Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ching Huang | 18514 | 77.87% | 55 | 67.07% |
Nick Cheng (鄭守謙) | 4089 | 17.20% | 7 | 8.54% |
Erich Chen | 925 | 3.89% | 1 | 1.22% |
Christoph Hellwig | 87 | 0.37% | 2 | 2.44% |
Arnd Bergmann | 30 | 0.13% | 1 | 1.22% |
Tomas Henzl | 29 | 0.12% | 1 | 1.22% |
Borislav Petkov | 21 | 0.09% | 1 | 1.22% |
Al Viro | 15 | 0.06% | 2 | 2.44% |
Dan Carpenter | 15 | 0.06% | 1 | 1.22% |
Jeff Garzik | 13 | 0.05% | 1 | 1.22% |
Geert Uytterhoeven | 10 | 0.04% | 1 | 1.22% |
Hannes Reinecke | 5 | 0.02% | 1 | 1.22% |
Martin K. Petersen | 5 | 0.02% | 1 | 1.22% |
Kees Cook | 4 | 0.02% | 1 | 1.22% |
FUJITA Tomonori | 4 | 0.02% | 1 | 1.22% |
Tejun Heo | 3 | 0.01% | 1 | 1.22% |
David S. Miller | 3 | 0.01% | 1 | 1.22% |
Linus Torvalds | 1 | 0.00% | 1 | 1.22% |
Nik Nyby | 1 | 0.00% | 1 | 1.22% |
Jens Axboe | 1 | 0.00% | 1 | 1.22% |
Total | 23775 | 82 |
/* ******************************************************************************* ** O.S : Linux ** FILE NAME : arcmsr_hba.c ** BY : Nick Cheng, C.L. Huang ** Description: SCSI RAID Device Driver for Areca RAID Controller ******************************************************************************* ** Copyright (C) 2002 - 2014, Areca Technology Corporation All rights reserved ** ** Web site: www.areca.com.tw ** E-mail: support@areca.com.tw ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License version 2 as ** published by the Free Software Foundation. ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ******************************************************************************* ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* ** For history of changes, see Documentation/scsi/ChangeLog.arcmsr ** Firmware Specification, see Documentation/scsi/arcmsr_spec.txt ******************************************************************************* */ #include <linux/module.h> #include <linux/reboot.h> #include <linux/spinlock.h> #include <linux/pci_ids.h> #include <linux/interrupt.h> #include <linux/moduleparam.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/aer.h> #include <linux/circ_buf.h> #include <asm/dma.h> #include <asm/io.h> #include <linux/uaccess.h> #include <scsi/scsi_host.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_device.h> #include <scsi/scsi_transport.h> #include <scsi/scsicam.h> #include "arcmsr.h" MODULE_AUTHOR("Nick Cheng, C.L. Huang <support@areca.com.tw>"); MODULE_DESCRIPTION("Areca ARC11xx/12xx/16xx/188x SAS/SATA RAID Controller Driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(ARCMSR_DRIVER_VERSION); static int msix_enable = 1; module_param(msix_enable, int, S_IRUGO); MODULE_PARM_DESC(msix_enable, "Enable MSI-X interrupt(0 ~ 1), msix_enable=1(enable), =0(disable)"); static int msi_enable = 1; module_param(msi_enable, int, S_IRUGO); MODULE_PARM_DESC(msi_enable, "Enable MSI interrupt(0 ~ 1), msi_enable=1(enable), =0(disable)"); static int host_can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD; module_param(host_can_queue, int, S_IRUGO); MODULE_PARM_DESC(host_can_queue, " adapter queue depth(32 ~ 1024), default is 128"); static int cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN; module_param(cmd_per_lun, int, S_IRUGO); MODULE_PARM_DESC(cmd_per_lun, " device queue depth(1 ~ 128), default is 32"); static int dma_mask_64 = 0; module_param(dma_mask_64, int, S_IRUGO); MODULE_PARM_DESC(dma_mask_64, " set DMA mask to 64 bits(0 ~ 1), dma_mask_64=1(64 bits), =0(32 bits)"); static int set_date_time = 0; module_param(set_date_time, int, S_IRUGO); MODULE_PARM_DESC(set_date_time, " send date, time to iop(0 ~ 1), set_date_time=1(enable), default(=0) is disable"); #define ARCMSR_SLEEPTIME 10 #define ARCMSR_RETRYCOUNT 12 static wait_queue_head_t wait_q; static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb, struct scsi_cmnd *cmd); static int arcmsr_iop_confirm(struct AdapterControlBlock *acb); static int arcmsr_abort(struct scsi_cmnd *); static int arcmsr_bus_reset(struct scsi_cmnd *); static int arcmsr_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *info); static int arcmsr_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id); static int arcmsr_suspend(struct pci_dev *pdev, pm_message_t state); static int arcmsr_resume(struct pci_dev *pdev); static void arcmsr_remove(struct pci_dev *pdev); static void arcmsr_shutdown(struct pci_dev *pdev); static void arcmsr_iop_init(struct AdapterControlBlock *acb); static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb); static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb); static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb, u32 intmask_org); static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb); static void arcmsr_hbaA_flush_cache(struct AdapterControlBlock *acb); static void arcmsr_hbaB_flush_cache(struct AdapterControlBlock *acb); static void arcmsr_request_device_map(struct timer_list *t); static void arcmsr_message_isr_bh_fn(struct work_struct *work); static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb); static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb); static void arcmsr_hbaC_message_isr(struct AdapterControlBlock *pACB); static void arcmsr_hbaD_message_isr(struct AdapterControlBlock *acb); static void arcmsr_hbaE_message_isr(struct AdapterControlBlock *acb); static void arcmsr_hbaE_postqueue_isr(struct AdapterControlBlock *acb); static void arcmsr_hardware_reset(struct AdapterControlBlock *acb); static const char *arcmsr_info(struct Scsi_Host *); static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb); static void arcmsr_free_irq(struct pci_dev *, struct AdapterControlBlock *); static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb); static void arcmsr_set_iop_datetime(struct timer_list *); static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev, int queue_depth) { if (queue_depth > ARCMSR_MAX_CMD_PERLUN) queue_depth = ARCMSR_MAX_CMD_PERLUN; return scsi_change_queue_depth(sdev, queue_depth); } static struct scsi_host_template arcmsr_scsi_host_template = { .module = THIS_MODULE, .name = "Areca SAS/SATA RAID driver", .info = arcmsr_info, .queuecommand = arcmsr_queue_command, .eh_abort_handler = arcmsr_abort, .eh_bus_reset_handler = arcmsr_bus_reset, .bios_param = arcmsr_bios_param, .change_queue_depth = arcmsr_adjust_disk_queue_depth, .can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD, .this_id = ARCMSR_SCSI_INITIATOR_ID, .sg_tablesize = ARCMSR_DEFAULT_SG_ENTRIES, .max_sectors = ARCMSR_MAX_XFER_SECTORS_C, .cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN, .shost_attrs = arcmsr_host_attrs, .no_write_same = 1, }; static struct pci_device_id arcmsr_device_id_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200), .driver_data = ACB_ADAPTER_TYPE_B}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201), .driver_data = ACB_ADAPTER_TYPE_B}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202), .driver_data = ACB_ADAPTER_TYPE_B}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1203), .driver_data = ACB_ADAPTER_TYPE_B}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1214), .driver_data = ACB_ADAPTER_TYPE_D}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681), .driver_data = ACB_ADAPTER_TYPE_A}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1880), .driver_data = ACB_ADAPTER_TYPE_C}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1884), .driver_data = ACB_ADAPTER_TYPE_E}, {0, 0}, /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table); static struct pci_driver arcmsr_pci_driver = { .name = "arcmsr", .id_table = arcmsr_device_id_table, .probe = arcmsr_probe, .remove = arcmsr_remove, .suspend = arcmsr_suspend, .resume = arcmsr_resume, .shutdown = arcmsr_shutdown, }; /* **************************************************************************** **************************************************************************** */ static void arcmsr_free_io_queue(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_B: case ACB_ADAPTER_TYPE_D: case ACB_ADAPTER_TYPE_E: { dma_free_coherent(&acb->pdev->dev, acb->ioqueue_size, acb->dma_coherent2, acb->dma_coherent_handle2); break; } } } static bool arcmsr_remap_pciregion(struct AdapterControlBlock *acb) { struct pci_dev *pdev = acb->pdev; switch (acb->adapter_type){ case ACB_ADAPTER_TYPE_A:{ acb->pmuA = ioremap(pci_resource_start(pdev,0), pci_resource_len(pdev,0)); if (!acb->pmuA) { printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no); return false; } break; } case ACB_ADAPTER_TYPE_B:{ void __iomem *mem_base0, *mem_base1; mem_base0 = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!mem_base0) { printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no); return false; } mem_base1 = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); if (!mem_base1) { iounmap(mem_base0); printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no); return false; } acb->mem_base0 = mem_base0; acb->mem_base1 = mem_base1; break; } case ACB_ADAPTER_TYPE_C:{ acb->pmuC = ioremap_nocache(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); if (!acb->pmuC) { printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no); return false; } if (readl(&acb->pmuC->outbound_doorbell) & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &acb->pmuC->outbound_doorbell_clear);/*clear interrupt*/ return true; } break; } case ACB_ADAPTER_TYPE_D: { void __iomem *mem_base0; unsigned long addr, range, flags; addr = (unsigned long)pci_resource_start(pdev, 0); range = pci_resource_len(pdev, 0); flags = pci_resource_flags(pdev, 0); mem_base0 = ioremap(addr, range); if (!mem_base0) { pr_notice("arcmsr%d: memory mapping region fail\n", acb->host->host_no); return false; } acb->mem_base0 = mem_base0; break; } case ACB_ADAPTER_TYPE_E: { acb->pmuE = ioremap(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); if (!acb->pmuE) { pr_notice("arcmsr%d: memory mapping region fail \n", acb->host->host_no); return false; } writel(0, &acb->pmuE->host_int_status); /*clear interrupt*/ writel(ARCMSR_HBEMU_DOORBELL_SYNC, &acb->pmuE->iobound_doorbell); /* synchronize doorbell to 0 */ acb->in_doorbell = 0; acb->out_doorbell = 0; break; } } return true; } static void arcmsr_unmap_pciregion(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A:{ iounmap(acb->pmuA); } break; case ACB_ADAPTER_TYPE_B:{ iounmap(acb->mem_base0); iounmap(acb->mem_base1); } break; case ACB_ADAPTER_TYPE_C:{ iounmap(acb->pmuC); } break; case ACB_ADAPTER_TYPE_D: iounmap(acb->mem_base0); break; case ACB_ADAPTER_TYPE_E: iounmap(acb->pmuE); break; } } static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id) { irqreturn_t handle_state; struct AdapterControlBlock *acb = dev_id; handle_state = arcmsr_interrupt(acb); return handle_state; } static int arcmsr_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *geom) { int ret, heads, sectors, cylinders, total_capacity; unsigned char *buffer;/* return copy of block device's partition table */ buffer = scsi_bios_ptable(bdev); if (buffer) { ret = scsi_partsize(buffer, capacity, &geom[2], &geom[0], &geom[1]); kfree(buffer); if (ret != -1) return ret; } total_capacity = capacity; heads = 64; sectors = 32; cylinders = total_capacity / (heads * sectors); if (cylinders > 1024) { heads = 255; sectors = 63; cylinders = total_capacity / (heads * sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return 0; } static uint8_t arcmsr_hbaA_wait_msgint_ready(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; int i; for (i = 0; i < 2000; i++) { if (readl(®->outbound_intstatus) & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) { writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, ®->outbound_intstatus); return true; } msleep(10); } /* max 20 seconds */ return false; } static uint8_t arcmsr_hbaB_wait_msgint_ready(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; int i; for (i = 0; i < 2000; i++) { if (readl(reg->iop2drv_doorbell) & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell); return true; } msleep(10); } /* max 20 seconds */ return false; } static uint8_t arcmsr_hbaC_wait_msgint_ready(struct AdapterControlBlock *pACB) { struct MessageUnit_C __iomem *phbcmu = pACB->pmuC; int i; for (i = 0; i < 2000; i++) { if (readl(&phbcmu->outbound_doorbell) & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &phbcmu->outbound_doorbell_clear); /*clear interrupt*/ return true; } msleep(10); } /* max 20 seconds */ return false; } static bool arcmsr_hbaD_wait_msgint_ready(struct AdapterControlBlock *pACB) { struct MessageUnit_D *reg = pACB->pmuD; int i; for (i = 0; i < 2000; i++) { if (readl(reg->outbound_doorbell) & ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE, reg->outbound_doorbell); return true; } msleep(10); } /* max 20 seconds */ return false; } static bool arcmsr_hbaE_wait_msgint_ready(struct AdapterControlBlock *pACB) { int i; uint32_t read_doorbell; struct MessageUnit_E __iomem *phbcmu = pACB->pmuE; for (i = 0; i < 2000; i++) { read_doorbell = readl(&phbcmu->iobound_doorbell); if ((read_doorbell ^ pACB->in_doorbell) & ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE) { writel(0, &phbcmu->host_int_status); /*clear