIO master port from which to allocate the mailbox resource * @dev_id: Device specific pointer to pass on event * @mbox: Mailbox number to claim * @entries: Number of entries in outbound mailbox queue * @moutb: Callback to execute when outbound message is sent * * Requests ownership of an outbound mailbox resource and binds * a callback function to the resource. Returns 0 on success. */ int rio_request_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries, void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)) { int rc = -ENOSYS; struct resource *res; if (!mport->ops->open_outb_mbox) goto out; res = kzalloc(sizeof(*res), GFP_KERNEL); if (res) { rio_init_mbox_res(res, mbox, mbox); /* Make sure this outbound mailbox isn't in use */ rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE], res); if (rc < 0) { kfree(res); goto out; } mport->outb_msg[mbox].res = res; /* Hook the inbound message callback */ mport->outb_msg[mbox].mcback = moutb; rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries); if (rc) { mport->outb_msg[mbox].mcback = NULL; mport->outb_msg[mbox].res = NULL; release_resource(res); kfree(res); } } else rc = -ENOMEM; out: return rc; } EXPORT_SYMBOL_GPL(rio_request_outb_mbox); /** * rio_release_outb_mbox - release outbound mailbox message service * @mport: RIO master port from which to release the mailbox resource * @mbox: Mailbox number to release * * Releases ownership of an inbound mailbox resource. Returns 0 * if the request has been satisfied. */ int rio_release_outb_mbox(struct rio_mport *mport, int mbox) { int rc; if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res) return -EINVAL; mport->ops->close_outb_mbox(mport, mbox); mport->outb_msg[mbox].mcback = NULL; rc = release_resource(mport->outb_msg[mbox].res); if (rc) return rc; kfree(mport->outb_msg[mbox].res); mport->outb_msg[mbox].res = NULL; return 0; } EXPORT_SYMBOL_GPL(rio_release_outb_mbox); /** * rio_setup_inb_dbell - bind inbound doorbell callback * @mport: RIO master port to bind the doorbell callback * @dev_id: Device specific pointer to pass on event * @res: Doorbell message resource * @dinb: Callback to execute when doorbell is received * * Adds a doorbell resource/callback pair into a port's * doorbell event list. Returns 0 if the request has been * satisfied. */ static int rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res, void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst, u16 info)) { struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL); if (!dbell) return -ENOMEM; dbell->res = res; dbell->dinb = dinb; dbell->dev_id = dev_id; mutex_lock(&mport->lock); list_add_tail(&dbell->node, &mport->dbells); mutex_unlock(&mport->lock); return 0; } /** * rio_request_inb_dbell - request inbound doorbell message service * @mport: RIO master port from which to allocate the doorbell resource * @dev_id: Device specific pointer to pass on event * @start: Doorbell info range start * @end: Doorbell info range end * @dinb: Callback to execute when doorbell is received * * Requests ownership of an inbound doorbell resource and binds * a callback function to the resource. Returns 0 if the request * has been satisfied. */ int rio_request_inb_dbell(struct rio_mport *mport, void *dev_id, u16 start, u16 end, void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst, u16 info)) { int rc; struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL); if (res) { rio_init_dbell_res(res, start, end); /* Make sure these doorbells aren't in use */ rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE], res); if (rc < 0) { kfree(res); goto out; } /* Hook the doorbell callback */ rc = rio_setup_inb_dbell(mport, dev_id, res, dinb); } else rc = -ENOMEM; out: return rc; } EXPORT_SYMBOL_GPL(rio_request_inb_dbell); /** * rio_release_inb_dbell - release inbound doorbell message service * @mport: RIO master port from which to release the doorbell resource * @start: Doorbell info range start * @end: Doorbell info range end * * Releases ownership of an inbound doorbell resource and removes * callback from the doorbell event list. Returns 0 if the request * has been satisfied. */ int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end) { int rc = 0, found = 0; struct rio_dbell *dbell; mutex_lock(&mport->lock); list_for_each_entry(dbell, &mport->dbells, node) { if ((dbell->res->start == start) && (dbell->res->end == end)) { list_del(&dbell->node); found = 1; break; } } mutex_unlock(&mport->lock); /* If we can't find an exact match, fail */ if (!found) { rc = -EINVAL; goto out; } /* Release the doorbell resource */ rc = release_resource(dbell->res); /* Free the doorbell event */ kfree(dbell); out: return rc; } EXPORT_SYMBOL_GPL(rio_release_inb_dbell); /** * rio_request_outb_dbell - request outbound doorbell message range * @rdev: RIO device from which to allocate the doorbell resource * @start: Doorbell message range start * @end: Doorbell message range end * * Requests ownership of a doorbell message range. Returns a resource * if the request has been satisfied or %NULL on failure. */ struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start, u16 end) { struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL); if (res) { rio_init_dbell_res(res, start, end); /* Make sure these doorbells aren't in use */ if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res) < 0) { kfree(res); res = NULL; } } return res; } EXPORT_SYMBOL_GPL(rio_request_outb_dbell); /** * rio_release_outb_dbell - release outbound doorbell message range * @rdev: RIO device from which to release the doorbell resource * @res: Doorbell resource to be freed * * Releases ownership of a doorbell message range. Returns 0 if the * request has been satisfied. */ int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res) { int rc = release_resource(res); kfree(res); return rc; } EXPORT_SYMBOL_GPL(rio_release_outb_dbell); /** * rio_add_mport_pw_handler - add port-write message handler into the list * of mport specific pw handlers * @mport: RIO master port to bind the portwrite callback * @context: Handler specific context to pass on event * @pwcback: Callback to execute when portwrite is received * * Returns 0 if the request has been satisfied. */ int rio_add_mport_pw_handler(struct rio_mport *mport, void *context, int (*pwcback)(struct rio_mport *mport, void *context, union rio_pw_msg *msg, int step)) { struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL); if (!pwrite) return -ENOMEM; pwrite->pwcback = pwcback; pwrite->context = context; mutex_lock(&mport->lock); list_add_tail(&pwrite->node, &mport->pwrites); mutex_unlock(&mport->lock); return 0; } EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler); /** * rio_del_mport_pw_handler - remove port-write message handler from the list * of mport specific pw handlers * @mport: RIO master port to bind the portwrite callback * @context: Registered handler specific context to pass on event * @pwcback: Registered callback function * * Returns 0 if the request has been satisfied. */ int rio_del_mport_pw_handler(struct rio_mport *mport, void *context, int (*pwcback)(struct rio_mport *mport, void *context, union rio_pw_msg *msg, int step)) { int rc = -EINVAL; struct rio_pwrite *pwrite; mutex_lock(&mport->lock); list_for_each_entry(pwrite, &mport->pwrites, node) { if (pwrite->pwcback == pwcback && pwrite->context == context) { list_del(&pwrite->node); kfree(pwrite); rc = 0; break; } } mutex_unlock(&mport->lock); return rc; } EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler); /** * rio_request_inb_pwrite - request inbound port-write message service for * specific RapidIO device * @rdev: RIO device to which register inbound port-write callback routine * @pwcback: Callback routine to execute when port-write is received * * Binds a port-write callback function to the RapidIO device. * Returns 0 if the request has been satisfied. */ int rio_request_inb_pwrite(struct rio_dev *rdev, int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step)) { int rc = 0; spin_lock(&rio_global_list_lock); if (rdev->pwcback) rc = -ENOMEM; else rdev->pwcback = pwcback; spin_unlock(&rio_global_list_lock); return rc; } EXPORT_SYMBOL_GPL(rio_request_inb_pwrite); /** * rio_release_inb_pwrite - release inbound port-write message service * associated with specific RapidIO device * @rdev: RIO device which registered for inbound port-write callback * * Removes callback from the rio_dev structure. Returns 0 if the request * has been satisfied. */ int rio_release_inb_pwrite(struct rio_dev *rdev) { int rc = -ENOMEM; spin_lock(&rio_global_list_lock); if (rdev->pwcback) { rdev->pwcback = NULL; rc = 0; } spin_unlock(&rio_global_list_lock); return rc; } EXPORT_SYMBOL_GPL(rio_release_inb_pwrite); /** * rio_pw_enable - Enables/disables port-write handling by a master port * @mport: Master port associated with port-write handling * @enable: 1=enable, 0=disable */ void rio_pw_enable(struct rio_mport *mport, int enable) { if (mport->ops->pwenable) { mutex_lock(&mport->lock); if ((enable && ++mport->pwe_refcnt == 1) || (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0)) mport->ops->pwenable(mport, enable); mutex_unlock(&mport->lock); } } EXPORT_SYMBOL_GPL(rio_pw_enable); /** * rio_map_inb_region -- Map inbound memory region. * @mport: Master port. * @local: physical address of memory region to be mapped * @rbase: RIO base address assigned to this window * @size: Size of the memory region * @rflags: Flags for mapping. * * Return: 0 -- Success. * * This function will create the mapping from RIO space to local memory. */ int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local, u64 rbase, u32 size, u32 rflags) { int rc; unsigned long flags; if (!mport->ops->map_inb) return -1; spin_lock_irqsave(&rio_mmap_lock, flags); rc = mport->ops->map_inb(mport, local, rbase, size, rflags); spin_unlock_irqrestore(&rio_mmap_lock, flags); return rc; } EXPORT_SYMBOL_GPL(rio_map_inb_region); /** * rio_unmap_inb_region -- Unmap the inbound memory region * @mport: Master port * @lstart: physical address of memory region to be unmapped */ void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart) { unsigned long flags; if (!mport->ops->unmap_inb) return; spin_lock_irqsave(&rio_mmap_lock, flags); mport->ops->unmap_inb(mport, lstart); spin_unlock_irqrestore(&rio_mmap_lock, flags); } EXPORT_SYMBOL_GPL(rio_unmap_inb_region); /** * rio_map_outb_region -- Map outbound memory region. * @mport: Master port. * @destid: destination id window points to * @rbase: RIO base address window translates to * @size: Size of the memory region * @rflags: Flags for mapping. * @local: physical address of memory region mapped * * Return: 0 -- Success. * * This function will create the mapping from RIO space to local memory. */ int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase, u32 size, u32 rflags, dma_addr_t *local) { int rc; unsigned long flags; if (!mport->ops->map_outb) return -ENODEV; spin_lock_irqsave(&rio_mmap_lock, flags); rc = mport->ops->map_outb(mport, destid, rbase, size, rflags, local); spin_unlock_irqrestore(&rio_mmap_lock, flags); return rc; } EXPORT_SYMBOL_GPL(rio_map_outb_region); /** * rio_unmap_inb_region -- Unmap the inbound memory region * @mport: Master port * @destid: destination id mapping points to * @rstart: RIO base address window translates to */ void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart) { unsigned long flags; if (!mport->ops->unmap_outb) return; spin_lock_irqsave(&rio_mmap_lock, flags); mport->ops->unmap_outb(mport, destid, rstart); spin_unlock_irqrestore(&rio_mmap_lock, flags); } EXPORT_SYMBOL_GPL(rio_unmap_outb_region); /** * rio_mport_get_physefb - Helper function that returns register offset * for Physical Layer Extended Features Block. * @port: Master port to issue transaction * @local: Indicate a local master port or remote device access * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @rmap: pointer to location to store register map type info */ u32 rio_mport_get_physefb(struct rio_mport *port, int local, u16 destid, u8 hopcount, u32 *rmap) { u32 ext_ftr_ptr; u32 ftr_header; ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0); while (ext_ftr_ptr) { if (local) rio_local_read_config_32(port, ext_ftr_ptr, &ftr_header); else rio_mport_read_config_32(port, destid, hopcount, ext_ftr_ptr, &ftr_header); ftr_header = RIO_GET_BLOCK_ID(ftr_header); switch (ftr_header) { case RIO_EFB_SER_EP_ID: case RIO_EFB_SER_EP_REC_ID: case RIO_EFB_SER_EP_FREE_ID: case RIO_EFB_SER_EP_M1_ID: case RIO_EFB_SER_EP_SW_M1_ID: case RIO_EFB_SER_EPF_M1_ID: case RIO_EFB_SER_EPF_SW_M1_ID: *rmap = 1; return ext_ftr_ptr; case RIO_EFB_SER_EP_M2_ID: case RIO_EFB_SER_EP_SW_M2_ID: case RIO_EFB_SER_EPF_M2_ID: case RIO_EFB_SER_EPF_SW_M2_ID: *rmap = 2; return ext_ftr_ptr; default: break; } ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, ext_ftr_ptr); } return ext_ftr_ptr; } EXPORT_SYMBOL_GPL(rio_mport_get_physefb); /** * rio_get_comptag - Begin or continue searching for a RIO device by component tag * @comp_tag: RIO component tag to match * @from: Previous RIO device found in search, or %NULL for new search * * Iterates through the list of known RIO