Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Amelie Delaunay | 4450 | 99.40% | 9 | 81.82% |
Fabien Dessenne | 24 | 0.54% | 1 | 9.09% |
SF Markus Elfring | 3 | 0.07% | 1 | 9.09% |
Total | 4477 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2017 * Author: Amelie Delaunay <amelie.delaunay@st.com> */ #include <linux/bcd.h> #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/ioport.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/pm_wakeirq.h> #include <linux/regmap.h> #include <linux/rtc.h> #define DRIVER_NAME "stm32_rtc" /* STM32_RTC_TR bit fields */ #define STM32_RTC_TR_SEC_SHIFT 0 #define STM32_RTC_TR_SEC GENMASK(6, 0) #define STM32_RTC_TR_MIN_SHIFT 8 #define STM32_RTC_TR_MIN GENMASK(14, 8) #define STM32_RTC_TR_HOUR_SHIFT 16 #define STM32_RTC_TR_HOUR GENMASK(21, 16) /* STM32_RTC_DR bit fields */ #define STM32_RTC_DR_DATE_SHIFT 0 #define STM32_RTC_DR_DATE GENMASK(5, 0) #define STM32_RTC_DR_MONTH_SHIFT 8 #define STM32_RTC_DR_MONTH GENMASK(12, 8) #define STM32_RTC_DR_WDAY_SHIFT 13 #define STM32_RTC_DR_WDAY GENMASK(15, 13) #define STM32_RTC_DR_YEAR_SHIFT 16 #define STM32_RTC_DR_YEAR GENMASK(23, 16) /* STM32_RTC_CR bit fields */ #define STM32_RTC_CR_FMT BIT(6) #define STM32_RTC_CR_ALRAE BIT(8) #define STM32_RTC_CR_ALRAIE BIT(12) /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */ #define STM32_RTC_ISR_ALRAWF BIT(0) #define STM32_RTC_ISR_INITS BIT(4) #define STM32_RTC_ISR_RSF BIT(5) #define STM32_RTC_ISR_INITF BIT(6) #define STM32_RTC_ISR_INIT BIT(7) #define STM32_RTC_ISR_ALRAF BIT(8) /* STM32_RTC_PRER bit fields */ #define STM32_RTC_PRER_PRED_S_SHIFT 0 #define STM32_RTC_PRER_PRED_S GENMASK(14, 0) #define STM32_RTC_PRER_PRED_A_SHIFT 16 #define STM32_RTC_PRER_PRED_A GENMASK(22, 16) /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */ #define STM32_RTC_ALRMXR_SEC_SHIFT 0 #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0) #define STM32_RTC_ALRMXR_SEC_MASK BIT(7) #define STM32_RTC_ALRMXR_MIN_SHIFT 8 #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8) #define STM32_RTC_ALRMXR_MIN_MASK BIT(15) #define STM32_RTC_ALRMXR_HOUR_SHIFT 16 #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16) #define STM32_RTC_ALRMXR_PM BIT(22) #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23) #define STM32_RTC_ALRMXR_DATE_SHIFT 24 #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24) #define STM32_RTC_ALRMXR_WDSEL BIT(30) #define STM32_RTC_ALRMXR_WDAY_SHIFT 24 #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24) #define STM32_RTC_ALRMXR_DATE_MASK BIT(31) /* STM32_RTC_SR/_SCR bit fields */ #define STM32_RTC_SR_ALRA BIT(0) /* STM32_RTC_VERR bit fields */ #define STM32_RTC_VERR_MINREV_SHIFT 0 #define STM32_RTC_VERR_MINREV GENMASK(3, 0) #define STM32_RTC_VERR_MAJREV_SHIFT 4 #define STM32_RTC_VERR_MAJREV GENMASK(7, 4) /* STM32_RTC_WPR key constants */ #define RTC_WPR_1ST_KEY 0xCA #define RTC_WPR_2ND_KEY 0x53 #define RTC_WPR_WRONG_KEY 0xFF /* Max STM32 RTC register offset is 0x3FC */ #define UNDEF_REG 0xFFFF struct stm32_rtc; struct stm32_rtc_registers { u16 tr; u16 dr; u16 cr; u16 isr; u16 prer; u16 alrmar; u16 wpr; u16 sr; u16 scr; u16 verr; }; struct stm32_rtc_events { u32 alra; }; struct stm32_rtc_data { const struct stm32_rtc_registers regs; const struct stm32_rtc_events events; void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags); bool has_pclk; bool need_dbp; bool has_wakeirq; }; struct stm32_rtc { struct rtc_device *rtc_dev; void __iomem *base; struct regmap *dbp; unsigned int dbp_reg; unsigned int dbp_mask; struct clk *pclk; struct clk *rtc_ck; const struct stm32_rtc_data *data; int irq_alarm; int wakeirq_alarm; }; static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr); writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr); } static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr); } static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int isr = readl_relaxed(rtc->base + regs->isr); if (!