interrupt*/ pACB->in_doorbell = read_doorbell; return true; } msleep(10); } /* max 20 seconds */ return false; } static void arcmsr_hbaA_flush_cache(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; int retry_count = 30; writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, ®->inbound_msgaddr0); do { if (arcmsr_hbaA_wait_msgint_ready(acb)) break; else { retry_count--; printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \ timeout, retry count down = %d \n", acb->host->host_no, retry_count); } } while (retry_count != 0); } static void arcmsr_hbaB_flush_cache(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; int retry_count = 30; writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell); do { if (arcmsr_hbaB_wait_msgint_ready(acb)) break; else { retry_count--; printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \ timeout,retry count down = %d \n", acb->host->host_no, retry_count); } } while (retry_count != 0); } static void arcmsr_hbaC_flush_cache(struct AdapterControlBlock *pACB) { struct MessageUnit_C __iomem *reg = pACB->pmuC; int retry_count = 30;/* enlarge wait flush adapter cache time: 10 minute */ writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); do { if (arcmsr_hbaC_wait_msgint_ready(pACB)) { break; } else { retry_count--; printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \ timeout,retry count down = %d \n", pACB->host->host_no, retry_count); } } while (retry_count != 0); return; } static void arcmsr_hbaD_flush_cache(struct AdapterControlBlock *pACB) { int retry_count = 15; struct MessageUnit_D *reg = pACB->pmuD; writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, reg->inbound_msgaddr0); do { if (arcmsr_hbaD_wait_msgint_ready(pACB)) break; retry_count--; pr_notice("arcmsr%d: wait 'flush adapter " "cache' timeout, retry count down = %d\n", pACB->host->host_no, retry_count); } while (retry_count != 0); } static void arcmsr_hbaE_flush_cache(struct AdapterControlBlock *pACB) { int retry_count = 30; struct MessageUnit_E __iomem *reg = pACB->pmuE; writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, ®->inbound_msgaddr0); pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pACB->out_doorbell, ®->iobound_doorbell); do { if (arcmsr_hbaE_wait_msgint_ready(pACB)) break; retry_count--; pr_notice("arcmsr%d: wait 'flush adapter " "cache' timeout, retry count down = %d\n", pACB->host->host_no, retry_count); } while (retry_count != 0); } static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_hbaA_flush_cache(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_hbaB_flush_cache(acb); } break; case ACB_ADAPTER_TYPE_C: { arcmsr_hbaC_flush_cache(acb); } break; case ACB_ADAPTER_TYPE_D: arcmsr_hbaD_flush_cache(acb); break; case ACB_ADAPTER_TYPE_E: arcmsr_hbaE_flush_cache(acb); break; } } static void arcmsr_hbaB_assign_regAddr(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; if (acb->pdev->device == PCI_DEVICE_ID_ARECA_1203) { reg->drv2iop_doorbell = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_1203); reg->drv2iop_doorbell_mask = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_MASK_1203); reg->iop2drv_doorbell = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_1203); reg->iop2drv_doorbell_mask = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_MASK_1203); } else { reg->drv2iop_doorbell= MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL); reg->drv2iop_doorbell_mask = MEM_BASE0(ARCMSR_DRV2IOP_DOORBELL_MASK); reg->iop2drv_doorbell = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL); reg->iop2drv_doorbell_mask = MEM_BASE0(ARCMSR_IOP2DRV_DOORBELL_MASK); } reg->message_wbuffer = MEM_BASE1(ARCMSR_MESSAGE_WBUFFER); reg->message_rbuffer = MEM_BASE1(ARCMSR_MESSAGE_RBUFFER); reg->message_rwbuffer = MEM_BASE1(ARCMSR_MESSAGE_RWBUFFER); } static void arcmsr_hbaD_assign_regAddr(struct AdapterControlBlock *acb) { struct MessageUnit_D *reg = acb->pmuD; reg->chip_id = MEM_BASE0(ARCMSR_ARC1214_CHIP_ID); reg->cpu_mem_config = MEM_BASE0(ARCMSR_ARC1214_CPU_MEMORY_CONFIGURATION); reg->i2o_host_interrupt_mask = MEM_BASE0(ARCMSR_ARC1214_I2_HOST_INTERRUPT_MASK); reg->sample_at_reset = MEM_BASE0(ARCMSR_ARC1214_SAMPLE_RESET); reg->reset_request = MEM_BASE0(ARCMSR_ARC1214_RESET_REQUEST); reg->host_int_status = MEM_BASE0(ARCMSR_ARC1214_MAIN_INTERRUPT_STATUS); reg->pcief0_int_enable = MEM_BASE0(ARCMSR_ARC1214_PCIE_F0_INTERRUPT_ENABLE); reg->inbound_msgaddr0 = MEM_BASE0(ARCMSR_ARC1214_INBOUND_MESSAGE0); reg->inbound_msgaddr1 = MEM_BASE0(ARCMSR_ARC1214_INBOUND_MESSAGE1); reg->outbound_msgaddr0 = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_MESSAGE0); reg->outbound_msgaddr1 = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_MESSAGE1); reg->inbound_doorbell = MEM_BASE0(ARCMSR_ARC1214_INBOUND_DOORBELL); reg->outbound_doorbell = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_DOORBELL); reg->outbound_doorbell_enable = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_DOORBELL_ENABLE); reg->inboundlist_base_low = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_BASE_LOW); reg->inboundlist_base_high = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_BASE_HIGH); reg->inboundlist_write_pointer = MEM_BASE0(ARCMSR_ARC1214_INBOUND_LIST_WRITE_POINTER); reg->outboundlist_base_low = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_BASE_LOW); reg->outboundlist_base_high = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_BASE_HIGH); reg->outboundlist_copy_pointer = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_COPY_POINTER); reg->outboundlist_read_pointer = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_LIST_READ_POINTER); reg->outboundlist_interrupt_cause = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_INTERRUPT_CAUSE); reg->outboundlist_interrupt_enable = MEM_BASE0(ARCMSR_ARC1214_OUTBOUND_INTERRUPT_ENABLE); reg->message_wbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_WBUFFER); reg->message_rbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_RBUFFER); reg->msgcode_rwbuffer = MEM_BASE0(ARCMSR_ARC1214_MESSAGE_RWBUFFER); } static bool arcmsr_alloc_io_queue(struct AdapterControlBlock *acb) { bool rtn = true; void *dma_coherent; dma_addr_t dma_coherent_handle; struct pci_dev *pdev = acb->pdev; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_B: { acb->ioqueue_size = roundup(sizeof(struct MessageUnit_B), 32); dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size, &dma_coherent_handle, GFP_KERNEL); if (!dma_coherent) { pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no); return false; } acb->dma_coherent_handle2 = dma_coherent_handle; acb->dma_coherent2 = dma_coherent; acb->pmuB = (struct MessageUnit_B *)dma_coherent; arcmsr_hbaB_assign_regAddr(acb); } break; case ACB_ADAPTER_TYPE_D: { acb->ioqueue_size = roundup(sizeof(struct MessageUnit_D), 32); dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size, &dma_coherent_handle, GFP_KERNEL); if (!dma_coherent) { pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no); return false; } acb->dma_coherent_handle2 = dma_coherent_handle; acb->dma_coherent2 = dma_coherent; acb->pmuD = (struct MessageUnit_D *)dma_coherent; arcmsr_hbaD_assign_regAddr(acb); } break; case ACB_ADAPTER_TYPE_E: { uint32_t completeQ_size; completeQ_size = sizeof(struct deliver_completeQ) * ARCMSR_MAX_HBE_DONEQUEUE + 128; acb->ioqueue_size = roundup(completeQ_size, 32); dma_coherent = dma_alloc_coherent(&pdev->dev, acb->ioqueue_size, &dma_coherent_handle, GFP_KERNEL); if (!dma_coherent){ pr_notice("arcmsr%d: DMA allocation failed\n", acb->host->host_no); return false; } acb->dma_coherent_handle2 = dma_coherent_handle; acb->dma_coherent2 = dma_coherent; acb->pCompletionQ = dma_coherent; acb->completionQ_entry = acb->ioqueue_size / sizeof(struct deliver_completeQ); acb->doneq_index = 0; } break; default: break; } return rtn; } static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb) { struct pci_dev *pdev = acb->pdev; void *dma_coherent; dma_addr_t dma_coherent_handle; struct CommandControlBlock *ccb_tmp; int i = 0, j = 0; unsigned long cdb_phyaddr, next_ccb_phy; unsigned long roundup_ccbsize; unsigned long max_xfer_len; unsigned long max_sg_entrys; uint32_t firm_config_version, curr_phy_upper32; for (i = 0; i < ARCMSR_MAX_TARGETID; i++) for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++) acb->devstate[i][j] = ARECA_RAID_GONE; max_xfer_len = ARCMSR_MAX_XFER_LEN; max_sg_entrys = ARCMSR_DEFAULT_SG_ENTRIES; firm_config_version = acb->firm_cfg_version; if((firm_config_version & 0xFF) >= 3){ max_xfer_len = (ARCMSR_CDB_SG_PAGE_LENGTH << ((firm_config_version >> 8) & 0xFF)) * 1024;/* max 4M byte */ max_sg_entrys = (max_xfer_len/4096); } acb->host->max_sectors = max_xfer_len/512; acb->host->sg_tablesize = max_sg_entrys; roundup_ccbsize = roundup(sizeof(struct CommandControlBlock) + (max_sg_entrys - 1) * sizeof(struct SG64ENTRY), 32); acb->uncache_size = roundup_ccbsize * acb->maxFreeCCB; acb->uncache_size += acb->ioqueue_size; dma_coherent = dma_alloc_coherent(&pdev->dev, acb->uncache_size, &dma_coherent_handle, GFP_KERNEL); if(!dma_coherent){ printk(KERN_NOTICE "arcmsr%d: dma_alloc_coherent got error\n", acb->host->host_no); return -ENOMEM; } acb->dma_coherent = dma_coherent; acb->dma_coherent_handle = dma_coherent_handle; memset(dma_coherent, 0, acb->uncache_size); acb->ccbsize = roundup_ccbsize; ccb_tmp = dma_coherent; curr_phy_upper32 = upper_32_bits(dma_coherent_handle); acb->vir2phy_offset = (unsigned long)dma_coherent - (unsigned long)dma_coherent_handle; for(i = 0; i < acb->maxFreeCCB; i++){ cdb_phyaddr = (unsigned long)dma_coherent_handle + offsetof(struct CommandControlBlock, arcmsr_cdb); switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: case ACB_ADAPTER_TYPE_B: ccb_tmp->cdb_phyaddr = cdb_phyaddr >> 5; break; case ACB_ADAPTER_TYPE_C: case ACB_ADAPTER_TYPE_D: case ACB_ADAPTER_TYPE_E: ccb_tmp->cdb_phyaddr = cdb_phyaddr; break; } acb->pccb_pool[i] = ccb_tmp; ccb_tmp->acb = acb; ccb_tmp->smid = (u32)i << 16; INIT_LIST_HEAD(&ccb_tmp->list); next_ccb_phy = dma_coherent_handle + roundup_ccbsize; if (upper_32_bits(next_ccb_phy) != curr_phy_upper32) { acb->maxFreeCCB = i; acb->host->can_queue = i; break; } else list_add_tail(&ccb_tmp->list, &acb->ccb_free_list); ccb_tmp = (struct CommandControlBlock *)((unsigned long)ccb_tmp + roundup_ccbsize); dma_coherent_handle = next_ccb_phy; } acb->dma_coherent_handle2 = dma_coherent_handle; acb->dma_coherent2 = ccb_tmp; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_B: acb->pmuB = (struct MessageUnit_B *)acb->dma_coherent2; arcmsr_hbaB_assign_regAddr(acb); break; case ACB_ADAPTER_TYPE_D: acb->pmuD = (struct MessageUnit_D *)acb->dma_coherent2; arcmsr_hbaD_assign_regAddr(acb); break; case ACB_ADAPTER_TYPE_E: acb->pCompletionQ = acb->dma_coherent2; acb->completionQ_entry = acb->ioqueue_size / sizeof(struct deliver_completeQ); acb->doneq_index = 0; break; } return 0; } static void arcmsr_message_isr_bh_fn(struct work_struct *work) { struct AdapterControlBlock *acb = container_of(work, struct AdapterControlBlock, arcmsr_do_message_isr_bh); char *acb_dev_map = (char *)acb->device_map; uint32_t __iomem *signature = NULL; char __iomem *devicemap = NULL; int target, lun; struct scsi_device *psdev; char diff, temp; acb->acb_flags &= ~ACB_F_MSG_GET_CONFIG; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; signature = (uint32_t __iomem *)(®->message_rwbuffer[0]); devicemap = (char __iomem *)(®->message_rwbuffer[21]); break; } case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; signature = (uint32_t __iomem *)(®->message_rwbuffer[0]); devicemap = (char __iomem *)(®->message_rwbuffer[21]); break; } case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; signature = (uint32_t __iomem *)(®->msgcode_rwbuffer[0]); devicemap = (char __iomem *)(®->msgcode_rwbuffer[21]); break; } case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; signature = (uint32_t __iomem *)(®->msgcode_rwbuffer[0]); devicemap = (char __iomem *)(®->msgcode_rwbuffer[21]); break; } case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; signature = (uint32_t __iomem *)(®->msgcode_rwbuffer[0]); devicemap = (char __iomem *)(®->msgcode_rwbuffer[21]); break; } } atomic_inc(&acb->rq_map_token); if (readl(signature) != ARCMSR_SIGNATURE_GET_CONFIG) return; for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) { temp = readb(devicemap); diff = (*acb_dev_map) ^ temp; if (diff != 0) { *acb_dev_map = temp; for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) { if ((diff & 0x01) == 1 && (temp & 0x01) == 1) { scsi_add_device(acb->host, 0, target, lun); } else if ((diff & 0x01) == 1 && (temp & 0x01) == 0) { psdev = scsi_device_lookup(acb->host, 0, target, lun); if (psdev != NULL) { scsi_remove_device(psdev); scsi_device_put(psdev); } } temp >>= 1; diff >>= 1; } } devicemap++; acb_dev_map++; } } static int arcmsr_request_irq(struct pci_dev *pdev, struct AdapterControlBlock *acb) { unsigned long flags; int nvec, i; if (msix_enable == 0) goto msi_int0; nvec = pci_alloc_irq_vectors(pdev, 1, ARCMST_NUM_MSIX_VECTORS, PCI_IRQ_MSIX); if (nvec > 0) { pr_info("arcmsr%d: msi-x enabled\n", acb->host->host_no); flags = 0; } else { msi_int0: if (msi_enable == 1) { nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); if (nvec == 1) { dev_info(&pdev->dev, "msi enabled\n"); goto msi_int1; } } nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_LEGACY); if (nvec < 1) return FAILED; msi_int1: flags = IRQF_SHARED; } acb->vector_count = nvec; for (i = 0; i < nvec; i++) { if (request_irq(pci_irq_vector(pdev, i), arcmsr_do_interrupt, flags, "arcmsr", acb)) { pr_warn("arcmsr%d: request_irq =%d failed!