devices. If a RIO device is * found with a matching @comp_tag, a pointer to its device * structure is returned. Otherwise, %NULL is returned. A new search * is initiated by passing %NULL to the @from argument. Otherwise, if * @from is not %NULL, searches continue from next device on the global * list. */ struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from) { struct list_head *n; struct rio_dev *rdev; spin_lock(&rio_global_list_lock); n = from ? from->global_list.next : rio_devices.next; while (n && (n != &rio_devices)) { rdev = rio_dev_g(n); if (rdev->comp_tag == comp_tag) goto exit; n = n->next; } rdev = NULL; exit: spin_unlock(&rio_global_list_lock); return rdev; } EXPORT_SYMBOL_GPL(rio_get_comptag); /** * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port. * @rdev: Pointer to RIO device control structure * @pnum: Switch port number to set LOCKOUT bit * @lock: Operation : set (=1) or clear (=0) */ int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock) { u32 regval; rio_read_config_32(rdev, RIO_DEV_PORT_N_CTL_CSR(rdev, pnum), ®val); if (lock) regval |= RIO_PORT_N_CTL_LOCKOUT; else regval &= ~RIO_PORT_N_CTL_LOCKOUT; rio_write_config_32(rdev, RIO_DEV_PORT_N_CTL_CSR(rdev, pnum), regval); return 0; } EXPORT_SYMBOL_GPL(rio_set_port_lockout); /** * rio_enable_rx_tx_port - enable input receiver and output transmitter of * given port * @port: Master port associated with the RIO network * @local: local=1 select local port otherwise a far device is reached * @destid: Destination ID of the device to check host bit * @hopcount: Number of hops to reach the target * @port_num: Port (-number on switch) to enable on a far end device * * Returns 0 or 1 from on General Control Command and Status Register * (EXT_PTR+0x3C) */ int rio_enable_rx_tx_port(struct rio_mport *port, int local, u16 destid, u8 hopcount, u8 port_num) { #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS u32 regval; u32 ext_ftr_ptr; u32 rmap; /* * enable rx input tx output port */ pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = " "%d, port_num = %d)\n", local, destid, hopcount, port_num); ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount, &rmap); if (local) { rio_local_read_config_32(port, ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), ®val); } else { if (rio_mport_read_config_32(port, destid, hopcount, ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap), ®val) < 0) return -EIO; } regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX; if (local) { rio_local_write_config_32(port, ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval); } else { if (rio_mport_write_config_32(port, destid, hopcount, ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap), regval) < 0) return -EIO; } #endif return 0; } EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port); /** * rio_chk_dev_route - Validate route to the specified device. * @rdev: RIO device failed to respond * @nrdev: Last active device on the route to rdev * @npnum: nrdev's port number on the route to rdev * * Follows a route to the specified RIO device to determine the last available * device (and corresponding RIO port) on the route. */ static int rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum) { u32 result; int p_port, rc = -EIO; struct rio_dev *prev = NULL; /* Find switch with failed RIO link */ while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) { if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) { prev = rdev->prev; break; } rdev = rdev->prev; } if (!prev) goto err_out; p_port = prev->rswitch->route_table[rdev->destid]; if (p_port != RIO_INVALID_ROUTE) { pr_debug("RIO: link failed on [%s]-P%d\n", rio_name(prev), p_port); *nrdev = prev; *npnum = p_port; rc = 0; } else pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev)); err_out: return rc; } /** * rio_mport_chk_dev_access - Validate access to the specified device. * @mport: Master port to send transactions * @destid: Device destination ID in network * @hopcount: Number of hops into the network */ int rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount) { int i = 0; u32 tmp; while (rio_mport_read_config_32(mport, destid, hopcount, RIO_DEV_ID_CAR, &tmp)) { i++; if (i == RIO_MAX_CHK_RETRY) return -EIO; mdelay(1); } return 0; } EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access); /** * rio_chk_dev_access - Validate access to the specified device. * @rdev: Pointer to RIO device control structure */ static int rio_chk_dev_access(struct rio_dev *rdev) { return rio_mport_chk_dev_access(rdev->net->hport, rdev->destid, rdev->hopcount); } /** * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and * returns link-response (if requested). * @rdev: RIO devive to issue Input-status command * @pnum: Device port number to issue the command * @lnkresp: Response from a link partner */ static int rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp) { u32 regval; int checkcount; if (lnkresp) { /* Read from link maintenance response register * to clear valid bit */ rio_read_config_32(rdev, RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum), ®val); udelay(50); } /* Issue Input-status command */ rio_write_config_32(rdev, RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum), RIO_MNT_REQ_CMD_IS); /* Exit if the response is not expected */ if (!lnkresp) return 0; checkcount = 3; while (checkcount--) { udelay(50); rio_read_config_32(rdev, RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum), ®val); if (regval & RIO_PORT_N_MNT_RSP_RVAL) { *lnkresp = regval; return 0; } } return -EIO; } /** * rio_clr_err_stopped - Clears port Error-stopped states. * @rdev: Pointer to RIO device control structure * @pnum: Switch port number to clear errors * @err_status: port error status (if 0 reads register from device) * * TODO: Currently this routine is not compatible with recovery process * specified for idt_gen3 RapidIO switch devices. It has to be reviewed * to implement universal recovery process that is compatible full range * off available devices. * IDT gen3 switch driver now implements HW-specific error handler that * issues soft port reset to the port to reset ERR_STOP bits and ackIDs. */ static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status) { struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum]; u32 regval; u32 far_ackid, far_linkstat, near_ackid; if (err_status == 0) rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), &err_status); if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) { pr_debug("RIO_EM: servicing Output Error-Stopped state\n"); /* * Send a Link-Request/Input-Status