(isr & STM32_RTC_ISR_INITF)) { isr |= STM32_RTC_ISR_INIT; writel_relaxed(isr, rtc->base + regs->isr); /* * It takes around 2 rtc_ck clock cycles to enter in * initialization phase mode (and have INITF flag set). As * slowest rtc_ck frequency may be 32kHz and highest should be * 1MHz, we poll every 10 us with a timeout of 100ms. */ return readl_relaxed_poll_timeout_atomic( rtc->base + regs->isr, isr, (isr & STM32_RTC_ISR_INITF), 10, 100000); } return 0; } static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int isr = readl_relaxed(rtc->base + regs->isr); isr &= ~STM32_RTC_ISR_INIT; writel_relaxed(isr, rtc->base + regs->isr); } static int stm32_rtc_wait_sync(struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int isr = readl_relaxed(rtc->base + regs->isr); isr &= ~STM32_RTC_ISR_RSF; writel_relaxed(isr, rtc->base + regs->isr); /* * Wait for RSF to be set to ensure the calendar registers are * synchronised, it takes around 2 rtc_ck clock cycles */ return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr, (isr & STM32_RTC_ISR_RSF), 10, 100000); } static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc, unsigned int flags) { rtc->data->clear_events(rtc, flags); } static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id) { struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id; const struct stm32_rtc_registers *regs = &rtc->data->regs; const struct stm32_rtc_events *evts = &rtc->data->events; unsigned int status, cr; mutex_lock(&rtc->rtc_dev->ops_lock); status = readl_relaxed(rtc->base + regs->sr); cr = readl_relaxed(rtc->base + regs->cr); if ((status & evts->alra) && (cr & STM32_RTC_CR_ALRAIE)) { /* Alarm A flag - Alarm interrupt */ dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n"); /* Pass event to the kernel */ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF); /* Clear event flags, otherwise new events won't be received */ stm32_rtc_clear_event_flags(rtc, evts->alra); } mutex_unlock(&rtc->rtc_dev->ops_lock); return IRQ_HANDLED; } /* Convert rtc_time structure from bin to bcd format */ static void tm2bcd(struct rtc_time *tm) { tm->tm_sec = bin2bcd(tm->tm_sec); tm->tm_min = bin2bcd(tm->tm_min); tm->tm_hour = bin2bcd(tm->tm_hour); tm->tm_mday = bin2bcd(tm->tm_mday); tm->tm_mon = bin2bcd(tm->tm_mon + 1); tm->tm_year = bin2bcd(tm->tm_year - 100); /* * Number of days since Sunday * - on kernel side, 0=Sunday...6=Saturday * - on rtc side, 0=invalid,1=Monday...7=Sunday */ tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday; } /* Convert rtc_time structure from bcd to bin format */ static void bcd2tm(struct rtc_time *tm) { tm->tm_sec = bcd2bin(tm->tm_sec); tm->tm_min = bcd2bin(tm->tm_min); tm->tm_hour = bcd2bin(tm->tm_hour); tm->tm_mday = bcd2bin(tm->tm_mday); tm->tm_mon = bcd2bin(tm->tm_mon) - 1; tm->tm_year = bcd2bin(tm->tm_year) + 100; /* * Number of days since Sunday * - on kernel side, 0=Sunday...6=Saturday * - on rtc side, 0=invalid,1=Monday...7=Sunday */ tm->tm_wday %= 7; } static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct stm32_rtc *rtc = dev_get_drvdata(dev); const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int tr, dr; /* Time and Date in BCD format */ tr = readl_relaxed(rtc->base + regs->tr); dr = readl_relaxed(rtc->base + regs->dr); tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT; tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT; tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT; tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT; tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT; tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT; tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT; /* We don't report tm_yday and tm_isdst */ bcd2tm(tm); return 0; } static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct stm32_rtc *rtc = dev_get_drvdata(dev); const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int tr, dr; int ret = 0; tm2bcd(tm); /* Time in BCD format */ tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) | ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) | ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR); /* Date in BCD format */ dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) | ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) | ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) | ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY); stm32_rtc_wpr_unlock(rtc); ret = stm32_rtc_enter_init_mode(rtc); if (ret) { dev_err(dev, "Can't enter in init mode. Set time aborted.\n"); goto end; } writel_relaxed(tr, rtc->base + regs->tr); writel_relaxed(dr, rtc->base + regs->dr); stm32_rtc_exit_init_mode(rtc); ret = stm32_rtc_wait_sync(rtc); end: stm32_rtc_wpr_lock(rtc); return ret; } static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct stm32_rtc *rtc = dev_get_drvdata(dev); const struct stm32_rtc_registers *regs = &rtc->data->regs; const struct stm32_rtc_events *evts = &rtc->data->events; struct rtc_time *tm = &alrm->time; unsigned int alrmar, cr, status; alrmar = readl_relaxed(rtc->base + regs->alrmar); cr = readl_relaxed(rtc->base + regs->cr); status = readl_relaxed(rtc->base + regs->sr); if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) { /* * Date/day doesn't matter in Alarm comparison so alarm * triggers every day */ tm->tm_mday = -1; tm->tm_wday = -1; } else { if (alrmar & STM32_RTC_ALRMXR_WDSEL) { /* Alarm is set to a day of week */ tm->tm_mday = -1; tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >> STM32_RTC_ALRMXR_WDAY_SHIFT; tm->tm_wday %= 7; } else { /* Alarm is set to a day of month */ tm->tm_wday = -1; tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >> STM32_RTC_ALRMXR_DATE_SHIFT; } } if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) { /* Hours don't matter in Alarm comparison */ tm->tm_hour = -1; } else { tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >> STM32_RTC_ALRMXR_HOUR_SHIFT; if (alrmar & STM32_RTC_ALRMXR_PM) tm->tm_hour += 12; } if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) { /* Minutes don't matter in Alarm comparison */ tm->tm_min = -1; } else { tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >> STM32_RTC_ALRMXR_MIN_SHIFT; } if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) { /* Seconds don't matter in Alarm comparison */ tm->tm_sec = -1; } else { tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >> STM32_RTC_ALRMXR_SEC_SHIFT; } bcd2tm(tm); alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0; alrm->pending = (status & evts->alra) ? 1 : 0; return 0; } static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct stm32_rtc *rtc = dev_get_drvdata(dev); const struct stm32_rtc_registers *regs = &rtc->data->regs; const struct stm32_rtc_events *evts = &rtc->data->events; unsigned int cr; cr = readl_relaxed(rtc->base + regs->cr); stm32_rtc_wpr_unlock(rtc); /* We expose Alarm A to the kernel */ if (enabled) cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); else cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); writel_relaxed(cr, rtc->base + regs->cr); /* Clear event flags, otherwise new events won't be received */ stm32_rtc_clear_event_flags(rtc, evts->alra); stm32_rtc_wpr_lock(rtc); return 0; } static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm) { const struct stm32_rtc_registers *regs = &rtc->data->regs; int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec; unsigned int dr = readl_relaxed(rtc->base + regs->dr); unsigned int tr = readl_relaxed(rtc->base + regs->tr); cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT; cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT; cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT; cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT; cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT; cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT; /* * Assuming current date is M-D-Y H:M:S. * RTC alarm can't be set on a specific month and year. * So the valid alarm range is: * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S * with a specific case for December... */ if ((((tm->tm_year > cur_year) && (tm->tm_mon == 0x1) && (cur_mon == 0x12)) || ((tm->tm_year == cur_year) && (tm->tm_mon <= cur_mon + 1))) && ((tm->tm_mday > cur_day) || ((tm->tm_mday == cur_day) && ((tm->tm_hour > cur_hour) || ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) || ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) && (tm->tm_sec >= cur_sec)))))) return 0; return -EINVAL; } static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct stm32_rtc *rtc = dev_get_drvdata(dev); const struct stm32_rtc_registers *regs = &rtc->data->regs; struct rtc_time *tm = &alrm->time; unsigned int cr, isr, alrmar; int ret = 0; tm2bcd(tm); /* * RTC alarm can't be set on a specific date, unless this date is * up to the same day of month next month. */ if (stm32_rtc_valid_alrm(rtc, tm) < 0) { dev_err(dev, "Alarm can be set only on upcoming month.\n"); return -EINVAL; } alrmar = 0; /* tm_year and tm_mon are not used because not supported by RTC */ alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) & STM32_RTC_ALRMXR_DATE; /* 24-hour format */ alrmar &= ~STM32_RTC_ALRMXR_PM; alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) & STM32_RTC_ALRMXR_HOUR; alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) & STM32_RTC_ALRMXR_MIN; alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) & STM32_RTC_ALRMXR_SEC; stm32_rtc_wpr_unlock(rtc); /* Disable Alarm */ cr = readl_relaxed(rtc->base + regs->cr); cr &= ~STM32_RTC_CR_ALRAE; writel_relaxed(cr, rtc->base + regs->cr); /* * Poll Alarm write flag to be sure that Alarm update is allowed: it * takes around 2 rtc_ck clock cycles */ ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr, (isr & STM32_RTC_ISR_ALRAWF), 10, 100000); if (ret) { dev_err(dev, "Alarm update not allowed\n"); goto end; } /* Write to Alarm register */ writel_relaxed(alrmar, rtc->base + regs->alrmar); stm32_rtc_alarm_irq_enable(dev, alrm->enabled); end: stm32_rtc_wpr_lock(rtc); return ret; } static const struct rtc_class_ops stm32_rtc_ops = { .read_time = stm32_rtc_read_time, .set_time = stm32_rtc_set_time, .read_alarm = stm32_rtc_read_alarm, .set_alarm = stm32_rtc_set_alarm, .alarm_irq_enable = stm32_rtc_alarm_irq_enable, }; static void stm32_rtc_clear_events(struct stm32_rtc *rtc, unsigned int flags) { const struct stm32_rtc_registers *regs = &rtc->data->regs; /* Flags are cleared by writing 0 in RTC_ISR */ writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags, rtc->base + regs->isr); } static const struct stm32_rtc_data stm32_rtc_data = { .has_pclk = false, .need_dbp = true, .has_wakeirq = false, .regs = { .tr = 0x00, .dr = 0x04, .cr = 0x08, .isr = 0x0C, .prer = 0x10, .alrmar = 0x1C, .wpr = 0x24, .sr = 0x0C, /* set to ISR offset to ease alarm management */ .scr = UNDEF_REG, .verr = UNDEF_REG, }, .events = { .alra = STM32_RTC_ISR_ALRAF, }, .clear_events = stm32_rtc_clear_events, }; static const struct stm32_rtc_data stm32h7_rtc_data = { .has_pclk = true, .need_dbp = true, .has_wakeirq = false, .regs = { .tr = 0x00, .dr = 0x04, .cr = 0x08, .isr = 0x0C, .prer = 0x10, .alrmar = 0x1C, .wpr = 0x24, .sr = 0x0C, /* set to ISR offset to ease alarm management */ .scr = UNDEF_REG, .verr = UNDEF_REG, }, .events = { .alra = STM32_RTC_ISR_ALRAF, }, .clear_events = stm32_rtc_clear_events, }; static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc, unsigned int flags) { struct stm32_rtc_registers regs = rtc->data->regs; /* Flags are cleared by writing 1 in RTC_SCR */ writel_relaxed(flags, rtc->base + regs.scr); } static const struct stm32_rtc_data stm32mp1_data = { .has_pclk = true, .need_dbp = false, .has_wakeirq = true, .regs = { .tr = 0x00, .dr = 0x04, .cr = 0x18, .