\n", acb->host->host_no, pci_irq_vector(pdev, i)); goto out_free_irq; } } return SUCCESS; out_free_irq: while (--i >= 0) free_irq(pci_irq_vector(pdev, i), acb); pci_free_irq_vectors(pdev); return FAILED; } static void arcmsr_init_get_devmap_timer(struct AdapterControlBlock *pacb) { INIT_WORK(&pacb->arcmsr_do_message_isr_bh, arcmsr_message_isr_bh_fn); atomic_set(&pacb->rq_map_token, 16); atomic_set(&pacb->ante_token_value, 16); pacb->fw_flag = FW_NORMAL; timer_setup(&pacb->eternal_timer, arcmsr_request_device_map, 0); pacb->eternal_timer.expires = jiffies + msecs_to_jiffies(6 * HZ); add_timer(&pacb->eternal_timer); } static void arcmsr_init_set_datetime_timer(struct AdapterControlBlock *pacb) { timer_setup(&pacb->refresh_timer, arcmsr_set_iop_datetime, 0); pacb->refresh_timer.expires = jiffies + msecs_to_jiffies(60 * 1000); add_timer(&pacb->refresh_timer); } static int arcmsr_set_dma_mask(struct AdapterControlBlock *acb) { struct pci_dev *pcidev = acb->pdev; if (IS_DMA64) { if (((acb->adapter_type == ACB_ADAPTER_TYPE_A) && !dma_mask_64) || dma_set_mask(&pcidev->dev, DMA_BIT_MASK(64))) goto dma32; if (dma_set_coherent_mask(&pcidev->dev, DMA_BIT_MASK(64)) || dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(64))) { printk("arcmsr: set DMA 64 mask failed\n"); return -ENXIO; } } else { dma32: if (dma_set_mask(&pcidev->dev, DMA_BIT_MASK(32)) || dma_set_coherent_mask(&pcidev->dev, DMA_BIT_MASK(32)) || dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32))) { printk("arcmsr: set DMA 32-bit mask failed\n"); return -ENXIO; } } return 0; } static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *host; struct AdapterControlBlock *acb; uint8_t bus,dev_fun; int error; error = pci_enable_device(pdev); if(error){ return -ENODEV; } host = scsi_host_alloc(&arcmsr_scsi_host_template, sizeof(struct AdapterControlBlock)); if(!host){ goto pci_disable_dev; } init_waitqueue_head(&wait_q); bus = pdev->bus->number; dev_fun = pdev->devfn; acb = (struct AdapterControlBlock *) host->hostdata; memset(acb,0,sizeof(struct AdapterControlBlock)); acb->pdev = pdev; acb->adapter_type = id->driver_data; if (arcmsr_set_dma_mask(acb)) goto scsi_host_release; acb->host = host; host->max_lun = ARCMSR_MAX_TARGETLUN; host->max_id = ARCMSR_MAX_TARGETID; /*16:8*/ host->max_cmd_len = 16; /*this is issue of 64bit LBA ,over 2T byte*/ if ((host_can_queue < ARCMSR_MIN_OUTSTANDING_CMD) || (host_can_queue > ARCMSR_MAX_OUTSTANDING_CMD)) host_can_queue = ARCMSR_DEFAULT_OUTSTANDING_CMD; host->can_queue = host_can_queue; /* max simultaneous cmds */ if ((cmd_per_lun < ARCMSR_MIN_CMD_PERLUN) || (cmd_per_lun > ARCMSR_MAX_CMD_PERLUN)) cmd_per_lun = ARCMSR_DEFAULT_CMD_PERLUN; host->cmd_per_lun = cmd_per_lun; host->this_id = ARCMSR_SCSI_INITIATOR_ID; host->unique_id = (bus << 8) | dev_fun; pci_set_drvdata(pdev, host); pci_set_master(pdev); error = pci_request_regions(pdev, "arcmsr"); if(error){ goto scsi_host_release; } spin_lock_init(&acb->eh_lock); spin_lock_init(&acb->ccblist_lock); spin_lock_init(&acb->postq_lock); spin_lock_init(&acb->doneq_lock); spin_lock_init(&acb->rqbuffer_lock); spin_lock_init(&acb->wqbuffer_lock); acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER; INIT_LIST_HEAD(&acb->ccb_free_list); error = arcmsr_remap_pciregion(acb); if(!error){ goto pci_release_regs; } error = arcmsr_alloc_io_queue(acb); if (!error) goto unmap_pci_region; error = arcmsr_get_firmware_spec(acb); if(!error){ goto free_hbb_mu; } arcmsr_free_io_queue(acb); error = arcmsr_alloc_ccb_pool(acb); if(error){ goto unmap_pci_region; } error = scsi_add_host(host, &pdev->dev); if(error){ goto free_ccb_pool; } if (arcmsr_request_irq(pdev, acb) == FAILED) goto scsi_host_remove; arcmsr_iop_init(acb); arcmsr_init_get_devmap_timer(acb); if (set_date_time) arcmsr_init_set_datetime_timer(acb); if(arcmsr_alloc_sysfs_attr(acb)) goto out_free_sysfs; scsi_scan_host(host); return 0; out_free_sysfs: if (set_date_time) del_timer_sync(&acb->refresh_timer); del_timer_sync(&acb->eternal_timer); flush_work(&acb->arcmsr_do_message_isr_bh); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); arcmsr_free_irq(pdev, acb); scsi_host_remove: scsi_remove_host(host); free_ccb_pool: arcmsr_free_ccb_pool(acb); goto unmap_pci_region; free_hbb_mu: arcmsr_free_io_queue(acb); unmap_pci_region: arcmsr_unmap_pciregion(acb); pci_release_regs: pci_release_regions(pdev); scsi_host_release: scsi_host_put(host); pci_disable_dev: pci_disable_device(pdev); return -ENODEV; } static void arcmsr_free_irq(struct pci_dev *pdev, struct AdapterControlBlock *acb) { int i; for (i = 0; i < acb->vector_count; i++) free_irq(pci_irq_vector(pdev, i), acb); pci_free_irq_vectors(pdev); } static int arcmsr_suspend(struct pci_dev *pdev, pm_message_t state) { uint32_t intmask_org; struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata; intmask_org = arcmsr_disable_outbound_ints(acb); arcmsr_free_irq(pdev, acb); del_timer_sync(&acb->eternal_timer); if (set_date_time) del_timer_sync(&acb->refresh_timer); flush_work(&acb->arcmsr_do_message_isr_bh); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); pci_set_drvdata(pdev, host); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int arcmsr_resume(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata; pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); if (pci_enable_device(pdev)) { pr_warn("%s: pci_enable_device error\n", __func__); return -ENODEV; } if (arcmsr_set_dma_mask(acb)) goto controller_unregister; pci_set_master(pdev); if (arcmsr_request_irq(pdev, acb) == FAILED) goto controller_stop; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; uint32_t i; for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) { reg->post_qbuffer[i] = 0; reg->done_qbuffer[i] = 0; } reg->postq_index = 0; reg->doneq_index = 0; break; } case ACB_ADAPTER_TYPE_E: writel(0, &acb->pmuE->host_int_status); writel(ARCMSR_HBEMU_DOORBELL_SYNC, &acb->pmuE->iobound_doorbell); acb->in_doorbell = 0; acb->out_doorbell = 0; acb->doneq_index = 0; break; } arcmsr_iop_init(acb); arcmsr_init_get_devmap_timer(acb); if (set_date_time) arcmsr_init_set_datetime_timer(acb); return 0; controller_stop: arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); controller_unregister: scsi_remove_host(host); arcmsr_free_ccb_pool(acb); arcmsr_unmap_pciregion(acb); pci_release_regions(pdev); scsi_host_put(host); pci_disable_device(pdev); return -ENODEV; } static uint8_t arcmsr_hbaA_abort_allcmd(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, ®->inbound_msgaddr0); if (!arcmsr_hbaA_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'abort all outstanding command' timeout\n" , acb->host->host_no); return false; } return true; } static uint8_t arcmsr_hbaB_abort_allcmd(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'abort all outstanding command' timeout\n" , acb->host->host_no); return false; } return true; } static uint8_t arcmsr_hbaC_abort_allcmd(struct AdapterControlBlock *pACB) { struct MessageUnit_C __iomem *reg = pACB->pmuC; writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); if (!arcmsr_hbaC_wait_msgint_ready(pACB)) { printk(KERN_NOTICE "arcmsr%d: wait 'abort all outstanding command' timeout\n" , pACB->host->host_no); return false; } return true; } static uint8_t arcmsr_hbaD_abort_allcmd(struct AdapterControlBlock *pACB) { struct MessageUnit_D *reg = pACB->pmuD; writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, reg->inbound_msgaddr0); if (!arcmsr_hbaD_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait 'abort all outstanding " "command' timeout\n", pACB->host->host_no); return false; } return true; } static uint8_t arcmsr_hbaE_abort_allcmd(struct AdapterControlBlock *pACB) { struct MessageUnit_E __iomem *reg = pACB->pmuE; writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, ®->inbound_msgaddr0); pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pACB->out_doorbell, ®->iobound_doorbell); if (!arcmsr_hbaE_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait 'abort all outstanding " "command' timeout\n", pACB->host->host_no); return false; } return true; } static uint8_t arcmsr_abort_allcmd(struct AdapterControlBlock *acb) { uint8_t rtnval = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { rtnval = arcmsr_hbaA_abort_allcmd(acb); } break; case ACB_ADAPTER_TYPE_B: { rtnval = arcmsr_hbaB_abort_allcmd(acb); } break; case ACB_ADAPTER_TYPE_C: { rtnval = arcmsr_hbaC_abort_allcmd(acb); } break; case ACB_ADAPTER_TYPE_D: rtnval = arcmsr_hbaD_abort_allcmd(acb); break; case ACB_ADAPTER_TYPE_E: rtnval = arcmsr_hbaE_abort_allcmd(acb); break; } return rtnval; } static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb) { struct scsi_cmnd *pcmd = ccb->pcmd; scsi_dma_unmap(pcmd); } static void arcmsr_ccb_complete(struct CommandControlBlock *ccb) { struct AdapterControlBlock *acb = ccb->acb; struct scsi_cmnd *pcmd = ccb->pcmd; unsigned long flags; atomic_dec(&acb->ccboutstandingcount); arcmsr_pci_unmap_dma(ccb); ccb->startdone = ARCMSR_CCB_DONE; spin_lock_irqsave(&acb->ccblist_lock, flags); list_add_tail(&ccb->list, &acb->ccb_free_list); spin_unlock_irqrestore(&acb->ccblist_lock, flags); pcmd->scsi_done(pcmd); } static void arcmsr_report_sense_info(struct CommandControlBlock *ccb) { struct scsi_cmnd *pcmd = ccb->pcmd; struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer; pcmd->result = (DID_OK << 16) | (CHECK_CONDITION << 1); if (sensebuffer) { int sense_data_length = sizeof(struct SENSE_DATA) < SCSI_SENSE_BUFFERSIZE ? sizeof(struct SENSE_DATA) : SCSI_SENSE_BUFFERSIZE; memset(sensebuffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length); sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS; sensebuffer->Valid = 1; pcmd->result |= (DRIVER_SENSE << 24); } } static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb) { u32 orig_mask = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A : { struct MessageUnit_A __iomem *reg = acb->pmuA; orig_mask = readl(®->outbound_intmask); writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \ ®->outbound_intmask); } break; case ACB_ADAPTER_TYPE_B : { struct MessageUnit_B *reg = acb->pmuB; orig_mask = readl(reg->iop2drv_doorbell_mask); writel(0, reg->iop2drv_doorbell_mask); } break; case ACB_ADAPTER_TYPE_C:{ struct MessageUnit_C __iomem *reg = acb->pmuC; /* disable all outbound interrupt */ orig_mask = readl(®->host_int_mask); /* disable outbound message0 int */ writel(orig_mask|ARCMSR_HBCMU_ALL_INTMASKENABLE, ®->host_int_mask); } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; /* disable all outbound interrupt */ writel(ARCMSR_ARC1214_ALL_INT_DISABLE, reg->pcief0_int_enable); } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; orig_mask = readl(®->host_int_mask); writel(orig_mask | ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR | ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR, ®->host_int_mask); readl(®->host_int_mask); /* Dummy readl to force pci flush */ } break; } return orig_mask; } static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb, bool error) { uint8_t id, lun; id = ccb->pcmd->device->id; lun = ccb->pcmd->device->lun; if (!error) { if (acb->devstate[id][lun] == ARECA_RAID_GONE) acb->devstate[id][lun] = ARECA_RAID_GOOD; ccb->pcmd->result = DID_OK << 16; arcmsr_ccb_complete(ccb); }else{ switch (ccb->arcmsr_cdb.DeviceStatus) { case ARCMSR_DEV_SELECT_TIMEOUT: { acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_NO_CONNECT << 16; arcmsr_ccb_complete(ccb); } break; case ARCMSR_DEV_ABORTED: case ARCMSR_DEV_INIT_FAIL: { acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_BAD_TARGET << 16; arcmsr_ccb_complete(ccb); } break; case ARCMSR_DEV_CHECK_CONDITION: { acb->devstate[id][lun] = ARECA_RAID_GOOD; arcmsr_report_sense_info(ccb); arcmsr_ccb_complete(ccb); } break; default: printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d isr get command error done, \ but got unknown DeviceStatus = 0x%x \n" , acb->host->host_no , id , lun , ccb->arcmsr_cdb.DeviceStatus); acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_NO_CONNECT << 16; arcmsr_ccb_complete(ccb); break; } } } static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, struct CommandControlBlock *pCCB, bool error) { if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) { if (pCCB->startdone == ARCMSR_CCB_ABORTED) { struct scsi_cmnd *abortcmd = pCCB->pcmd; if (abortcmd) { abortcmd->result |= DID_ABORT << 16; arcmsr_ccb_complete(pCCB); printk(KERN_NOTICE "arcmsr%d: pCCB ='0x%p' isr got aborted command \n", acb->host->host_no, pCCB); } return; } printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \ done acb = '0x%p'" "ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x" " ccboutstandingcount = %d \n" , acb->host->host_no , acb , pCCB , pCCB->acb , pCCB->startdone , atomic_read(&acb->ccboutstandingcount)); return; } arcmsr_report_ccb_state(acb, pCCB, error); } static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb) { int i = 0; uint32_t flag_ccb; struct ARCMSR_CDB *pARCMSR_CDB; bool error; struct CommandControlBlock *pCCB; unsigned long ccb_cdb_phy, cdb_phy_hipart; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; uint32_t outbound_intstatus; outbound_intstatus = readl(®->outbound_intstatus) & acb->outbound_int_enable; /*clear and abort all outbound posted Q*/ writel(outbound_intstatus, ®->outbound_intstatus);/*clear interrupt*/ while(((flag_ccb = readl(®->outbound_queueport)) != 0xFFFFFFFF) && (i++ < acb->maxOutstanding)) { ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); } } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; /*clear all outbound posted Q*/ writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); /* clear doorbell interrupt */ for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) { flag_ccb = reg->done_qbuffer[i]; if (flag_ccb != 0) { reg->done_qbuffer[i] = 0; ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); } reg->post_qbuffer[i] = 0; } reg->doneq_index = 0; reg->postq_index = 0; } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; while ((readl(®->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) && (i++ < acb->maxOutstanding)) { /*need to do*/ flag_ccb = readl(®->outbound_queueport_low); ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); } } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *pmu = acb->pmuD; uint32_t outbound_write_pointer; uint32_t doneq_index, index_stripped, addressLow, residual, toggle; unsigned long flags; residual = atomic_read(&acb->ccboutstandingcount); for (i = 0; i < residual; i++) { spin_lock_irqsave(&acb->doneq_lock, flags); outbound_write_pointer = pmu->done_qbuffer[0].addressLow + 1; doneq_index = pmu->doneq_index; if ((doneq_index & 0xFFF) != (outbound_write_pointer & 0xFFF)) { toggle = doneq_index & 0x4000; index_stripped = (doneq_index & 0xFFF) + 1; index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE; pmu->doneq_index = index_stripped ? (index_stripped | toggle) : ((toggle ^ 0x4000) + 1); doneq_index = pmu->doneq_index; spin_unlock_irqrestore(&acb->doneq_lock, flags); cdb_phy_hipart = pmu->done_qbuffer[doneq_index & 0xFFF].addressHigh; addressLow = pmu->done_qbuffer[doneq_index & 0xFFF].addressLow; ccb_cdb_phy = (addressLow & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *) (acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (addressLow & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); writel(doneq_index, pmu->outboundlist_read_pointer); } else { spin_unlock_irqrestore(&acb->doneq_lock, flags); mdelay(10); } } pmu->postq_index = 0; pmu->doneq_index = 0x40FF; } break; case ACB_ADAPTER_TYPE_E: arcmsr_hbaE_postqueue_isr(acb); break; } } static void arcmsr_remove_scsi_devices(struct AdapterControlBlock *acb) { char *acb_dev_map = (char *)acb->device_map; int target, lun, i; struct scsi_device *psdev; struct CommandControlBlock *ccb; char temp; for (i = 0; i < acb->maxFreeCCB; i++) { ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { ccb->pcmd->result = DID_NO_CONNECT << 16; arcmsr_pci_unmap_dma(ccb); ccb->pcmd->scsi_done(ccb->pcmd); } } for (target = 0; target < ARCMSR_MAX_TARGETID; target++) { temp = *acb_dev_map; if (temp) { for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) { if (temp & 1) { psdev = scsi_device_lookup(acb->host, 0, target, lun); if (psdev != NULL) { scsi_remove_device(psdev); scsi_device_put(psdev); } } temp >>= 1; } *acb_dev_map = 0; } acb_dev_map++; } } static void arcmsr_free_pcidev(struct AdapterControlBlock *acb) { struct pci_dev *pdev; struct Scsi_Host *host; host = acb->host; arcmsr_free_sysfs_attr(acb); scsi_remove_host(host); flush_work(&acb->arcmsr_do_message_isr_bh); del_timer_sync(&acb->eternal_timer); if (set_date_time) del_timer_sync(&acb->refresh_timer); pdev = acb->pdev; arcmsr_free_irq(pdev, acb); arcmsr_free_ccb_pool(acb); arcmsr_unmap_pciregion(acb); pci_release_regions(pdev); scsi_host_put(host); pci_disable_device(pdev); } static void arcmsr_remove(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; int poll_count = 0; uint16_t dev_id; pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id); if (dev_id == 0xffff) { acb->acb_flags &= ~ACB_F_IOP_INITED; acb->acb_flags |= ACB_F_ADAPTER_REMOVED; arcmsr_remove_scsi_devices(acb); arcmsr_free_pcidev(acb); return; } arcmsr_free_sysfs_attr(acb); scsi_remove_host(host); flush_work(&acb->arcmsr_do_message_isr_bh); del_timer_sync(&acb->eternal_timer); if (set_date_time) del_timer_sync(&acb->refresh_timer); arcmsr_disable_outbound_ints(acb); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); acb->acb_flags |= ACB_F_SCSISTOPADAPTER; acb->acb_flags &= ~ACB_F_IOP_INITED; for (poll_count = 0; poll_count < acb->maxOutstanding; poll_count++){ if (!atomic_read(&acb->ccboutstandingcount)) break; arcmsr_interrupt(acb);/* FIXME: need spinlock */ msleep(25); } if (atomic_read(&acb->ccboutstandingcount)) { int i; arcmsr_abort_allcmd(acb); arcmsr_done4abort_postqueue(acb); for (i = 0; i < acb->maxFreeCCB; i++) { struct CommandControlBlock *ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { ccb->startdone = ARCMSR_CCB_ABORTED; ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb); } } } arcmsr_free_irq(pdev, acb); arcmsr_free_ccb_pool(acb); arcmsr_unmap_pciregion(acb); pci_release_regions(pdev); scsi_host_put(host); pci_disable_device(pdev); } static void arcmsr_shutdown(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata; if (acb->acb_flags & ACB_F_ADAPTER_REMOVED) return; del_timer_sync(&acb->eternal_timer); if (set_date_time) del_timer_sync(&acb->refresh_timer); arcmsr_disable_outbound_ints(acb); arcmsr_free_irq(pdev, acb); flush_work(&acb->arcmsr_do_message_isr_bh); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); } static int arcmsr_module_init(void) { int error = 0; error = pci_register_driver(&arcmsr_pci_driver); return error; } static void arcmsr_module_exit(void) { pci_unregister_driver(&arcmsr_pci_driver); } module_init(arcmsr_module_init); module_exit(arcmsr_module_exit); static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb, u32 intmask_org) { u32 mask; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE | ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE| ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE); writel(mask, ®->outbound_intmask); acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff; } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK | ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE | ARCMSR_IOP2DRV_MESSAGE_CMD_DONE); writel(mask, reg->iop2drv_doorbell_mask); acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f; } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; mask = ~(ARCMSR_HBCMU_UTILITY_A_ISR_MASK | ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK|ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK); writel(intmask_org & mask, ®->host_int_mask); acb->outbound_int_enable = ~(intmask_org & mask) & 0x0000000f; } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; mask = ARCMSR_ARC1214_ALL_INT_ENABLE; writel(intmask_org | mask, reg->pcief0_int_enable); break; } case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; mask = ~(ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR | ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR); writel(intmask_org & mask, ®->host_int_mask); break; } } } static int arcmsr_build_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd) { struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb; int8_t *psge = (int8_t *)&arcmsr_cdb->u; __le32 address_lo, address_hi; int arccdbsize = 0x30; __le32 length = 0; int i; struct scatterlist *sg; int nseg; ccb->pcmd = pcmd; memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB)); arcmsr_cdb->TargetID = pcmd->device->id; arcmsr_cdb->LUN = pcmd->device->lun; arcmsr_cdb->Function = 1; arcmsr_cdb->msgContext = 0; memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len); nseg = scsi_dma_map(pcmd); if (unlikely(nseg > acb->host->sg_tablesize || nseg < 0)) return FAILED; scsi_for_each_sg(pcmd, sg, nseg, i) { /* Get the physical address of the current data pointer */ length = cpu_to_le32(sg_dma_len(sg)); address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg))); address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg))); if (address_hi == 0) { struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge; pdma_sg->address = address_lo; pdma_sg->length = length; psge += sizeof (struct SG32ENTRY); arccdbsize += sizeof (struct SG32ENTRY); } else { struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge; pdma_sg->addresshigh = address_hi; pdma_sg->address = address_lo; pdma_sg->length = length|cpu_to_le32(IS_SG64_ADDR); psge += sizeof (struct SG64ENTRY); arccdbsize += sizeof (struct SG64ENTRY); } } arcmsr_cdb->sgcount = (uint8_t)nseg; arcmsr_cdb->DataLength = scsi_bufflen(pcmd); arcmsr_cdb->msgPages = arccdbsize/0x100 + (arccdbsize % 0x100 ? 1 : 0); if ( arccdbsize > 256) arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE; if (pcmd->sc_data_direction == DMA_TO_DEVICE) arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE; ccb->arc_cdb_size = arccdbsize; return SUCCESS; } static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb) { uint32_t cdb_phyaddr = ccb->cdb_phyaddr; struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb; atomic_inc(&acb->ccboutstandingcount); ccb->startdone = ARCMSR_CCB_START; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) writel(cdb_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE, ®->inbound_queueport); else writel(cdb_phyaddr, ®->inbound_queueport); break; } case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; uint32_t ending_index, index = reg->postq_index; ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE); reg->post_qbuffer[ending_index] = 0; if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) { reg->post_qbuffer[index] = cdb_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE; } else { reg->post_qbuffer[index] = cdb_phyaddr; } index++; index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */ reg->postq_index = index; writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell); } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *phbcmu = acb->pmuC; uint32_t ccb_post_stamp, arc_cdb_size; arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : ccb->arc_cdb_size; ccb_post_stamp = (cdb_phyaddr | ((arc_cdb_size - 1) >> 6) | 1); writel(upper_32_bits(ccb->cdb_phyaddr), &phbcmu->inbound_queueport_high); writel(ccb_post_stamp, &phbcmu->inbound_queueport_low); } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *pmu = acb->pmuD; u16 index_stripped; u16 postq_index, toggle; unsigned long flags; struct InBound_SRB *pinbound_srb; spin_lock_irqsave(&acb->postq_lock, flags); postq_index = pmu->postq_index; pinbound_srb = (struct InBound_SRB *)&(pmu->post_qbuffer[postq_index & 0xFF]); pinbound_srb->addressHigh = upper_32_bits(ccb->cdb_phyaddr); pinbound_srb->addressLow = cdb_phyaddr; pinbound_srb->length = ccb->arc_cdb_size >> 2; arcmsr_cdb->msgContext = dma_addr_lo32(cdb_phyaddr); toggle = postq_index & 0x4000; index_stripped = postq_index + 1; index_stripped &= (ARCMSR_MAX_ARC1214_POSTQUEUE - 1); pmu->postq_index = index_stripped ? (index_stripped | toggle) : (toggle ^ 0x4000); writel(postq_index, pmu->inboundlist_write_pointer); spin_unlock_irqrestore(&acb->postq_lock, flags); break; } case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *pmu = acb->pmuE; u32 ccb_post_stamp, arc_cdb_size; arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : ccb->arc_cdb_size; ccb_post_stamp = (ccb->smid | ((arc_cdb_size - 1) >> 6)); writel(0, &pmu->inbound_queueport_high); writel(ccb_post_stamp, &pmu->inbound_queueport_low); break; } } } static void arcmsr_hbaA_stop_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, ®->inbound_msgaddr0); if (!arcmsr_hbaA_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'stop adapter background rebuild' timeout\n" , acb->host->host_no); } } static void arcmsr_hbaB_stop_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'stop adapter background rebuild' timeout\n" , acb->host->host_no); } } static void arcmsr_hbaC_stop_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_C __iomem *reg = pACB->pmuC; pACB->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); if (!arcmsr_hbaC_wait_msgint_ready(pACB)) { printk(KERN_NOTICE "arcmsr%d: wait 'stop adapter background rebuild' timeout\n" , pACB->host->host_no); } return; } static void arcmsr_hbaD_stop_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_D *reg = pACB->pmuD; pACB->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, reg->inbound_msgaddr0); if (!arcmsr_hbaD_wait_msgint_ready(pACB)) pr_notice("arcmsr%d: wait 'stop adapter background rebuild' " "timeout\n", pACB->host->host_no); } static