control symbol */ if (rio_get_input_status(rdev, pnum, ®val)) { pr_debug("RIO_EM: Input-status response timeout\n"); goto rd_err; } pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n", pnum, regval); far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5; far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT; rio_read_config_32(rdev, RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum), ®val); pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval); near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24; pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \ " near_ackID=0x%02x\n", pnum, far_ackid, far_linkstat, near_ackid); /* * If required, synchronize ackIDs of near and * far sides. */ if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) || (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) { /* Align near outstanding/outbound ackIDs with * far inbound. */ rio_write_config_32(rdev, RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum), (near_ackid << 24) | (far_ackid << 8) | far_ackid); /* Align far outstanding/outbound ackIDs with * near inbound. */ far_ackid++; if (!nextdev) { pr_debug("RIO_EM: nextdev pointer == NULL\n"); goto rd_err; } rio_write_config_32(nextdev, RIO_DEV_PORT_N_ACK_STS_CSR(nextdev, RIO_GET_PORT_NUM(nextdev->swpinfo)), (far_ackid << 24) | (near_ackid << 8) | near_ackid); } rd_err: rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), &err_status); pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); } if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) { pr_debug("RIO_EM: servicing Input Error-Stopped state\n"); rio_get_input_status(nextdev, RIO_GET_PORT_NUM(nextdev->swpinfo), NULL); udelay(50); rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), &err_status); pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); } return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES | RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0; } /** * rio_inb_pwrite_handler - inbound port-write message handler * @mport: mport device associated with port-write * @pw_msg: pointer to inbound port-write message * * Processes an inbound port-write message. Returns 0 if the request * has been satisfied. */ int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg) { struct rio_dev *rdev; u32 err_status, em_perrdet, em_ltlerrdet; int rc, portnum; struct rio_pwrite *pwrite; #ifdef DEBUG_PW { u32 i; pr_debug("%s: PW to mport_%d:\n", __func__, mport->id); for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) { pr_debug("0x%02x: %08x %08x %08x %08x\n", i * 4, pw_msg->raw[i], pw_msg->raw[i + 1], pw_msg->raw[i + 2], pw_msg->raw[i + 3]); } } #endif rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL); if (rdev) { pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev)); } else { pr_debug("RIO: %s No matching device for CTag 0x%08x\n", __func__, pw_msg->em.comptag); } /* Call a device-specific handler (if it is registered for the device). * This may be the service for endpoints that send device-specific * port-write messages. End-point messages expected to be handled * completely by EP specific device driver. * For switches rc==0 signals that no standard processing required. */ if (rdev && rdev->pwcback) { rc = rdev->pwcback(rdev, pw_msg, 0); if (rc == 0) return 0; } mutex_lock(&mport->lock); list_for_each_entry(pwrite, &mport->pwrites, node) pwrite->pwcback(mport, pwrite->context, pw_msg, 0); mutex_unlock(&mport->lock); if (!rdev) return 0; /* * FIXME: The code below stays as it was before for now until we decide * how to do default PW handling in combination with per-mport callbacks */ portnum = pw_msg->em.is_port & 0xFF; /* Check if device and route to it are functional: * Sometimes devices may send PW message(s) just before being * powered down (or link being lost). */ if (rio_chk_dev_access(rdev)) { pr_debug("RIO: device access failed - get link partner\n"); /* Scan route to the device and identify failed link. * This will replace device and port reported in PW message. * PW message should not be used after this point. */ if (rio_chk_dev_route(rdev, &rdev, &portnum)) { pr_err("RIO: Route trace for %s failed\n", rio_name(rdev)); return -EIO; } pw_msg = NULL; } /* For End-point devices processing stops here */ if (!(rdev->pef & RIO_PEF_SWITCH)) return 0; if (rdev->phys_efptr == 0) { pr_err("RIO_PW: Bad switch initialization for %s\n", rio_name(rdev)); return 0; } /* * Process the port-write notification from switch */ if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle) rdev->rswitch->ops->em_handle(rdev, portnum); rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum), &err_status); pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status); if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) { if (!(rdev->rswitch->port_ok & (1 << portnum))) { rdev->rswitch->port_ok |= (1 << portnum); rio_set_port_lockout(rdev, portnum, 0); /* Schedule Insertion Service */ pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n", rio_name(rdev), portnum); } /* Clear error-stopped states (if reported). * Depending on the link partner state, two attempts * may be needed for successful recovery. */ if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES | RIO_PORT_N_ERR_STS_INP_ES)) { if (rio_clr_err_stopped(rdev, portnum, err_status)) rio_clr_err_stopped(rdev, portnum, 0); } } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */ if (rdev->rswitch->port_ok & (1 << portnum)) { rdev->rswitch->port_ok &= ~(1 << portnum); rio_set_port_lockout(rdev, portnum, 1); if (rdev->phys_rmap == 1) { rio_write_config_32(rdev, RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum), RIO_PORT_N_ACK_CLEAR); } else { rio_write_config_32(rdev, RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum), RIO_PORT_N_OB_ACK_CLEAR); rio_write_config_32(rdev, RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum), 0); } /* Schedule Extraction Service */ pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n", rio_name(rdev), portnum); } } rio_read_config_32(rdev, rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet); if (em_perrdet) { pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n", portnum, em_perrdet); /* Clear EM Port N Error Detect CSR */ rio_write_config_32(rdev, rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0); } rio_read_config_32(rdev, rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet); if (em_ltlerrdet) { pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n", em_ltlerrdet); /* Clear EM L/T Layer Error Detect CSR */ rio_write_config_32(rdev, rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0); } /* Clear remaining error bits and Port-Write Pending bit */ rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum), err_status); return 0; } EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler); /** * rio_mport_get_efb - get pointer to next extended features block * @port: Master port to issue transaction * @local: Indicate a local master port or remote device access * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @from: Offset of current Extended Feature block header (if 0 starts * from ExtFeaturePtr) */ u32 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid, u8 hopcount, u32 from) { u32 reg_val; if (from == 0) { if (local) rio_local_read_config_32(port, RIO_ASM_INFO_CAR, ®_val); else rio_mport_read_config_32(port, destid, hopcount, RIO_ASM_INFO_CAR, ®_val); return reg_val & RIO_EXT_FTR_PTR_MASK; } else { if (local) rio_local_read_config_32(port, from, ®_val); else rio_mport_read_config_32(port, destid, hopcount, from, ®_val); return RIO_GET_BLOCK_ID(reg_val); } } EXPORT_SYMBOL_GPL(rio_mport_get_efb); /** * rio_mport_get_feature - query for devices' extended features * @port: Master port to issue transaction * @local: Indicate a local master port or remote device access * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @ftr: Extended feature code * * Tell if a device supports a given RapidIO capability. * Returns the offset of the requested extended feature * block within the device's RIO configuration space or * 0 in case the device does not support it. */ u32 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid, u8 hopcount, int ftr) { u32 asm_info, ext_ftr_ptr, ftr_header; if (local) rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info); else rio_mport_read_config_32(port, destid, hopcount, RIO_ASM_INFO_CAR, &asm_info); ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK; while (ext_ftr_ptr) { if (local) rio_local_read_config_32(port, ext_ftr_ptr, &ftr_header); else rio_mport_read_config_32(port, destid, hopcount, ext_ftr_ptr, &ftr_header); if (RIO_GET_BLOCK_ID(ftr_header) == ftr) return ext_ftr_ptr; ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header); if (!ext_ftr_ptr) break; } return 0; } EXPORT_SYMBOL_GPL(rio_mport_get_feature); /** * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did * @vid: RIO vid to match or %RIO_ANY_ID to match all vids * @did: RIO did to match or %RIO_ANY_ID to match all dids * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids * @from: Previous RIO device found in search, or %NULL for new search * * Iterates through the list of known RIO devices. If a RIO device is * found with a matching @vid, @did, @asm_vid, @asm_did, the reference * count to the device is incrememted and a pointer to its device * structure is returned. Otherwise, %NULL is returned. A new search * is initiated by passing %NULL to the @from argument. Otherwise, if * @from is not %NULL, searches continue from next device on the global * list. The reference count for @from is always decremented if it is * not %NULL. */ struct rio_dev *rio_get_asm(u16 vid, u16 did, u16 asm_vid, u16 asm_did, struct rio_dev *from) { struct list_head *n; struct rio_dev *rdev; WARN_ON(in_interrupt()); spin_lock(&rio_global_list_lock); n = from ? from->global_list.next : rio_devices.next; while (n && (n != &rio_devices)) { rdev = rio_dev_g(n); if ((vid == RIO_ANY_ID || rdev->vid == vid) && (did == RIO_ANY_ID || rdev->did == did) && (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) && (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did)) goto exit; n = n->next; } rdev = NULL; exit: rio_dev_put(from); rdev = rio_dev_get(rdev); spin_unlock(&rio_global_list_lock); return rdev; } EXPORT_SYMBOL_GPL(rio_get_asm); /** * rio_get_device - Begin or continue searching for a RIO device by vid/did * @vid: RIO vid to match or %RIO_ANY_ID to match all vids * @did: RIO did to match or %RIO_ANY_ID to match all dids * @from: Previous RIO device found in search, or %NULL for new search * * Iterates through the list of known RIO devices. If a RIO device is * found with a matching @vid and @did, the reference count to the * device is incrememted and a pointer to its device structure is returned. * Otherwise, %NULL is returned. A new search is initiated by passing %NULL * to the @from argument. Otherwise, if @from is not %NULL, searches * continue from next device on the global list. The reference count for * @from is always decremented if it is not %NULL. */ struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from) { return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from); } EXPORT_SYMBOL_GPL(rio_get_device); /** * rio_std_route_add_entry - Add switch route table entry using standard * registers defined in RIO specification rev.1.3 * @mport: Master port to issue transaction * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @table: routing table ID (global or port-specific) * @route_destid: destID entry in the RT * @route_port: destination port for specified destID */ static int rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount, u16 table, u16 route_destid, u8 route_port) { if (table == RIO_GLOBAL_TABLE) { rio_mport_write_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_DESTID_SEL_CSR, (u32)route_destid); rio_mport_write_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_PORT_SEL_CSR, (u32)route_port); } udelay(10); return 0; } /** * rio_std_route_get_entry - Read switch route table entry (port number) * associated with specified destID using standard registers defined in RIO * specification rev.1.3 * @mport: Master port to issue transaction * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @table: routing table ID (global or port-specific) * @route_destid: destID entry in the RT * @route_port: returned destination port for specified destID */ static int rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount, u16 table, u16 route_destid, u8 *route_port) { u32 result; if (table == RIO_GLOBAL_TABLE) { rio_mport_write_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid); rio_mport_read_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_PORT_SEL_CSR, &result); *route_port = (u8)result; } return 0; } /** * rio_std_route_clr_table - Clear swotch route table using standard registers * defined in RIO specification rev.1.3. * @mport: Master port to issue transaction * @destid: Destination ID of the device * @hopcount: Number of switch hops to the device * @table: routing table ID (global or port-specific) */ static int rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount, u16 