Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Stübner | 2617 | 99.32% | 5 | 41.67% |
Kangjie Lu | 9 | 0.34% | 1 | 8.33% |
Alexander Kochetkov | 3 | 0.11% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.08% | 1 | 8.33% |
Uwe Kleine-König | 1 | 0.04% | 1 | 8.33% |
Jingoo Han | 1 | 0.04% | 1 | 8.33% |
Sachin Kamat | 1 | 0.04% | 1 | 8.33% |
Stephen Boyd | 1 | 0.04% | 1 | 8.33% |
Total | 2635 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * Haoyu HYM8563 RTC driver * * Copyright (C) 2013 MundoReader S.L. * Author: Heiko Stuebner <heiko@sntech.de> * * based on rtc-HYM8563 * Copyright (C) 2010 ROCKCHIP, Inc. */ #include <linux/module.h> #include <linux/clk-provider.h> #include <linux/i2c.h> #include <linux/bcd.h> #include <linux/rtc.h> #define HYM8563_CTL1 0x00 #define HYM8563_CTL1_TEST BIT(7) #define HYM8563_CTL1_STOP BIT(5) #define HYM8563_CTL1_TESTC BIT(3) #define HYM8563_CTL2 0x01 #define HYM8563_CTL2_TI_TP BIT(4) #define HYM8563_CTL2_AF BIT(3) #define HYM8563_CTL2_TF BIT(2) #define HYM8563_CTL2_AIE BIT(1) #define HYM8563_CTL2_TIE BIT(0) #define HYM8563_SEC 0x02 #define HYM8563_SEC_VL BIT(7) #define HYM8563_SEC_MASK 0x7f #define HYM8563_MIN 0x03 #define HYM8563_MIN_MASK 0x7f #define HYM8563_HOUR 0x04 #define HYM8563_HOUR_MASK 0x3f #define HYM8563_DAY 0x05 #define HYM8563_DAY_MASK 0x3f #define HYM8563_WEEKDAY 0x06 #define HYM8563_WEEKDAY_MASK 0x07 #define HYM8563_MONTH 0x07 #define HYM8563_MONTH_CENTURY BIT(7) #define HYM8563_MONTH_MASK 0x1f #define HYM8563_YEAR 0x08 #define HYM8563_ALM_MIN 0x09 #define HYM8563_ALM_HOUR 0x0a #define HYM8563_ALM_DAY 0x0b #define HYM8563_ALM_WEEK 0x0c /* Each alarm check can be disabled by setting this bit in the register */ #define HYM8563_ALM_BIT_DISABLE BIT(7) #define HYM8563_CLKOUT 0x0d #define HYM8563_CLKOUT_ENABLE BIT(7) #define HYM8563_CLKOUT_32768 0 #define HYM8563_CLKOUT_1024 1 #define HYM8563_CLKOUT_32 2 #define HYM8563_CLKOUT_1 3 #define HYM8563_CLKOUT_MASK 3 #define HYM8563_TMR_CTL 0x0e #define HYM8563_TMR_CTL_ENABLE BIT(7) #define HYM8563_TMR_CTL_4096 0 #define HYM8563_TMR_CTL_64 1 #define HYM8563_TMR_CTL_1 2 #define HYM8563_TMR_CTL_1_60 3 #define HYM8563_TMR_CTL_MASK 3 #define HYM8563_TMR_CNT 0x0f struct hym8563 { struct i2c_client *client; struct rtc_device *rtc; bool valid; #ifdef CONFIG_COMMON_CLK struct clk_hw clkout_hw; #endif }; /* * RTC handling */ static int hym8563_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct i2c_client *client = to_i2c_client(dev); struct hym8563 *hym8563 = i2c_get_clientdata(client); u8 buf[7]; int ret; if (!hym8563->valid) { dev_warn(&client->dev, "no valid clock/calendar values available\n"); return -EPERM; } ret = i2c_smbus_read_i2c_block_data(client, HYM8563_SEC, 7, buf); if (ret < 0) return ret; tm->tm_sec = bcd2bin(buf[0] & HYM8563_SEC_MASK); tm->tm_min = bcd2bin(buf[1] & HYM8563_MIN_MASK); tm->tm_hour = bcd2bin(buf[2] & HYM8563_HOUR_MASK); tm->tm_mday = bcd2bin(buf[3] & HYM8563_DAY_MASK); tm->tm_wday = bcd2bin(buf[4] & HYM8563_WEEKDAY_MASK); /* 0 = Sun */ tm->tm_mon = bcd2bin(buf[5] & HYM8563_MONTH_MASK) - 1; /* 0 = Jan */ tm->tm_year = bcd2bin(buf[6]) + 100; return 0; } static int hym8563_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct i2c_client *client = to_i2c_client(dev); struct hym8563 *hym8563 = i2c_get_clientdata(client); u8 buf[7]; int ret; /* Years >= 2100 are to far in the future, 19XX is to early */ if (tm->tm_year < 100 || tm->tm_year >= 200) return -EINVAL; buf[0] = bin2bcd(tm->tm_sec); buf[1] = bin2bcd(tm->tm_min); buf[2] = bin2bcd(tm->tm_hour); buf[3] = bin2bcd(tm->tm_mday); buf[4] = bin2bcd(tm->tm_wday); buf[5] = bin2bcd(tm->tm_mon + 1); /* * While the HYM8563 has a century flag in the month register, * it does not seem to carry it over a subsequent write/read. * So we'll limit ourself to 100 years, starting at 2000 for now. */ buf[6] = bin2bcd(tm->tm_year - 100); /* * CTL1 only contains TEST-mode bits apart from stop, * so no need to read the value first */ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, HYM8563_CTL1_STOP); if (ret < 0) return ret; ret = i2c_smbus_write_i2c_block_data(client, HYM8563_SEC, 7, buf); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, 0); if (ret < 0) return ret; hym8563->valid = true; return 0; } static int hym8563_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct i2c_client *client = to_i2c_client(dev); int data; data = i2c_smbus_read_byte_data(client, HYM8563_CTL2); if (data < 0) return data; if (enabled) data |= HYM8563_CTL2_AIE; else data &= ~HYM8563_CTL2_AIE; return i2c_smbus_write_byte_data(client, HYM8563_CTL2, data); }; static int hym8563_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct i2c_client *client = to_i2c_client(dev); struct rtc_time *alm_tm = &alm->time; u8 buf[4]; int ret; ret = i2c_smbus_read_i2c_block_data(client, HYM8563_ALM_MIN, 4, buf); if (ret < 0) return ret; /* The alarm only has a minute accuracy */ alm_tm->tm_sec = 0; alm_tm->tm_min = (buf[0] & HYM8563_ALM_BIT_DISABLE) ? -1 : bcd2bin(buf[0] & HYM8563_MIN_MASK); alm_tm->tm_hour = (buf[1] & HYM8563_ALM_BIT_DISABLE) ? -1 : bcd2bin(buf[1] & HYM8563_HOUR_MASK); alm_tm->tm_mday = (buf[2] & HYM8563_ALM_BIT_DISABLE) ? -1 : bcd2bin(buf[2] & HYM8563_DAY_MASK); alm_tm->tm_wday = (buf[3] & HYM8563_ALM_BIT_DISABLE) ? -1 : bcd2bin(buf[3] & HYM8563_WEEKDAY_MASK); ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2); if (ret < 0) return ret; if (ret & HYM8563_CTL2_AIE) alm->enabled = 1; return 0; } static int hym8563_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct i2c_client *client = to_i2c_client(dev); struct rtc_time *alm_tm = &alm->time; u8 buf[4]; int ret; /* * The alarm has no seconds so deal with it */ if (alm_tm->tm_sec) { alm_tm->tm_sec = 0; alm_tm->tm_min++; if (alm_tm->tm_min >= 60) { alm_tm->tm_min = 0; alm_tm->tm_hour++; if (alm_tm->tm_hour >= 24) { alm_tm->tm_hour = 0; alm_tm->tm_mday++; if (alm_tm->tm_mday > 31) alm_tm->tm_mday = 0; } } } ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2); if (ret < 0) return ret; ret &= ~HYM8563_CTL2_AIE; ret = i2c_smbus_write_byte_data(client, HYM8563_CTL2, ret); if (ret < 0) return ret; buf[0] = (alm_tm->tm_min < 60 && alm_tm->tm_min >= 0) ? bin2bcd(alm_tm->tm_min) : HYM8563_ALM_BIT_DISABLE; buf[1] = (alm_tm->tm_hour < 24 && alm_tm->tm_hour >= 0) ? bin2bcd(alm_tm->tm_hour) : HYM8563_ALM_BIT_DISABLE; buf[2] = (alm_tm->tm_mday <= 31 && alm_tm->tm_mday >= 1) ? bin2bcd(alm_tm->tm_mday) : HYM8563_ALM_BIT_DISABLE; buf[3] = (alm_tm->tm_wday < 7 && alm_tm->tm_wday >= 0) ? bin2bcd(alm_tm->tm_wday) : HYM8563_ALM_BIT_DISABLE; ret = i2c_smbus_write_i2c_block_data(client, HYM8563_ALM_MIN, 4, buf); if (ret < 0) return ret; return hym8563_rtc_alarm_irq_enable(dev, alm->enabled); } static const struct rtc_class_ops hym8563_rtc_ops = { .read_time = hym8563_rtc_read_time, .set_time = hym8563_rtc_set_time, .alarm_irq_enable = hym8563_rtc_alarm_irq_enable, .read_alarm = hym8563_rtc_read_alarm, .set_alarm = hym8563_rtc_set_alarm, }; /* * Handling of the clkout */ #ifdef CONFIG_COMMON_CLK #define clkout_hw_to_hym8563(_hw) container_of(_hw, struct hym8563, clkout_hw) static int clkout_rates[] = { 32768, 1024, 32, 1, }; static unsigned long hym8563_clkout_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw); struct i2c_client *client = hym8563->client; int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT); if (ret < 0) return 0; ret &= HYM8563_CLKOUT_MASK; return clkout_rates[ret]; } static long hym8563_clkout_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { int i; for (i = 0; i < ARRAY_SIZE(clkout_rates); i++) if (clkout_rates[i] <= rate) return clkout_rates[i]; return 0; } static int hym8563_clkout_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw); struct i2c_client *client = hym8563->client; int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT); int i; if (ret < 0) return ret; for (i = 0; i < ARRAY_SIZE(clkout_rates); i++) if (clkout_rates[i] == rate) { ret &= ~HYM8563_CLKOUT_MASK; ret |= i; return i2c_smbus_write_byte_data(client, HYM8563_CLKOUT, ret); } return -EINVAL; } static int hym8563_clkout_control(struct clk_hw *hw, bool enable) { struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw); struct i2c_client *client = hym8563->client; int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT); if (ret < 0) return ret; if (enable) ret |= HYM8563_CLKOUT_ENABLE; else ret &= ~HYM8563_CLKOUT_ENABLE; return i2c_smbus_write_byte_data(client, HYM8563_CLKOUT, ret); } static int hym8563_clkout_prepare(struct clk_hw *hw) { return hym8563_clkout_control(hw, 1); } static void hym8563_clkout_unprepare(struct clk_hw *hw) { hym8563_clkout_control(hw, 0); } static int hym8563_clkout_is_prepared(struct clk_hw *hw) { struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw); struct i2c_client *client = hym8563->client; int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT); if (ret < 0) return ret; return !!(ret & HYM8563_CLKOUT_ENABLE); } static const struct clk_ops hym8563_clkout_ops = { .prepare = hym8563_clkout_prepare, .unprepare = hym8563_clkout_unprepare, .is_prepared = hym8563_clkout_is_prepared, .recalc_rate = hym8563_clkout_recalc_rate, .round_rate = hym8563_clkout_round_rate, .set_rate = hym8563_clkout_set_rate, }; static struct clk *hym8563_clkout_register_clk(struct hym8563 *hym8563) { struct i2c_client *client = hym8563->client; struct device_node *node = client->dev.of_node; struct clk *clk; struct clk_init_data init; int ret; ret = i2c_smbus_write_byte_data(client, HYM8563_CLKOUT, 0); if (ret < 0) return ERR_PTR(ret); init.name = "hym8563-clkout"; init.ops = &hym8563_clkout_ops; init.flags = 0; init.parent_names = NULL; init.num_parents = 0; hym8563->clkout_hw.init = &init; /* optional override of the clockname */ of_property_read_string(node, "clock-output-names", &init.name); /* register the clock */ clk = clk_register(&client->dev, &hym8563->clkout_hw); if (!IS_ERR(clk)) of_clk_add_provider(node, of_clk_src_simple_get, clk); return clk; } #endif /* * The alarm interrupt is implemented as a level-low interrupt in the * hym8563, while the timer interrupt uses a falling edge. * We don't use the timer at all, so the interrupt is requested to * use the level-low trigger. */ static irqreturn_t hym8563_irq(int irq, void *dev_id) { struct hym8563 *hym8563 = (struct hym8563 *)dev_id; struct i2c_client *client = hym8563->client; struct