void arcmsr_hbaE_stop_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_E __iomem *reg = pACB->pmuE; pACB->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, ®->inbound_msgaddr0); pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pACB->out_doorbell, ®->iobound_doorbell); if (!arcmsr_hbaE_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait 'stop adapter background rebuild' " "timeout\n", pACB->host->host_no); } } static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_hbaA_stop_bgrb(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_hbaB_stop_bgrb(acb); } break; case ACB_ADAPTER_TYPE_C: { arcmsr_hbaC_stop_bgrb(acb); } break; case ACB_ADAPTER_TYPE_D: arcmsr_hbaD_stop_bgrb(acb); break; case ACB_ADAPTER_TYPE_E: arcmsr_hbaE_stop_bgrb(acb); break; } } static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb) { dma_free_coherent(&acb->pdev->dev, acb->uncache_size, acb->dma_coherent, acb->dma_coherent_handle); } static void arcmsr_iop_message_read(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell); } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ, reg->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK; writel(acb->out_doorbell, ®->iobound_doorbell); } break; } } static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; /* ** push inbound doorbell tell iop, driver data write ok ** and wait reply on next hwinterrupt for next Qbuffer post */ writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; /* ** push inbound doorbell tell iop, driver data write ok ** and wait reply on next hwinterrupt for next Qbuffer post */ writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell); } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; /* ** push inbound doorbell tell iop, driver data write ok ** and wait reply on next hwinterrupt for next Qbuffer post */ writel(ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; writel(ARCMSR_ARC1214_DRV2IOP_DATA_IN_READY, reg->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_WRITE_OK; writel(acb->out_doorbell, ®->iobound_doorbell); } break; } } struct QBUFFER __iomem *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb) { struct QBUFFER __iomem *qbuffer = NULL; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; qbuffer = (struct QBUFFER __iomem *)®->message_rbuffer; } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; qbuffer = (struct QBUFFER __iomem *)reg->message_rbuffer; } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *phbcmu = acb->pmuC; qbuffer = (struct QBUFFER __iomem *)&phbcmu->message_rbuffer; } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; qbuffer = (struct QBUFFER __iomem *)reg->message_rbuffer; } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; qbuffer = (struct QBUFFER __iomem *)®->message_rbuffer; } break; } return qbuffer; } static struct QBUFFER __iomem *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb) { struct QBUFFER __iomem *pqbuffer = NULL; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; pqbuffer = (struct QBUFFER __iomem *) ®->message_wbuffer; } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; pqbuffer = (struct QBUFFER __iomem *)reg->message_wbuffer; } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; pqbuffer = (struct QBUFFER __iomem *)®->message_wbuffer; } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; pqbuffer = (struct QBUFFER __iomem *)reg->message_wbuffer; } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; pqbuffer = (struct QBUFFER __iomem *)®->message_wbuffer; } break; } return pqbuffer; } static uint32_t arcmsr_Read_iop_rqbuffer_in_DWORD(struct AdapterControlBlock *acb, struct QBUFFER __iomem *prbuffer) { uint8_t *pQbuffer; uint8_t *buf1 = NULL; uint32_t __iomem *iop_data; uint32_t iop_len, data_len, *buf2 = NULL; iop_data = (uint32_t __iomem *)prbuffer->data; iop_len = readl(&prbuffer->data_len); if (iop_len > 0) { buf1 = kmalloc(128, GFP_ATOMIC); buf2 = (uint32_t *)buf1; if (buf1 == NULL) return 0; data_len = iop_len; while (data_len >= 4) { *buf2++ = readl(iop_data); iop_data++; data_len -= 4; } if (data_len) *buf2 = readl(iop_data); buf2 = (uint32_t *)buf1; } while (iop_len > 0) { pQbuffer = &acb->rqbuffer[acb->rqbuf_putIndex]; *pQbuffer = *buf1; acb->rqbuf_putIndex++; /* if last, index number set it to 0 */ acb->rqbuf_putIndex %= ARCMSR_MAX_QBUFFER; buf1++; iop_len--; } kfree(buf2); /* let IOP know data has been read */ arcmsr_iop_message_read(acb); return 1; } uint32_t arcmsr_Read_iop_rqbuffer_data(struct AdapterControlBlock *acb, struct QBUFFER __iomem *prbuffer) { uint8_t *pQbuffer; uint8_t __iomem *iop_data; uint32_t iop_len; if (acb->adapter_type > ACB_ADAPTER_TYPE_B) return arcmsr_Read_iop_rqbuffer_in_DWORD(acb, prbuffer); iop_data = (uint8_t __iomem *)prbuffer->data; iop_len = readl(&prbuffer->data_len); while (iop_len > 0) { pQbuffer = &acb->rqbuffer[acb->rqbuf_putIndex]; *pQbuffer = readb(iop_data); acb->rqbuf_putIndex++; acb->rqbuf_putIndex %= ARCMSR_MAX_QBUFFER; iop_data++; iop_len--; } arcmsr_iop_message_read(acb); return 1; } static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb) { unsigned long flags; struct QBUFFER __iomem *prbuffer; int32_t buf_empty_len; spin_lock_irqsave(&acb->rqbuffer_lock, flags); prbuffer = arcmsr_get_iop_rqbuffer(acb); buf_empty_len = (acb->rqbuf_putIndex - acb->rqbuf_getIndex - 1) & (ARCMSR_MAX_QBUFFER - 1); if (buf_empty_len >= readl(&prbuffer->data_len)) { if (arcmsr_Read_iop_rqbuffer_data(acb, prbuffer) == 0) acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW; } else acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW; spin_unlock_irqrestore(&acb->rqbuffer_lock, flags); } static void arcmsr_write_ioctldata2iop_in_DWORD(struct AdapterControlBlock *acb) { uint8_t *pQbuffer; struct QBUFFER __iomem *pwbuffer; uint8_t *buf1 = NULL; uint32_t __iomem *iop_data; uint32_t allxfer_len = 0, data_len, *buf2 = NULL, data; if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) { buf1 = kmalloc(128, GFP_ATOMIC); buf2 = (uint32_t *)buf1; if (buf1 == NULL) return; acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED); pwbuffer = arcmsr_get_iop_wqbuffer(acb); iop_data = (uint32_t __iomem *)pwbuffer->data; while ((acb->wqbuf_getIndex != acb->wqbuf_putIndex) && (allxfer_len < 124)) { pQbuffer = &acb->wqbuffer[acb->wqbuf_getIndex]; *buf1 = *pQbuffer; acb->wqbuf_getIndex++; acb->wqbuf_getIndex %= ARCMSR_MAX_QBUFFER; buf1++; allxfer_len++; } data_len = allxfer_len; buf1 = (uint8_t *)buf2; while (data_len >= 4) { data = *buf2++; writel(data, iop_data); iop_data++; data_len -= 4; } if (data_len) { data = *buf2; writel(data, iop_data); } writel(allxfer_len, &pwbuffer->data_len); kfree(buf1); arcmsr_iop_message_wrote(acb); } } void arcmsr_write_ioctldata2iop(struct AdapterControlBlock *acb) { uint8_t *pQbuffer; struct QBUFFER __iomem *pwbuffer; uint8_t __iomem *iop_data; int32_t allxfer_len = 0; if (acb->adapter_type > ACB_ADAPTER_TYPE_B) { arcmsr_write_ioctldata2iop_in_DWORD(acb); return; } if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) { acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED); pwbuffer = arcmsr_get_iop_wqbuffer(acb); iop_data = (uint8_t __iomem *)pwbuffer->data; while ((acb->wqbuf_getIndex != acb->wqbuf_putIndex) && (allxfer_len < 124)) { pQbuffer = &acb->wqbuffer[acb->wqbuf_getIndex]; writeb(*pQbuffer, iop_data); acb->wqbuf_getIndex++; acb->wqbuf_getIndex %= ARCMSR_MAX_QBUFFER; iop_data++; allxfer_len++; } writel(allxfer_len, &pwbuffer->data_len); arcmsr_iop_message_wrote(acb); } } static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb) { unsigned long flags; spin_lock_irqsave(&acb->wqbuffer_lock, flags); acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED; if (acb->wqbuf_getIndex != acb->wqbuf_putIndex) arcmsr_write_ioctldata2iop(acb); if (acb->wqbuf_getIndex == acb->wqbuf_putIndex) acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED; spin_unlock_irqrestore(&acb->wqbuffer_lock, flags); } static void arcmsr_hbaA_doorbell_isr(struct AdapterControlBlock *acb) { uint32_t outbound_doorbell; struct MessageUnit_A __iomem *reg = acb->pmuA; outbound_doorbell = readl(®->outbound_doorbell); do { writel(outbound_doorbell, ®->outbound_doorbell); if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) arcmsr_iop2drv_data_wrote_handle(acb); if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) arcmsr_iop2drv_data_read_handle(acb); outbound_doorbell = readl(®->outbound_doorbell); } while (outbound_doorbell & (ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK | ARCMSR_OUTBOUND_IOP331_DATA_READ_OK)); } static void arcmsr_hbaC_doorbell_isr(struct AdapterControlBlock *pACB) { uint32_t outbound_doorbell; struct MessageUnit_C __iomem *reg = pACB->pmuC; /* ******************************************************************* ** Maybe here we need to check wrqbuffer_lock is lock or not ** DOORBELL: din! don! ** check if there are any mail need to pack from firmware ******************************************************************* */ outbound_doorbell = readl(®->outbound_doorbell); do { writel(outbound_doorbell, ®->outbound_doorbell_clear); readl(®->outbound_doorbell_clear); if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) arcmsr_iop2drv_data_wrote_handle(pACB); if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK) arcmsr_iop2drv_data_read_handle(pACB); if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) arcmsr_hbaC_message_isr(pACB); outbound_doorbell = readl(®->outbound_doorbell); } while (outbound_doorbell & (ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK | ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK | ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE)); } static void arcmsr_hbaD_doorbell_isr(struct AdapterControlBlock *pACB) { uint32_t outbound_doorbell; struct MessageUnit_D *pmu = pACB->pmuD; outbound_doorbell = readl(pmu->outbound_doorbell); do { writel(outbound_doorbell, pmu->outbound_doorbell); if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE) arcmsr_hbaD_message_isr(pACB); if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK) arcmsr_iop2drv_data_wrote_handle(pACB); if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_DATA_READ_OK) arcmsr_iop2drv_data_read_handle(pACB); outbound_doorbell = readl(pmu->outbound_doorbell); } while (outbound_doorbell & (ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK | ARCMSR_ARC1214_IOP2DRV_DATA_READ_OK | ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE)); } static void arcmsr_hbaE_doorbell_isr(struct AdapterControlBlock *pACB) { uint32_t outbound_doorbell, in_doorbell, tmp; struct MessageUnit_E __iomem *reg = pACB->pmuE; in_doorbell = readl(®->iobound_doorbell); outbound_doorbell = in_doorbell ^ pACB->in_doorbell; do { writel(0, ®->host_int_status); /* clear interrupt */ if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK) { arcmsr_iop2drv_data_wrote_handle(pACB); } if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_DATA_READ_OK) { arcmsr_iop2drv_data_read_handle(pACB); } if (outbound_doorbell & ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE) { arcmsr_hbaE_message_isr(pACB); } tmp = in_doorbell; in_doorbell = readl(®->iobound_doorbell); outbound_doorbell = tmp ^ in_doorbell; } while (outbound_doorbell & (ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK | ARCMSR_HBEMU_IOP2DRV_DATA_READ_OK | ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE)); pACB->in_doorbell = in_doorbell; } static void arcmsr_hbaA_postqueue_isr(struct AdapterControlBlock *acb) { uint32_t flag_ccb; struct MessageUnit_A __iomem *reg = acb->pmuA; struct ARCMSR_CDB *pARCMSR_CDB; struct CommandControlBlock *pCCB; bool error; unsigned long cdb_phy_addr; while ((flag_ccb = readl(®->outbound_queueport)) != 0xFFFFFFFF) { cdb_phy_addr = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) cdb_phy_addr = cdb_phy_addr | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + cdb_phy_addr); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); } } static void arcmsr_hbaB_postqueue_isr(struct AdapterControlBlock *acb) { uint32_t index; uint32_t flag_ccb; struct MessageUnit_B *reg = acb->pmuB; struct ARCMSR_CDB *pARCMSR_CDB; struct CommandControlBlock *pCCB; bool error; unsigned long cdb_phy_addr; index = reg->doneq_index; while ((flag_ccb = reg->done_qbuffer[index]) != 0) { cdb_phy_addr = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) cdb_phy_addr = cdb_phy_addr | acb->cdb_phyadd_hipart; pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + cdb_phy_addr); pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_drain_donequeue(acb, pCCB, error); reg->done_qbuffer[index] = 0; index++; index %= ARCMSR_MAX_HBB_POSTQUEUE; reg->doneq_index = index; } } static void arcmsr_hbaC_postqueue_isr(struct AdapterControlBlock *acb) { struct MessageUnit_C __iomem *phbcmu; struct ARCMSR_CDB *arcmsr_cdb; struct CommandControlBlock *ccb; uint32_t flag_ccb, throttling = 0; unsigned long ccb_cdb_phy; int error; phbcmu = acb->pmuC; /* areca cdb command done */ /* Use correct offset and size for syncing */ while ((flag_ccb = readl(&phbcmu->outbound_queueport_low)) != 0xFFFFFFFF) { ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; /* check if command done with no error */ arcmsr_drain_donequeue(acb, ccb, error); throttling++; if (throttling == ARCMSR_HBC_ISR_THROTTLING_LEVEL) { writel(ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING, &phbcmu->inbound_doorbell); throttling = 0; } } } static void arcmsr_hbaD_postqueue_isr(struct AdapterControlBlock *acb) { u32 outbound_write_pointer, doneq_index, index_stripped, toggle; uint32_t addressLow; int error; struct MessageUnit_D *pmu; struct ARCMSR_CDB *arcmsr_cdb; struct CommandControlBlock *ccb; unsigned long flags, ccb_cdb_phy, cdb_phy_hipart; spin_lock_irqsave(&acb->doneq_lock, flags); pmu = acb->pmuD; outbound_write_pointer = pmu->done_qbuffer[0].addressLow + 1; doneq_index = pmu->doneq_index; if ((doneq_index & 0xFFF) != (outbound_write_pointer & 0xFFF)) { do { toggle = doneq_index & 0x4000; index_stripped = (doneq_index & 0xFFF) + 1; index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE; pmu->doneq_index = index_stripped ? (index_stripped | toggle) : ((toggle ^ 0x4000) + 1); doneq_index = pmu->doneq_index; cdb_phy_hipart = pmu->done_qbuffer[doneq_index & 0xFFF].addressHigh; addressLow = pmu->done_qbuffer[doneq_index & 0xFFF].addressLow; ccb_cdb_phy = (addressLow & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); error = (addressLow & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_drain_donequeue(acb, ccb, error); writel(doneq_index, pmu->outboundlist_read_pointer); } while ((doneq_index & 0xFFF) != (outbound_write_pointer & 0xFFF)); } writel(ARCMSR_ARC1214_OUTBOUND_LIST_INTERRUPT_CLEAR, pmu->outboundlist_interrupt_cause); readl(pmu->outboundlist_interrupt_cause); spin_unlock_irqrestore(&acb->doneq_lock, flags); } static void arcmsr_hbaE_postqueue_isr(struct AdapterControlBlock *acb) { uint32_t doneq_index; uint16_t cmdSMID; int error; struct MessageUnit_E __iomem *pmu; struct CommandControlBlock *ccb; unsigned long flags; spin_lock_irqsave(&acb->doneq_lock, flags); doneq_index = acb->doneq_index; pmu = acb->pmuE; while ((readl(&pmu->reply_post_producer_index) & 0xFFFF) != doneq_index) { cmdSMID = acb->pCompletionQ[doneq_index].cmdSMID; ccb = acb->pccb_pool[cmdSMID]; error = (acb->pCompletionQ[doneq_index].cmdFlag & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_drain_donequeue(acb, ccb, error); doneq_index++; if (doneq_index >= acb->completionQ_entry) doneq_index = 0; } acb->doneq_index = doneq_index; writel(doneq_index, &pmu->reply_post_consumer_index); spin_unlock_irqrestore(&acb->doneq_lock, flags); } /* ********************************************************************************** ** Handle a message interrupt ** ** The only message interrupt we expect is in response to a query for the current adapter config. ** We want this in order to compare the drivemap so that we can detect newly-attached drives. ********************************************************************************** */ static void arcmsr_hbaA_message_isr(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; /*clear interrupt and message state*/ writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, ®->outbound_intstatus); if (acb->acb_flags & ACB_F_MSG_GET_CONFIG) schedule_work(&acb->arcmsr_do_message_isr_bh); } static void arcmsr_hbaB_message_isr(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; /*clear interrupt and message state*/ writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); if (acb->acb_flags & ACB_F_MSG_GET_CONFIG) schedule_work(&acb->arcmsr_do_message_isr_bh); } /* ********************************************************************************** ** Handle a message interrupt ** ** The only message interrupt we expect is in response to a query for the ** current adapter config. ** We want this in order to compare the drivemap so that we can detect newly-attached drives. ********************************************************************************** */ static void arcmsr_hbaC_message_isr(struct AdapterControlBlock *acb) { struct MessageUnit_C __iomem *reg = acb->pmuC; /*clear interrupt and message state*/ writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, ®->outbound_doorbell_clear); if (acb->acb_flags & ACB_F_MSG_GET_CONFIG) schedule_work(&acb->arcmsr_do_message_isr_bh); } static void arcmsr_hbaD_message_isr(struct AdapterControlBlock *acb) { struct MessageUnit_D *reg = acb->pmuD; writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE, reg->outbound_doorbell); readl(reg->outbound_doorbell); if (acb->acb_flags & ACB_F_MSG_GET_CONFIG) schedule_work(&acb->arcmsr_do_message_isr_bh); } static void arcmsr_hbaE_message_isr(struct AdapterControlBlock *acb) { struct MessageUnit_E __iomem *reg = acb->pmuE; writel(0, ®->host_int_status); if (acb->acb_flags & ACB_F_MSG_GET_CONFIG) schedule_work(&acb->arcmsr_do_message_isr_bh); } static int arcmsr_hbaA_handle_isr(struct AdapterControlBlock *acb) { uint32_t outbound_intstatus; struct MessageUnit_A __iomem *reg = acb->pmuA; outbound_intstatus = readl(®->outbound_intstatus) & acb->outbound_int_enable; if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT)) return IRQ_NONE; do { writel(outbound_intstatus, ®->outbound_intstatus); if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) arcmsr_hbaA_doorbell_isr(acb); if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) arcmsr_hbaA_postqueue_isr(acb); if (outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) arcmsr_hbaA_message_isr(acb); outbound_intstatus = readl(®->outbound_intstatus) & acb->outbound_int_enable; } while (outbound_intstatus & (ARCMSR_MU_OUTBOUND_DOORBELL_INT | ARCMSR_MU_OUTBOUND_POSTQUEUE_INT | ARCMSR_MU_OUTBOUND_MESSAGE0_INT)); return IRQ_HANDLED; } static int arcmsr_hbaB_handle_isr(struct AdapterControlBlock *acb) { uint32_t outbound_doorbell; struct MessageUnit_B *reg = acb->pmuB; outbound_doorbell = readl(reg->iop2drv_doorbell) & acb->outbound_int_enable; if (!outbound_doorbell) return IRQ_NONE; do { writel(~outbound_doorbell, reg->iop2drv_doorbell); writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell); if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) arcmsr_iop2drv_data_wrote_handle(acb); if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) arcmsr_iop2drv_data_read_handle(acb); if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) arcmsr_hbaB_postqueue_isr(acb); if (outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) arcmsr_hbaB_message_isr(acb); outbound_doorbell = readl(reg->iop2drv_doorbell) & acb->outbound_int_enable; } while (outbound_doorbell & (ARCMSR_IOP2DRV_DATA_WRITE_OK | ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE | ARCMSR_IOP2DRV_MESSAGE_CMD_DONE)); return IRQ_HANDLED; } static int arcmsr_hbaC_handle_isr(struct AdapterControlBlock *pACB) { uint32_t host_interrupt_status; struct MessageUnit_C __iomem *phbcmu = pACB->pmuC; /* ********************************************* ** check outbound intstatus ********************************************* */ host_interrupt_status = readl(&phbcmu->host_int_status) & (ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR | ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR); if (!host_interrupt_status) return IRQ_NONE; do { if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR) arcmsr_hbaC_doorbell_isr(pACB); /* MU post queue interrupts*/ if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) arcmsr_hbaC_postqueue_isr(pACB); host_interrupt_status = readl(&phbcmu->host_int_status); } while (host_interrupt_status & (ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR | ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR)); return IRQ_HANDLED; } static irqreturn_t arcmsr_hbaD_handle_isr(struct AdapterControlBlock *pACB) { u32 host_interrupt_status; struct MessageUnit_D *pmu = pACB->pmuD; host_interrupt_status = readl(pmu->host_int_status) & (ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR | ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR); if (!host_interrupt_status) return IRQ_NONE; do { /* MU post queue interrupts*/ if (host_interrupt_status & ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR) arcmsr_hbaD_postqueue_isr(pACB); if (host_interrupt_status & ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR) arcmsr_hbaD_doorbell_isr(pACB); host_interrupt_status = readl(pmu->host_int_status); } while (host_interrupt_status & (ARCMSR_ARC1214_OUTBOUND_POSTQUEUE_ISR | ARCMSR_ARC1214_OUTBOUND_DOORBELL_ISR)); return IRQ_HANDLED; } static irqreturn_t arcmsr_hbaE_handle_isr(struct AdapterControlBlock *pACB) { uint32_t host_interrupt_status; struct MessageUnit_E __iomem *pmu = pACB->pmuE; host_interrupt_status = readl(&pmu->host_int_status) & (ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR | ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR); if (!host_interrupt_status) return IRQ_NONE; do { /* MU ioctl transfer doorbell interrupts*/ if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR) { arcmsr_hbaE_doorbell_isr(pACB); } /* MU post queue interrupts*/ if (host_interrupt_status & ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR) { arcmsr_hbaE_postqueue_isr(pACB); } host_interrupt_status = readl(&pmu->host_int_status); } while (host_interrupt_status & (ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR | ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR)); return IRQ_HANDLED; } static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: return arcmsr_hbaA_handle_isr(acb); break; case ACB_ADAPTER_TYPE_B: return arcmsr_hbaB_handle_isr(acb); break; case ACB_ADAPTER_TYPE_C: return arcmsr_hbaC_handle_isr(acb); case ACB_ADAPTER_TYPE_D: return arcmsr_hbaD_handle_isr(acb); case ACB_ADAPTER_TYPE_E: return arcmsr_hbaE_handle_isr(acb); default: return IRQ_NONE; } } static void arcmsr_iop_parking(struct AdapterControlBlock *acb) { if (acb) { /* stop adapter background rebuild */ if (acb->acb_flags & ACB_F_MSG_START_BGRB) { uint32_t intmask_org; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; intmask_org = arcmsr_disable_outbound_ints(acb); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); arcmsr_enable_outbound_ints(acb, intmask_org); } } } void arcmsr_clear_iop2drv_rqueue_buffer(struct AdapterControlBlock *acb) { uint32_t i; if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { for (i = 0; i < 15; i++) { if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; acb->rqbuf_getIndex = 0; acb->rqbuf_putIndex = 0; arcmsr_iop_message_read(acb); mdelay(30); } else if (acb->rqbuf_getIndex != acb->rqbuf_putIndex) { acb->rqbuf_getIndex = 0; acb->rqbuf_putIndex = 0; mdelay(30); } else break; } } } static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb, struct scsi_cmnd *cmd) { char *buffer; unsigned short use_sg; int retvalue = 0, transfer_len = 0; unsigned long flags; struct CMD_MESSAGE_FIELD *pcmdmessagefld; uint32_t controlcode = (uint32_t)cmd->cmnd[5] << 24 | (uint32_t)cmd->cmnd[6] << 16 | (uint32_t)cmd->cmnd[7] << 8 | (uint32_t)cmd->cmnd[8]; struct scatterlist *sg; use_sg = scsi_sg_count(cmd); sg = scsi_sglist(cmd); buffer = kmap_atomic(sg_page(sg)) + sg->offset; if (use_sg > 1) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } transfer_len += sg->length; if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) { retvalue = ARCMSR_MESSAGE_FAIL; pr_info("%s: ARCMSR_MESSAGE_FAIL!\n", __func__); goto message_out; } pcmdmessagefld = (struct CMD_MESSAGE_FIELD *)buffer; switch (controlcode) { case ARCMSR_MESSAGE_READ_RQBUFFER: { unsigned char *ver_addr; uint8_t *ptmpQbuffer; uint32_t allxfer_len = 0; ver_addr = kmalloc(ARCMSR_API_DATA_BUFLEN, GFP_ATOMIC); if (!ver_addr) { retvalue = ARCMSR_MESSAGE_FAIL; pr_info("%s: memory not enough!