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */ .prer = 0x10, .alrmar = 0x40, .wpr = 0x24, .sr = 0x50, .scr = 0x5C, .verr = 0x3F4, }, .events = { .alra = STM32_RTC_SR_ALRA, }, .clear_events = stm32mp1_rtc_clear_events, }; static const struct of_device_id stm32_rtc_of_match[] = { { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data }, { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data }, { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data }, {} }; MODULE_DEVICE_TABLE(of, stm32_rtc_of_match); static int stm32_rtc_init(struct platform_device *pdev, struct stm32_rtc *rtc) { const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr; unsigned int rate; int ret = 0; rate = clk_get_rate(rtc->rtc_ck); /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */ pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT; pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT; for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) { pred_s = (rate / (pred_a + 1)) - 1; if (((pred_s + 1) * (pred_a + 1)) == rate) break; } /* * Can't find a 1Hz, so give priority to RTC power consumption * by choosing the higher possible value for prediv_a */ if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) { pred_a = pred_a_max; pred_s = (rate / (pred_a + 1)) - 1; dev_warn(&pdev->dev, "rtc_ck is %s\n", (rate < ((pred_a + 1) * (pred_s + 1))) ? "fast" : "slow"); } stm32_rtc_wpr_unlock(rtc); ret = stm32_rtc_enter_init_mode(rtc); if (ret) { dev_err(&pdev->dev, "Can't enter in init mode. Prescaler config failed.\n"); goto end; } prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S; writel_relaxed(prer, rtc->base + regs->prer); prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A; writel_relaxed(prer, rtc->base + regs->prer); /* Force 24h time format */ cr = readl_relaxed(rtc->base + regs->cr); cr &= ~STM32_RTC_CR_FMT; writel_relaxed(cr, rtc->base + regs->cr); stm32_rtc_exit_init_mode(rtc); ret = stm32_rtc_wait_sync(rtc); end: stm32_rtc_wpr_lock(rtc); return ret; } static int stm32_rtc_probe(struct platform_device *pdev) { struct stm32_rtc *rtc; const struct stm32_rtc_registers *regs; struct resource *res; int ret; rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); rtc->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rtc->base)) return PTR_ERR(rtc->base); rtc->data = (struct stm32_rtc_data *) of_device_get_match_data(&pdev->dev); regs = &rtc->data->regs; if (rtc->data->need_dbp) { rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "st,syscfg"); if (IS_ERR(rtc->dbp)) { dev_err(&pdev->dev, "no st,syscfg\n"); return PTR_ERR(rtc->dbp); } ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", 1, &rtc->dbp_reg); if (ret) { dev_err(&pdev->dev, "can't read DBP register offset\n"); return ret; } ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", 2, &rtc->dbp_mask); if (ret) { dev_err(&pdev->dev, "can't read DBP register mask\n"); return ret; } } if (!rtc->data->has_pclk) { rtc->pclk = NULL; rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL); } else { rtc->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(rtc->pclk)) { dev_err(&pdev->dev, "no pclk clock"); return PTR_ERR(rtc->pclk); } rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck"); } if (IS_ERR(rtc->rtc_ck)) { dev_err(&pdev->dev, "no rtc_ck clock"); return PTR_ERR(rtc->rtc_ck); } if (rtc->data->has_pclk) { ret = clk_prepare_enable(rtc->pclk); if (ret) return ret; } ret = clk_prepare_enable(rtc->rtc_ck); if (ret) goto err; if (rtc->data->need_dbp) regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, rtc->dbp_mask); /* * After a system reset, RTC_ISR.INITS