mutex *lock = &hym8563->rtc->ops_lock; int data, ret; mutex_lock(lock); /* Clear the alarm flag */ data = i2c_smbus_read_byte_data(client, HYM8563_CTL2); if (data < 0) { dev_err(&client->dev, "%s: error reading i2c data %d\n", __func__, data); goto out; } data &= ~HYM8563_CTL2_AF; ret = i2c_smbus_write_byte_data(client, HYM8563_CTL2, data); if (ret < 0) { dev_err(&client->dev, "%s: error writing i2c data %d\n", __func__, ret); } out: mutex_unlock(lock); return IRQ_HANDLED; } static int hym8563_init_device(struct i2c_client *client) { int ret; /* Clear stop flag if present */ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, 0); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2); if (ret < 0) return ret; /* Disable alarm and timer interrupts */ ret &= ~HYM8563_CTL2_AIE; ret &= ~HYM8563_CTL2_TIE; /* Clear any pending alarm and timer flags */ if (ret & HYM8563_CTL2_AF) ret &= ~HYM8563_CTL2_AF; if (ret & HYM8563_CTL2_TF) ret &= ~HYM8563_CTL2_TF; ret &= ~HYM8563_CTL2_TI_TP; return i2c_smbus_write_byte_data(client, HYM8563_CTL2, ret); } #ifdef CONFIG_PM_SLEEP static int hym8563_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); int ret; if (device_may_wakeup(dev)) { ret = enable_irq_wake(client->irq); if (ret) { dev_err(dev, "enable_irq_wake failed, %d\n", ret); return ret; } } return 0; } static int hym8563_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); if (device_may_wakeup(dev)) disable_irq_wake(client->irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(hym8563_pm_ops, hym8563_suspend, hym8563_resume); static int hym8563_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct hym8563 *hym8563; int ret; hym8563 = devm_kzalloc(&client->dev, sizeof(*hym8563), GFP_KERNEL); if (!hym8563) return -ENOMEM; hym8563->client = client; i2c_set_clientdata(client, hym8563); device_set_wakeup_capable(&client->dev, true); ret = hym8563_init_device(client); if (ret) { dev_err(&client->dev, "could not init device, %d\n", ret); return ret; } if (client->irq > 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, hym8563_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, client->name, hym8563); if (ret < 0) { dev_err(&client->dev, "irq %d request failed, %d\n", client->irq, ret); return ret; } } /* check state of calendar information */ ret = i2c_smbus_read_byte_data(client, HYM8563_SEC); if (ret < 0) return ret; hym8563->valid = !(ret & HYM8563_SEC_VL); dev_dbg(&client->dev, "rtc information is %s\n", hym8563->valid ? "valid" : "invalid"); hym8563->rtc = devm_rtc_device_register(&client->dev, client->name, &hym8563_rtc_ops, THIS_MODULE); if (IS_ERR(hym8563->rtc)) return PTR_ERR(hym8563->rtc); /* the hym8563 alarm only supports a minute accuracy */ hym8563->rtc->uie_unsupported = 1; #ifdef CONFIG_COMMON_CLK hym8563_clkout_register_clk(hym8563); #endif return 0; } static const struct i2c_device_id hym8563_id[] = { { "hym8563", 0 }, {}, }; MODULE_DEVICE_TABLE(i2c, hym8563_id); static const struct of_device_id hym8563_dt_idtable[] = { { .compatible = "haoyu,hym8563" }, {}, }; MODULE_DEVICE_TABLE(of, hym8563_dt_idtable); static struct i2c_driver hym8563_driver = { .driver = { .name = "rtc-hym8563", .pm = &hym8563_pm_ops, .of_match_table = hym8563_dt_idtable, }, .probe = hym8563_probe, .id_table = hym8563_id, }; module_i2c_driver(hym8563_driver); MODULE_AUTHOR("Heiko Stuebner <heiko@sntech.de>"); MODULE_DESCRIPTION("HYM8563 RTC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1