\n", __func__); goto message_out; } ptmpQbuffer = ver_addr; spin_lock_irqsave(&acb->rqbuffer_lock, flags); if (acb->rqbuf_getIndex != acb->rqbuf_putIndex) { unsigned int tail = acb->rqbuf_getIndex; unsigned int head = acb->rqbuf_putIndex; unsigned int cnt_to_end = CIRC_CNT_TO_END(head, tail, ARCMSR_MAX_QBUFFER); allxfer_len = CIRC_CNT(head, tail, ARCMSR_MAX_QBUFFER); if (allxfer_len > ARCMSR_API_DATA_BUFLEN) allxfer_len = ARCMSR_API_DATA_BUFLEN; if (allxfer_len <= cnt_to_end) memcpy(ptmpQbuffer, acb->rqbuffer + tail, allxfer_len); else { memcpy(ptmpQbuffer, acb->rqbuffer + tail, cnt_to_end); memcpy(ptmpQbuffer + cnt_to_end, acb->rqbuffer, allxfer_len - cnt_to_end); } acb->rqbuf_getIndex = (acb->rqbuf_getIndex + allxfer_len) % ARCMSR_MAX_QBUFFER; } memcpy(pcmdmessagefld->messagedatabuffer, ver_addr, allxfer_len); if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { struct QBUFFER __iomem *prbuffer; acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; prbuffer = arcmsr_get_iop_rqbuffer(acb); if (arcmsr_Read_iop_rqbuffer_data(acb, prbuffer) == 0) acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW; } spin_unlock_irqrestore(&acb->rqbuffer_lock, flags); kfree(ver_addr); pcmdmessagefld->cmdmessage.Length = allxfer_len; if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; break; } case ARCMSR_MESSAGE_WRITE_WQBUFFER: { unsigned char *ver_addr; uint32_t user_len; int32_t cnt2end; uint8_t *pQbuffer, *ptmpuserbuffer; user_len = pcmdmessagefld->cmdmessage.Length; if (user_len > ARCMSR_API_DATA_BUFLEN) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } ver_addr = kmalloc(ARCMSR_API_DATA_BUFLEN, GFP_ATOMIC); if (!ver_addr) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } ptmpuserbuffer = ver_addr; memcpy(ptmpuserbuffer, pcmdmessagefld->messagedatabuffer, user_len); spin_lock_irqsave(&acb->wqbuffer_lock, flags); if (acb->wqbuf_putIndex != acb->wqbuf_getIndex) { struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)cmd->sense_buffer; arcmsr_write_ioctldata2iop(acb); /* has error report sensedata */ sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS; sensebuffer->SenseKey = ILLEGAL_REQUEST; sensebuffer->AdditionalSenseLength = 0x0A; sensebuffer->AdditionalSenseCode = 0x20; sensebuffer->Valid = 1; retvalue = ARCMSR_MESSAGE_FAIL; } else { pQbuffer = &acb->wqbuffer[acb->wqbuf_putIndex]; cnt2end = ARCMSR_MAX_QBUFFER - acb->wqbuf_putIndex; if (user_len > cnt2end) { memcpy(pQbuffer, ptmpuserbuffer, cnt2end); ptmpuserbuffer += cnt2end; user_len -= cnt2end; acb->wqbuf_putIndex = 0; pQbuffer = acb->wqbuffer; } memcpy(pQbuffer, ptmpuserbuffer, user_len); acb->wqbuf_putIndex += user_len; acb->wqbuf_putIndex %= ARCMSR_MAX_QBUFFER; if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) { acb->acb_flags &= ~ACB_F_MESSAGE_WQBUFFER_CLEARED; arcmsr_write_ioctldata2iop(acb); } } spin_unlock_irqrestore(&acb->wqbuffer_lock, flags); kfree(ver_addr); if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; break; } case ARCMSR_MESSAGE_CLEAR_RQBUFFER: { uint8_t *pQbuffer = acb->rqbuffer; arcmsr_clear_iop2drv_rqueue_buffer(acb); spin_lock_irqsave(&acb->rqbuffer_lock, flags); acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED; acb->rqbuf_getIndex = 0; acb->rqbuf_putIndex = 0; memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); spin_unlock_irqrestore(&acb->rqbuffer_lock, flags); if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; break; } case ARCMSR_MESSAGE_CLEAR_WQBUFFER: { uint8_t *pQbuffer = acb->wqbuffer; spin_lock_irqsave(&acb->wqbuffer_lock, flags); acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->wqbuf_getIndex = 0; acb->wqbuf_putIndex = 0; memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); spin_unlock_irqrestore(&acb->wqbuffer_lock, flags); if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; break; } case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: { uint8_t *pQbuffer; arcmsr_clear_iop2drv_rqueue_buffer(acb); spin_lock_irqsave(&acb->rqbuffer_lock, flags); acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED; acb->rqbuf_getIndex = 0; acb->rqbuf_putIndex = 0; pQbuffer = acb->rqbuffer; memset(pQbuffer, 0, sizeof(struct QBUFFER)); spin_unlock_irqrestore(&acb->rqbuffer_lock, flags); spin_lock_irqsave(&acb->wqbuffer_lock, flags); acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->wqbuf_getIndex = 0; acb->wqbuf_putIndex = 0; pQbuffer = acb->wqbuffer; memset(pQbuffer, 0, sizeof(struct QBUFFER)); spin_unlock_irqrestore(&acb->wqbuffer_lock, flags); if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; break; } case ARCMSR_MESSAGE_RETURN_CODE_3F: { if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_3F; break; } case ARCMSR_MESSAGE_SAY_HELLO: { int8_t *hello_string = "Hello! I am ARCMSR"; if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; memcpy(pcmdmessagefld->messagedatabuffer, hello_string, (int16_t)strlen(hello_string)); break; } case ARCMSR_MESSAGE_SAY_GOODBYE: { if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; arcmsr_iop_parking(acb); break; } case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE: { if (acb->fw_flag == FW_DEADLOCK) pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON; else pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; arcmsr_flush_adapter_cache(acb); break; } default: retvalue = ARCMSR_MESSAGE_FAIL; pr_info("%s: unknown controlcode!\n", __func__); } message_out: if (use_sg) { struct scatterlist *sg = scsi_sglist(cmd); kunmap_atomic(buffer - sg->offset); } return retvalue; } static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb) { struct list_head *head = &acb->ccb_free_list; struct CommandControlBlock *ccb = NULL; unsigned long flags; spin_lock_irqsave(&acb->ccblist_lock, flags); if (!list_empty(head)) { ccb = list_entry(head->next, struct CommandControlBlock, list); list_del_init(&ccb->list); }else{ spin_unlock_irqrestore(&acb->ccblist_lock, flags); return NULL; } spin_unlock_irqrestore(&acb->ccblist_lock, flags); return ccb; } static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb, struct scsi_cmnd *cmd) { switch (cmd->cmnd[0]) { case INQUIRY: { unsigned char inqdata[36]; char *buffer; struct scatterlist *sg; if (cmd->device->lun) { cmd->result = (DID_TIME_OUT << 16); cmd->scsi_done(cmd); return; } inqdata[0] = TYPE_PROCESSOR; /* Periph Qualifier & Periph Dev Type */ inqdata[1] = 0; /* rem media bit & Dev Type Modifier */ inqdata[2] = 0; /* ISO, ECMA, & ANSI versions */ inqdata[4] = 31; /* length of additional data */ strncpy(&inqdata[8], "Areca ", 8); /* Vendor Identification */ strncpy(&inqdata[16], "RAID controller ", 16); /* Product Identification */ strncpy(&inqdata[32], "R001", 4); /* Product Revision */ sg = scsi_sglist(cmd); buffer = kmap_atomic(sg_page(sg)) + sg->offset; memcpy(buffer, inqdata, sizeof(inqdata)); sg = scsi_sglist(cmd); kunmap_atomic(buffer - sg->offset); cmd->scsi_done(cmd); } break; case WRITE_BUFFER: case READ_BUFFER: { if (arcmsr_iop_message_xfer(acb, cmd)) cmd->result = (DID_ERROR << 16); cmd->scsi_done(cmd); } break; default: cmd->scsi_done(cmd); } } static int arcmsr_queue_command_lck(struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *)) { struct Scsi_Host *host = cmd->device->host; struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; struct CommandControlBlock *ccb; int target = cmd->device->id; if (acb->acb_flags & ACB_F_ADAPTER_REMOVED) { cmd->result = (DID_NO_CONNECT << 16); cmd->scsi_done(cmd); return 0; } cmd->scsi_done = done; cmd->host_scribble = NULL; cmd->result = 0; if (target == 16) { /* virtual device for iop message transfer */ arcmsr_handle_virtual_command(acb, cmd); return 0; } ccb = arcmsr_get_freeccb(acb); if (!ccb) return SCSI_MLQUEUE_HOST_BUSY; if (arcmsr_build_ccb( acb, ccb, cmd ) == FAILED) { cmd->result = (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1); cmd->scsi_done(cmd); return 0; } arcmsr_post_ccb(acb, ccb); return 0; } static DEF_SCSI_QCMD(arcmsr_queue_command) static void arcmsr_get_adapter_config(struct AdapterControlBlock *pACB, uint32_t *rwbuffer) { int count; uint32_t *acb_firm_model = (uint32_t *)pACB->firm_model; uint32_t *acb_firm_version = (uint32_t *)pACB->firm_version; uint32_t *acb_device_map = (uint32_t *)pACB->device_map; uint32_t *firm_model = &rwbuffer[15]; uint32_t *firm_version = &rwbuffer[17]; uint32_t *device_map = &rwbuffer[21]; count = 2; while (count) { *acb_firm_model = readl(firm_model); acb_firm_model++; firm_model++; count--; } count = 4; while (count) { *acb_firm_version = readl(firm_version); acb_firm_version++; firm_version++; count--; } count = 4; while (count) { *acb_device_map = readl(device_map); acb_device_map++; device_map++; count--; } pACB->signature = readl(&rwbuffer[0]); pACB->firm_request_len = readl(&rwbuffer[1]); pACB->firm_numbers_queue = readl(&rwbuffer[2]); pACB->firm_sdram_size = readl(&rwbuffer[3]); pACB->firm_hd_channels = readl(&rwbuffer[4]); pACB->firm_cfg_version = readl(&rwbuffer[25]); pr_notice("Areca RAID Controller%d: Model %s, F/W %s\n", pACB->host->host_no, pACB->firm_model, pACB->firm_version); } static bool arcmsr_hbaA_get_config(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; arcmsr_wait_firmware_ready(acb); writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); if (!arcmsr_hbaA_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \ miscellaneous data' timeout \n", acb->host->host_no); return false; } arcmsr_get_adapter_config(acb, reg->message_rwbuffer); return true; } static bool arcmsr_hbaB_get_config(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; arcmsr_wait_firmware_ready(acb); writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_ERR "arcmsr%d: can't set driver mode.\n", acb->host->host_no); return false; } writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \ miscellaneous data' timeout \n", acb->host->host_no); return false; } arcmsr_get_adapter_config(acb, reg->message_rwbuffer); return true; } static bool arcmsr_hbaC_get_config(struct AdapterControlBlock *pACB) { uint32_t intmask_org; struct MessageUnit_C __iomem *reg = pACB->pmuC; /* disable all outbound interrupt */ intmask_org = readl(®->host_int_mask); /* disable outbound message0 int */ writel(intmask_org|ARCMSR_HBCMU_ALL_INTMASKENABLE, ®->host_int_mask); /* wait firmware ready */ arcmsr_wait_firmware_ready(pACB); /* post "get config" instruction */ writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); /* wait message ready */ if (!arcmsr_hbaC_wait_msgint_ready(pACB)) { printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \ miscellaneous data' timeout \n", pACB->host->host_no); return false; } arcmsr_get_adapter_config(pACB, reg->msgcode_rwbuffer); return true; } static bool arcmsr_hbaD_get_config(struct AdapterControlBlock *acb) { struct MessageUnit_D *reg = acb->pmuD; if (readl(acb->pmuD->outbound_doorbell) & ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_ARC1214_IOP2DRV_MESSAGE_CMD_DONE, acb->pmuD->outbound_doorbell);/*clear interrupt*/ } arcmsr_wait_firmware_ready(acb); /* post "get config" instruction */ writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, reg->inbound_msgaddr0); /* wait message ready */ if (!arcmsr_hbaD_wait_msgint_ready(acb)) { pr_notice("arcmsr%d: wait get adapter firmware " "miscellaneous data timeout\n", acb->host->host_no); return false; } arcmsr_get_adapter_config(acb, reg->msgcode_rwbuffer); return true; } static bool arcmsr_hbaE_get_config(struct AdapterControlBlock *pACB) { struct MessageUnit_E __iomem *reg = pACB->pmuE; uint32_t intmask_org; /* disable all outbound interrupt */ intmask_org = readl(®->host_int_mask); /* disable outbound message0 int */ writel(intmask_org | ARCMSR_HBEMU_ALL_INTMASKENABLE, ®->host_int_mask); /* wait firmware ready */ arcmsr_wait_firmware_ready(pACB); mdelay(20); /* post "get config" instruction */ writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pACB->out_doorbell, ®->iobound_doorbell); /* wait message ready */ if (!arcmsr_hbaE_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait get adapter firmware " "miscellaneous data timeout\n", pACB->host->host_no); return false; } arcmsr_get_adapter_config(pACB, reg->msgcode_rwbuffer); return true; } static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb) { bool rtn = false; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: rtn = arcmsr_hbaA_get_config(acb); break; case ACB_ADAPTER_TYPE_B: rtn = arcmsr_hbaB_get_config(acb); break; case ACB_ADAPTER_TYPE_C: rtn = arcmsr_hbaC_get_config(acb); break; case ACB_ADAPTER_TYPE_D: rtn = arcmsr_hbaD_get_config(acb); break; case ACB_ADAPTER_TYPE_E: rtn = arcmsr_hbaE_get_config(acb); break; default: break; } acb->maxOutstanding = acb->firm_numbers_queue - 1; if (acb->host->can_queue >= acb->firm_numbers_queue) acb->host->can_queue = acb->maxOutstanding; else acb->maxOutstanding = acb->host->can_queue; acb->maxFreeCCB = acb->host->can_queue; if (acb->maxFreeCCB < ARCMSR_MAX_FREECCB_NUM) acb->maxFreeCCB += 64; return rtn; } static int arcmsr_hbaA_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { struct MessageUnit_A __iomem *reg = acb->pmuA; struct CommandControlBlock *ccb; struct ARCMSR_CDB *arcmsr_cdb; uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0; int rtn; bool error; unsigned long ccb_cdb_phy; polling_hba_ccb_retry: poll_count++; outbound_intstatus = readl(®->outbound_intstatus) & acb->outbound_int_enable; writel(outbound_intstatus, ®->outbound_intstatus);/*clear interrupt*/ while (1) { if ((flag_ccb = readl(®->outbound_queueport)) == 0xFFFFFFFF) { if (poll_ccb_done){ rtn = SUCCESS; break; }else { msleep(25); if (poll_count > 100){ rtn = FAILED; break; } goto polling_hba_ccb_retry; } } ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); poll_ccb_done |= (ccb == poll_ccb) ? 