flag can be read to check if * the calendar has been initialized or not. INITS flag is reset by a * power-on reset (no vbat, no power-supply). It is not reset if * rtc_ck parent clock has changed (so RTC prescalers need to be * changed). That's why we cannot rely on this flag to know if RTC * init has to be done. */ ret = stm32_rtc_init(pdev, rtc); if (ret) goto err; rtc->irq_alarm = platform_get_irq(pdev, 0); if (rtc->irq_alarm <= 0) { dev_err(&pdev->dev, "no alarm irq\n"); ret = rtc->irq_alarm; goto err; } ret = device_init_wakeup(&pdev->dev, true); if (rtc->data->has_wakeirq) { rtc->wakeirq_alarm = platform_get_irq(pdev, 1); if (rtc->wakeirq_alarm > 0) { ret = dev_pm_set_dedicated_wake_irq(&pdev->dev, rtc->wakeirq_alarm); } else { ret = rtc->wakeirq_alarm; if (rtc->wakeirq_alarm == -EPROBE_DEFER) goto err; } } if (ret) dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret); platform_set_drvdata(pdev, rtc); rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name, &stm32_rtc_ops, THIS_MODULE); if (IS_ERR(rtc->rtc_dev)) { ret = PTR_ERR(rtc->rtc_dev); dev_err(&pdev->dev, "rtc device registration failed, err=%d\n", ret); goto err; } /* Handle RTC alarm interrupts */ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL, stm32_rtc_alarm_irq, IRQF_ONESHOT, pdev->name, rtc); if (ret) { dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n", rtc->irq_alarm); goto err; } /* * If INITS flag is reset (calendar year field set to 0x00), calendar * must be initialized */ if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS)) dev_warn(&pdev->dev, "Date/Time must be initialized\n"); if (regs->verr != UNDEF_REG) { u32 ver = readl_relaxed(rtc->base + regs->verr); dev_info(&pdev->dev, "registered rev:%d.%d\n", (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF, (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF); } return 0; err: if (rtc->data->has_pclk) clk_disable_unprepare(rtc->pclk); clk_disable_unprepare(rtc->rtc_ck); if (rtc->data->need_dbp) regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); dev_pm_clear_wake_irq(&pdev->dev); device_init_wakeup(&pdev->dev, false); return ret; } static int stm32_rtc_remove(struct platform_device *pdev) { struct stm32_rtc *rtc = platform_get_drvdata(pdev); const struct stm32_rtc_registers *regs = &rtc->data->regs; unsigned int cr; /* Disable interrupts */ stm32_rtc_wpr_unlock(rtc); cr = readl_relaxed(rtc->base + regs->cr); cr &= ~STM32_RTC_CR_ALRAIE; writel_relaxed(cr, rtc->base + regs->cr); stm32_rtc_wpr_lock(rtc); clk_disable_unprepare(rtc->rtc_ck); if (rtc->data->has_pclk) clk_disable_unprepare(rtc->pclk); /* Enable backup domain write protection if needed */ if (rtc->data->need_dbp) regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); dev_pm_clear_wake_irq(&pdev->dev); device_init_wakeup(&pdev->dev, false); return 0; } #ifdef CONFIG_PM_SLEEP static int stm32_rtc_suspend(struct device *dev) { struct stm32_rtc *rtc = dev_get_drvdata(dev); if (rtc->data->has_pclk) clk_disable_unprepare(rtc->pclk); if (device_may_wakeup(dev)) return enable_irq_wake(rtc->irq_alarm); return 0; } static int stm32_rtc_resume(struct device *dev) { struct stm32_rtc *rtc = dev_get_drvdata(dev); int ret = 0; if (rtc->data->has_pclk) { ret = clk_prepare_enable(rtc->pclk); if (ret) return ret; } ret = stm32_rtc_wait_sync(rtc); if (ret < 0) return ret; if (device_may_wakeup(dev)) return disable_irq_wake(rtc->irq_alarm); return ret; } #endif static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops, stm32_rtc_suspend, stm32_rtc_resume); static struct platform_driver stm32_rtc_driver = { .probe = stm32_rtc_probe, .remove = stm32_rtc_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_rtc_pm_ops, .of_match_table = stm32_rtc_of_match, }, }; module_platform_driver(stm32_rtc_driver); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1