table) { u32 max_destid = 0xff; u32 i, pef, id_inc = 1, ext_cfg = 0; u32 port_sel = RIO_INVALID_ROUTE; if (table == RIO_GLOBAL_TABLE) { rio_mport_read_config_32(mport, destid, hopcount, RIO_PEF_CAR, &pef); if (mport->sys_size) { rio_mport_read_config_32(mport, destid, hopcount, RIO_SWITCH_RT_LIMIT, &max_destid); max_destid &= RIO_RT_MAX_DESTID; } if (pef & RIO_PEF_EXT_RT) { ext_cfg = 0x80000000; id_inc = 4; port_sel = (RIO_INVALID_ROUTE << 24) | (RIO_INVALID_ROUTE << 16) | (RIO_INVALID_ROUTE << 8) | RIO_INVALID_ROUTE; } for (i = 0; i <= max_destid;) { rio_mport_write_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_DESTID_SEL_CSR, ext_cfg | i); rio_mport_write_config_32(mport, destid, hopcount, RIO_STD_RTE_CONF_PORT_SEL_CSR, port_sel); i += id_inc; } } udelay(10); return 0; } /** * rio_lock_device - Acquires host device lock for specified device * @port: Master port to send transaction * @destid: Destination ID for device/switch * @hopcount: Hopcount to reach switch * @wait_ms: Max wait time in msec (0 = no timeout) * * Attepts to acquire host device lock for specified device * Returns 0 if device lock acquired or EINVAL if timeout expires. */ int rio_lock_device(struct rio_mport *port, u16 destid, u8 hopcount, int wait_ms) { u32 result; int tcnt = 0; /* Attempt to acquire device lock */ rio_mport_write_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, port->host_deviceid); rio_mport_read_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, &result); while (result != port->host_deviceid) { if (wait_ms != 0 && tcnt == wait_ms) { pr_debug("RIO: timeout when locking device %x:%x\n", destid, hopcount); return -EINVAL; } /* Delay a bit */ mdelay(1); tcnt++; /* Try to acquire device lock again */ rio_mport_write_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, port->host_deviceid); rio_mport_read_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, &result); } return 0; } EXPORT_SYMBOL_GPL(rio_lock_device); /** * rio_unlock_device - Releases host device lock for specified device * @port: Master port to send transaction * @destid: Destination ID for device/switch * @hopcount: Hopcount to reach switch * * Returns 0 if device lock released or EINVAL if fails. */ int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount) { u32 result; /* Release device lock */ rio_mport_write_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, port->host_deviceid); rio_mport_read_config_32(port, destid, hopcount, RIO_HOST_DID_LOCK_CSR, &result); if ((result & 0xffff) != 0xffff) { pr_debug("RIO: badness when releasing device lock %x:%x\n", destid, hopcount); return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(rio_unlock_device); /** * rio_route_add_entry- Add a route entry to a switch routing table * @rdev: RIO device * @table: Routing table ID * @route_destid: Destination ID to be routed * @route_port: Port number to be routed * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) * * If available calls the switch specific add_entry() method to add a route * entry into a switch routing table. Otherwise uses standard RT update method * as defined by RapidIO specification. A specific routing table can be selected * using the @table argument if a switch has per port routing tables or * the standard (or global) table may be used by passing * %RIO_GLOBAL_TABLE in @table. * * Returns %0 on success or %-EINVAL on failure. */ int rio_route_add_entry(struct rio_dev *rdev, u16 table, u16 route_destid, u8 route_port, int lock) { int rc = -EINVAL; struct rio_switch_ops *ops = rdev->rswitch->ops; if (lock) { rc = rio_lock_device(rdev->net->hport, rdev->destid, rdev->hopcount, 1000); if (rc) return rc; } spin_lock(&rdev->rswitch->lock); if (!ops || !ops->add_entry) { rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid, rdev->hopcount, table, route_destid, route_port); } else if (try_module_get(ops->owner)) { rc = ops->add_entry(rdev->net->hport, rdev->destid, rdev->hopcount, table, route_destid, route_port); module_put(ops->owner); } spin_unlock(&rdev->rswitch->lock); if (lock) rio_unlock_device(rdev->net->hport, rdev->destid, rdev->hopcount); return rc; } EXPORT_SYMBOL_GPL(rio_route_add_entry); /** * rio_route_get_entry- Read an entry from a switch routing table * @rdev: RIO device * @table: Routing table ID * @route_destid: Destination ID to be routed * @route_port: Pointer to read port number into * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) * * If available calls the switch specific get_entry() method to fetch a route * entry from a switch routing table. Otherwise uses standard RT read method * as defined by RapidIO specification. A specific routing table can be selected * using the @table argument if a switch has per port routing tables or * the standard (or global) table may be used by passing * %RIO_GLOBAL_TABLE in @table. * * Returns %0 on success or %-EINVAL on failure. */ int rio_route_get_entry(struct rio_dev *rdev, u16 table, u16 route_destid, u8 *route_port, int lock) { int rc = -EINVAL; struct rio_switch_ops *ops = rdev->rswitch->ops; if (lock) { rc = rio_lock_device(rdev->net->hport, rdev->destid, rdev->hopcount, 1000); if (rc) return rc; } spin_lock(&rdev->rswitch->lock); if (!ops || !ops->get_entry) { rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid, rdev->hopcount, table, route_destid, route_port); } else if (try_module_get(ops->owner)) { rc = ops->get_entry(rdev->net->hport, rdev->destid, rdev->hopcount, table, route_destid, route_port); module_put(ops->owner); } spin_unlock(&rdev->rswitch->lock); if (lock) rio_unlock_device(rdev->net->hport, rdev->destid, rdev->hopcount); return rc; } EXPORT_SYMBOL_GPL(rio_route_get_entry); /** * rio_route_clr_table - Clear a switch routing table * @rdev: RIO device * @table: Routing table ID * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) * * If available calls the switch specific clr_table() method to clear a switch * routing table. Otherwise uses standard RT write method as defined by RapidIO * specification. A specific routing table can be selected using the @table * argument if a switch has per port routing tables or the standard (or global) * table may be used by passing %RIO_GLOBAL_TABLE in @table. * * Returns %0 on success or %-EINVAL on failure. */ int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock) { int rc = -EINVAL; struct rio_switch_ops *ops = rdev->rswitch->ops; if (lock) { rc = rio_lock_device(rdev->net->hport, rdev->destid, rdev->hopcount, 1000); if (rc) return rc; } spin_lock(&rdev->rswitch->lock); if (!ops || !ops->clr_table) { rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid, rdev->hopcount, table); } else if (try_module_get(ops->owner)) { rc = ops->clr_table(rdev->net->hport, rdev->destid, rdev->hopcount, table); module_put(ops->owner); } spin_unlock(&rdev->rswitch->lock); if (lock) rio_unlock_device(rdev->net->hport, rdev->destid, rdev->hopcount); return rc; } EXPORT_SYMBOL_GPL(rio_route_clr_table); #ifdef CONFIG_RAPIDIO_DMA_ENGINE static bool rio_chan_filter(struct dma_chan *chan, void *arg) { struct rio_mport *mport = arg; /* Check that DMA device belongs to the right MPORT */ return mport == container_of(chan->device, struct rio_mport, dma); } /** * rio_request_mport_dma - request RapidIO capable DMA channel associated * with specified local RapidIO mport device. * @mport: RIO mport to perform DMA data transfers * * Returns pointer to allocated DMA channel or NULL if failed. */ struct dma_chan *rio_request_mport_dma(struct rio_mport *mport) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); return dma_request_channel(mask, rio_chan_filter, mport); } EXPORT_SYMBOL_GPL(rio_request_mport_dma); /** * rio_request_dma - request RapidIO capable DMA channel that supports * specified target RapidIO device. * @rdev: RIO device associated with DMA transfer * * Returns pointer to allocated DMA channel or NULL if failed. */ struct dma_chan *rio_request_dma(struct rio_dev *rdev) { return rio_request_mport_dma(rdev->net->hport); } EXPORT_SYMBOL_GPL(rio_request_dma); /** * rio_release_dma - release specified DMA channel * @dchan: DMA channel to release */ void rio_release_dma(struct dma_chan *dchan) { dma_release_channel(dchan); } EXPORT_SYMBOL_GPL(rio_release_dma); /** * rio_dma_prep_xfer - RapidIO specific wrapper * for device_prep_slave_sg callback defined by DMAENGINE. * @dchan: DMA channel to configure * @destid: target RapidIO device destination ID * @data: RIO specific data descriptor * @direction: DMA data transfer direction (TO or FROM the device) * @flags: dmaengine defined flags * * Initializes RapidIO capable DMA channel for the specified data transfer. * Uses DMA channel private extension to pass information related to remote * target RIO device. * * Returns: pointer to DMA transaction descriptor if successful, * error-valued pointer or NULL if failed. */ struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan, u16 destid, struct rio_dma_data *data, enum dma_transfer_direction direction, unsigned long flags) { struct rio_dma_ext rio_ext; if (!dchan->device->device_prep_slave_sg) { pr_err("%s: prep_rio_sg == NULL\n", __func__); return NULL; } rio_ext.destid = destid; rio_ext.rio_addr_u = data->rio_addr_u; rio_ext.rio_addr = data->rio_addr; rio_ext.wr_type = data->wr_type; return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len, direction, flags, &rio_ext); } EXPORT_SYMBOL_GPL(rio_dma_prep_xfer); /** * rio_dma_prep_slave_sg - RapidIO specific wrapper * for device_prep_slave_sg callback defined by DMAENGINE. * @rdev: RIO device control structure * @dchan: DMA channel to configure * @data: RIO specific data descriptor * @direction: DMA data transfer direction (TO or FROM the device) * @flags: dmaengine defined flags * * Initializes RapidIO capable DMA channel for the specified data transfer. * Uses DMA channel private extension to pass information related to remote * target RIO device. * * Returns: pointer to DMA transaction descriptor if successful, * error-valued pointer or NULL if failed. */ struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev, struct dma_chan *dchan, struct rio_dma_data *data, enum dma_transfer_direction direction, unsigned long flags) { return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags); } EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg); #endif /* CONFIG_RAPIDIO_DMA_ENGINE */ /** * rio_find_mport - find RIO mport by its ID * @mport_id: number (ID) of mport device * * Given a RIO mport number, the desired mport is located * in the global list of mports. If the mport is found, a pointer to its * data structure is returned. If no mport is found, %NULL is returned. */ struct rio_mport *rio_find_mport(int mport_id) { struct rio_mport *port; mutex_lock(&rio_mport_list_lock); list_for_each_entry(port, &rio_mports, node) { if (port->id == mport_id) goto found; } port = NULL; found: mutex_unlock(&rio_mport_list_lock); return port; } /** * rio_register_scan - enumeration/discovery method registration interface * @mport_id: mport device ID for which fabric scan routine has to be set * (RIO_MPORT_ANY = set for all available mports) * @scan_ops: enumeration/discovery operations structure * * Registers enumeration/discovery operations with RapidIO subsystem and * attaches it to the specified mport device (or all available mports * if RIO_MPORT_ANY is specified). * * Returns error if the mport already has an enumerator attached to it. * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error). */ int rio_register_scan(int mport_id, struct rio_scan *scan_ops) { struct rio_mport *port; struct rio_scan_node *scan; int rc = 0; pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) || !scan_ops) return -EINVAL; mutex_lock(&rio_mport_list_lock); /* * Check if there is another enumerator already registered for * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators * for the same mport ID are not supported. */ list_for_each_entry(scan, &rio_scans, node) { if (scan->mport_id == mport_id) { rc = -EBUSY; goto err_out; } } /* * Allocate and initialize new scan registration node. */ scan = kzalloc(sizeof(*scan), GFP_KERNEL); if (!scan) { rc = -ENOMEM; goto err_out; } scan->mport_id = mport_id; scan->ops = scan_ops; /* * Traverse the list of registered mports to attach this new scan. * * The new scan with matching mport ID overrides any previously attached * scan assuming that old scan (if any) is the default one (based on the * enumerator registration check above). * If the new scan is the global one, it will be attached only to mports * that do not have their own individual operations already attached. */ list_for_each_entry(port, &rio_mports, node) { if (port->id == mport_id) { port->nscan = scan_ops; break; } else if (mport_id == RIO_MPORT_ANY && !port->nscan) port->nscan = scan_ops; } list_add_tail(&scan->node, &rio_scans); err_out: mutex_unlock(&rio_mport_list_lock); return rc; } EXPORT_SYMBOL_GPL(rio_register_scan); /** * rio_unregister_scan - removes enumeration/discovery method from mport * @mport_id: mport device ID for which fabric scan routine has to be * unregistered (RIO_MPORT_ANY = apply to all mports that use * the specified scan_ops) * @scan_ops: enumeration/discovery operations structure * * Removes enumeration or discovery method assigned to the specified mport * device. If RIO_MPORT_ANY is specified, removes the specified operations from * all mports that have them attached. */ int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops) { struct rio_mport *port; struct rio_scan_node *scan; pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) return -EINVAL; mutex_lock(&rio_mport_list_lock); list_for_each_entry(port, &rio_mports, node) if (port->id == mport_id || (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops)) port->nscan = NULL; list_for_each_entry(scan, &rio_scans, node) { if (scan->mport_id == mport_id) { list_del(&scan->node); kfree(scan); break; } } mutex_unlock(&rio_mport_list_lock); return 0; } EXPORT_SYMBOL_GPL(rio_unregister_scan); /** * rio_mport_scan - execute enumeration/discovery on the specified mport * @mport_id: number (ID) of mport device */ int rio_mport_scan(int mport_id) { struct rio_mport *port = NULL; int rc; mutex_lock(&rio_mport_list_lock); list_for_each_entry(port, &rio_mports, node) { if (port->id == mport_id) goto found; } mutex_unlock(&rio_mport_list_lock); return -ENODEV; found: if (!port->nscan) { mutex_unlock(&rio_mport_list_lock); return -EINVAL; } if (!try_module_get(port->nscan->owner)) { mutex_unlock(&rio_mport_list_lock); return -ENODEV; } mutex_unlock(&rio_mport_list_lock); if (port->host_deviceid >= 0) rc = port->nscan->enumerate(port, 0); else rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT); module_put(port->nscan->owner); return rc; } static void rio_fixup_device(struct rio_dev *dev) { } static int rio_init(void) { struct rio_dev *dev = NULL; while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) { rio_fixup_device(dev); } return 0; } static struct workqueue_struct *rio_wq; struct rio_disc_work { struct work_struct work; struct rio_mport *mport; }; static void disc_work_handler(struct work_struct *_work) { struct rio_disc_work *work; work = container_of(_work, struct rio_disc_work, work); pr_debug("RIO: discovery work for mport %d %s\n", work->mport->id, work->mport->name); if (try_module_get(work->mport->nscan->owner)) { work->mport->nscan->discover(work->mport, 0); module_put(work->mport->nscan->owner); } } int rio_init_mports(void) { struct rio_mport *port; struct rio_disc_work *work; int n = 0; if (!next_portid) return -ENODEV; /* * First, run enumerations and check if we need to perform discovery * on any of the registered mports. */ mutex_lock(&rio_mport_list_lock); list_for_each_entry(port, &rio_mports, node) { if (port->host_deviceid >= 0) { if (port->nscan && try_module_get(port->nscan->owner)) { port->nscan->enumerate(port, 0); module_put(port->nscan->owner); } } else n++; } mutex_unlock(&rio_mport_list_lock); if (!n) goto no_disc; /* * If we have mports that require discovery schedule a discovery work * for each of them. If the code below fails to allocate needed * resources, exit without error to keep results of enumeration * process (if any). * TODO: Implement restart of discovery process for all or * individual discovering mports. */ rio_wq = alloc_workqueue("riodisc", 0, 0); if (!rio_wq) { pr_err("RIO: unable allocate rio_wq\n"); goto no_disc; } work = kcalloc(n, sizeof *work, GFP_KERNEL); if (!work) { destroy_workqueue(rio_wq); goto no_disc; } n = 0; mutex_lock(&rio_mport_list_lock); list_for_each_entry(port, &rio_mports, node) { if (port->host_deviceid < 0 && port->nscan) { work[n].mport = port; INIT_WORK(&work[n].work, disc_work_handler); queue_work(rio_wq, &work[n].work); n++; } } flush_workqueue(rio_wq); mutex_unlock(&rio_mport_list_lock); pr_debug("RIO: destroy discovery workqueue\n"); destroy_workqueue(rio_wq); kfree(work); no_disc: rio_init(); return 0; } EXPORT_SYMBOL_GPL(rio_init_mports); static int rio_get_hdid(int index) { if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS) return -1; return hdid[index]; } int rio_mport_initialize(struct rio_mport *mport) { if (next_portid >= RIO_MAX_MPORTS) { pr_err("RIO: reached specified max number of mports\n"); return -ENODEV; } atomic_set(&mport->state, RIO_DEVICE_INITIALIZING); mport->id = next_portid++; mport->host_deviceid = rio_get_hdid(mport->id); mport->nscan = NULL; mutex_init(&mport->lock); mport->pwe_refcnt = 0; INIT_LIST_HEAD(&mport->pwrites); return 0; } EXPORT_SYMBOL_GPL(rio_mport_initialize); int rio_register_mport(struct rio_mport *port) { struct rio_scan_node *scan = NULL; int res = 0; mutex_lock(&rio_mport_list_lock); /* * Check if there are any registered enumeration/discovery operations * that have to be attached to the added mport. */ list_for_each_entry(scan, &rio_scans, node) { if (port->id == scan->mport_id || scan->mport_id == RIO_MPORT_ANY) { port->nscan = scan->ops; if (port->id == scan->mport_id) break; } } list_add_tail(&port->node, &rio_mports); mutex_unlock(&rio_mport_list_lock); dev_set_name(&port->dev, "rapidio%d", port->id); port->dev.class = &rio_mport_class; atomic_set(&port->state, RIO_DEVICE_RUNNING); res = device_register(&port->dev); if (res) dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n", port->id, res); else dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id); return res; } EXPORT_SYMBOL_GPL(rio_register_mport); static int rio_mport_cleanup_callback(struct device *dev, void *data) { struct rio_dev *rdev = to_rio_dev(dev); if (dev->bus == &rio_bus_type) rio_del_device(rdev, RIO_DEVICE_SHUTDOWN); return 0; } static int rio_net_remove_children(struct rio_net *net) { /* * Unregister all RapidIO devices residing on this net (this will * invoke notification of registered subsystem interfaces as well). */ device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback); return 0; } int rio_unregister_mport(struct rio_mport *port) { pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id); /* Transition mport to the SHUTDOWN state */ if (atomic_cmpxchg(&port->state, RIO_DEVICE_RUNNING, RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) { pr_err("RIO: %s unexpected state transition for mport %s\n", __func__, port->name); } if (port->net && port->net->hport == port) { rio_net_remove_children(port->net); rio_free_net(port->net); } /* * Unregister all RapidIO devices attached to this mport (this will * invoke notification of registered subsystem interfaces as well). */ mutex_lock(&rio_mport_list_lock); list_del(&port->node); mutex_unlock(&rio_mport_list_lock); device_unregister(&port->dev); return 0; } EXPORT_SYMBOL_GPL(rio_unregister_mport);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1