1 : 0; if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) { if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) { printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'" " poll command abort successfully \n" , acb->host->host_no , ccb->pcmd->device->id , (u32)ccb->pcmd->device->lun , ccb); ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb); continue; } printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb" " command done ccb = '0x%p'" "ccboutstandingcount = %d \n" , acb->host->host_no , ccb , atomic_read(&acb->ccboutstandingcount)); continue; } error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_report_ccb_state(acb, ccb, error); } return rtn; } static int arcmsr_hbaB_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { struct MessageUnit_B *reg = acb->pmuB; struct ARCMSR_CDB *arcmsr_cdb; struct CommandControlBlock *ccb; uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0; int index, rtn; bool error; unsigned long ccb_cdb_phy; polling_hbb_ccb_retry: poll_count++; /* clear doorbell interrupt */ writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); while(1){ index = reg->doneq_index; flag_ccb = reg->done_qbuffer[index]; if (flag_ccb == 0) { if (poll_ccb_done){ rtn = SUCCESS; break; }else { msleep(25); if (poll_count > 100){ rtn = FAILED; break; } goto polling_hbb_ccb_retry; } } reg->done_qbuffer[index] = 0; index++; /*if last index number set it to 0 */ index %= ARCMSR_MAX_HBB_POSTQUEUE; reg->doneq_index = index; /* check if command done with no error*/ ccb_cdb_phy = (flag_ccb << 5) & 0xffffffff; if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); poll_ccb_done |= (ccb == poll_ccb) ? 1 : 0; if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) { if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) { printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'" " poll command abort successfully \n" ,acb->host->host_no ,ccb->pcmd->device->id ,(u32)ccb->pcmd->device->lun ,ccb); ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb); continue; } printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb" " command done ccb = '0x%p'" "ccboutstandingcount = %d \n" , acb->host->host_no , ccb , atomic_read(&acb->ccboutstandingcount)); continue; } error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false; arcmsr_report_ccb_state(acb, ccb, error); } return rtn; } static int arcmsr_hbaC_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { struct MessageUnit_C __iomem *reg = acb->pmuC; uint32_t flag_ccb; struct ARCMSR_CDB *arcmsr_cdb; bool error; struct CommandControlBlock *pCCB; uint32_t poll_ccb_done = 0, poll_count = 0; int rtn; unsigned long ccb_cdb_phy; polling_hbc_ccb_retry: poll_count++; while (1) { if ((readl(®->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) == 0) { if (poll_ccb_done) { rtn = SUCCESS; break; } else { msleep(25); if (poll_count > 100) { rtn = FAILED; break; } goto polling_hbc_ccb_retry; } } flag_ccb = readl(®->outbound_queueport_low); ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0; /* check ifcommand done with no error*/ if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) { if (pCCB->startdone == ARCMSR_CCB_ABORTED) { printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'" " poll command abort successfully \n" , acb->host->host_no , pCCB->pcmd->device->id , (u32)pCCB->pcmd->device->lun , pCCB); pCCB->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(pCCB); continue; } printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb" " command done ccb = '0x%p'" "ccboutstandingcount = %d \n" , acb->host->host_no , pCCB , atomic_read(&acb->ccboutstandingcount)); continue; } error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_report_ccb_state(acb, pCCB, error); } return rtn; } static int arcmsr_hbaD_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { bool error; uint32_t poll_ccb_done = 0, poll_count = 0, flag_ccb; int rtn, doneq_index, index_stripped, outbound_write_pointer, toggle; unsigned long flags, ccb_cdb_phy, cdb_phy_hipart; struct ARCMSR_CDB *arcmsr_cdb; struct CommandControlBlock *pCCB; struct MessageUnit_D *pmu = acb->pmuD; polling_hbaD_ccb_retry: poll_count++; while (1) { spin_lock_irqsave(&acb->doneq_lock, flags); outbound_write_pointer = pmu->done_qbuffer[0].addressLow + 1; doneq_index = pmu->doneq_index; if ((outbound_write_pointer & 0xFFF) == (doneq_index & 0xFFF)) { spin_unlock_irqrestore(&acb->doneq_lock, flags); if (poll_ccb_done) { rtn = SUCCESS; break; } else { msleep(25); if (poll_count > 40) { rtn = FAILED; break; } goto polling_hbaD_ccb_retry; } } toggle = doneq_index & 0x4000; index_stripped = (doneq_index & 0xFFF) + 1; index_stripped %= ARCMSR_MAX_ARC1214_DONEQUEUE; pmu->doneq_index = index_stripped ? (index_stripped | toggle) : ((toggle ^ 0x4000) + 1); doneq_index = pmu->doneq_index; spin_unlock_irqrestore(&acb->doneq_lock, flags); cdb_phy_hipart = pmu->done_qbuffer[doneq_index & 0xFFF].addressHigh; flag_ccb = pmu->done_qbuffer[doneq_index & 0xFFF].addressLow; ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); if (acb->cdb_phyadd_hipart) ccb_cdb_phy = ccb_cdb_phy | acb->cdb_phyadd_hipart; arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy); pCCB = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb); poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0; if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) { if (pCCB->startdone == ARCMSR_CCB_ABORTED) { pr_notice("arcmsr%d: scsi id = %d " "lun = %d ccb = '0x%p' poll command " "abort successfully\n" , acb->host->host_no , pCCB->pcmd->device->id , (u32)pCCB->pcmd->device->lun , pCCB); pCCB->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(pCCB); continue; } pr_notice("arcmsr%d: polling an illegal " "ccb command done ccb = '0x%p' " "ccboutstandingcount = %d\n" , acb->host->host_no , pCCB , atomic_read(&acb->ccboutstandingcount)); continue; } error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_report_ccb_state(acb, pCCB, error); } return rtn; } static int arcmsr_hbaE_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { bool error; uint32_t poll_ccb_done = 0, poll_count = 0, doneq_index; uint16_t cmdSMID; unsigned long flags; int rtn; struct CommandControlBlock *pCCB; struct MessageUnit_E __iomem *reg = acb->pmuE; polling_hbaC_ccb_retry: poll_count++; while (1) { spin_lock_irqsave(&acb->doneq_lock, flags); doneq_index = acb->doneq_index; if ((readl(®->reply_post_producer_index) & 0xFFFF) == doneq_index) { spin_unlock_irqrestore(&acb->doneq_lock, flags); if (poll_ccb_done) { rtn = SUCCESS; break; } else { msleep(25); if (poll_count > 40) { rtn = FAILED; break; } goto polling_hbaC_ccb_retry; } } cmdSMID = acb->pCompletionQ[doneq_index].cmdSMID; doneq_index++; if (doneq_index >= acb->completionQ_entry) doneq_index = 0; acb->doneq_index = doneq_index; spin_unlock_irqrestore(&acb->doneq_lock, flags); pCCB = acb->pccb_pool[cmdSMID]; poll_ccb_done |= (pCCB == poll_ccb) ? 1 : 0; /* check if command done with no error*/ if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) { if (pCCB->startdone == ARCMSR_CCB_ABORTED) { pr_notice("arcmsr%d: scsi id = %d " "lun = %d ccb = '0x%p' poll command " "abort successfully\n" , acb->host->host_no , pCCB->pcmd->device->id , (u32)pCCB->pcmd->device->lun , pCCB); pCCB->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(pCCB); continue; } pr_notice("arcmsr%d: polling an illegal " "ccb command done ccb = '0x%p' " "ccboutstandingcount = %d\n" , acb->host->host_no , pCCB , atomic_read(&acb->ccboutstandingcount)); continue; } error = (acb->pCompletionQ[doneq_index].cmdFlag & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false; arcmsr_report_ccb_state(acb, pCCB, error); } writel(doneq_index, ®->reply_post_consumer_index); return rtn; } static int arcmsr_polling_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { int rtn = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { rtn = arcmsr_hbaA_polling_ccbdone(acb, poll_ccb); } break; case ACB_ADAPTER_TYPE_B: { rtn = arcmsr_hbaB_polling_ccbdone(acb, poll_ccb); } break; case ACB_ADAPTER_TYPE_C: { rtn = arcmsr_hbaC_polling_ccbdone(acb, poll_ccb); } break; case ACB_ADAPTER_TYPE_D: rtn = arcmsr_hbaD_polling_ccbdone(acb, poll_ccb); break; case ACB_ADAPTER_TYPE_E: rtn = arcmsr_hbaE_polling_ccbdone(acb, poll_ccb); break; } return rtn; } static void arcmsr_set_iop_datetime(struct timer_list *t) { struct AdapterControlBlock *pacb = from_timer(pacb, t, refresh_timer); unsigned int next_time; struct tm tm; union { struct { uint16_t signature; uint8_t year; uint8_t month; uint8_t date; uint8_t hour; uint8_t minute; uint8_t second; } a; struct { uint32_t msg_time[2]; } b; } datetime; time64_to_tm(ktime_get_real_seconds(), -sys_tz.tz_minuteswest * 60, &tm); datetime.a.signature = 0x55AA; datetime.a.year = tm.tm_year - 100; /* base 2000 instead of 1900 */ datetime.a.month = tm.tm_mon; datetime.a.date = tm.tm_mday; datetime.a.hour = tm.tm_hour; datetime.a.minute = tm.tm_min; datetime.a.second = tm.tm_sec; switch (pacb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = pacb->pmuA; writel(datetime.b.msg_time[0], ®->message_rwbuffer[0]); writel(datetime.b.msg_time[1], ®->message_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, ®->inbound_msgaddr0); break; } case ACB_ADAPTER_TYPE_B: { uint32_t __iomem *rwbuffer; struct MessageUnit_B *reg = pacb->pmuB; rwbuffer = reg->message_rwbuffer; writel(datetime.b.msg_time[0], rwbuffer++); writel(datetime.b.msg_time[1], rwbuffer++); writel(ARCMSR_MESSAGE_SYNC_TIMER, reg->drv2iop_doorbell); break; } case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = pacb->pmuC; writel(datetime.b.msg_time[0], ®->msgcode_rwbuffer[0]); writel(datetime.b.msg_time[1], ®->msgcode_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); break; } case ACB_ADAPTER_TYPE_D: { uint32_t __iomem *rwbuffer; struct MessageUnit_D *reg = pacb->pmuD; rwbuffer = reg->msgcode_rwbuffer; writel(datetime.b.msg_time[0], rwbuffer++); writel(datetime.b.msg_time[1], rwbuffer++); writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, reg->inbound_msgaddr0); break; } case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = pacb->pmuE; writel(datetime.b.msg_time[0], ®->msgcode_rwbuffer[0]); writel(datetime.b.msg_time[1], ®->msgcode_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SYNC_TIMER, ®->inbound_msgaddr0); pacb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pacb->out_doorbell, ®->iobound_doorbell); break; } } if (sys_tz.tz_minuteswest) next_time = ARCMSR_HOURS; else next_time = ARCMSR_MINUTES; mod_timer(&pacb->refresh_timer, jiffies + msecs_to_jiffies(next_time)); } static int arcmsr_iop_confirm(struct AdapterControlBlock *acb) { uint32_t cdb_phyaddr, cdb_phyaddr_hi32; dma_addr_t dma_coherent_handle; /* ******************************************************************** ** here we need to tell iop 331 our freeccb.HighPart ** if freeccb.HighPart is not zero ******************************************************************** */ switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_B: case ACB_ADAPTER_TYPE_D: dma_coherent_handle = acb->dma_coherent_handle2; break; case ACB_ADAPTER_TYPE_E: dma_coherent_handle = acb->dma_coherent_handle + offsetof(struct CommandControlBlock, arcmsr_cdb); break; default: dma_coherent_handle = acb->dma_coherent_handle; break; } cdb_phyaddr = lower_32_bits(dma_coherent_handle); cdb_phyaddr_hi32 = upper_32_bits(dma_coherent_handle); acb->cdb_phyaddr_hi32 = cdb_phyaddr_hi32; acb->cdb_phyadd_hipart = ((uint64_t)cdb_phyaddr_hi32) << 32; /* *********************************************************************** ** if adapter type B, set window of "post command Q" *********************************************************************** */ switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { if (cdb_phyaddr_hi32 != 0) { struct MessageUnit_A __iomem *reg = acb->pmuA; writel(ARCMSR_SIGNATURE_SET_CONFIG, \ ®->message_rwbuffer[0]); writel(cdb_phyaddr_hi32, ®->message_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \ ®->inbound_msgaddr0); if (!arcmsr_hbaA_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: ""set ccb high \ part physical address timeout\n", acb->host->host_no); return 1; } } } break; case ACB_ADAPTER_TYPE_B: { uint32_t __iomem *rwbuffer; struct MessageUnit_B *reg = acb->pmuB; reg->postq_index = 0; reg->doneq_index = 0; writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: cannot set driver mode\n", \ acb->host->host_no); return 1; } rwbuffer = reg->message_rwbuffer; /* driver "set config" signature */ writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++); /* normal should be zero */ writel(cdb_phyaddr_hi32, rwbuffer++); /* postQ size (256 + 8)*4 */ writel(cdb_phyaddr, rwbuffer++); /* doneQ size (256 + 8)*4 */ writel(cdb_phyaddr + 1056, rwbuffer++); /* ccb maxQ size must be --> [(256 + 8)*4]*/ writel(1056, rwbuffer); writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \ timeout \n",acb->host->host_no); return 1; } writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { pr_err("arcmsr%d: can't set driver mode.\n", acb->host->host_no); return 1; } } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; printk(KERN_NOTICE "arcmsr%d: cdb_phyaddr_hi32=0x%x\n", acb->adapter_index, cdb_phyaddr_hi32); writel(ARCMSR_SIGNATURE_SET_CONFIG, ®->msgcode_rwbuffer[0]); writel(cdb_phyaddr_hi32, ®->msgcode_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); if (!arcmsr_hbaC_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \ timeout \n", acb->host->host_no); return 1; } } break; case ACB_ADAPTER_TYPE_D: { uint32_t __iomem *rwbuffer; struct MessageUnit_D *reg = acb->pmuD; reg->postq_index = 0; reg->doneq_index = 0; rwbuffer = reg->msgcode_rwbuffer; writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++); writel(cdb_phyaddr_hi32, rwbuffer++); writel(cdb_phyaddr, rwbuffer++); writel(cdb_phyaddr + (ARCMSR_MAX_ARC1214_POSTQUEUE * sizeof(struct InBound_SRB)), rwbuffer++); writel(0x100, rwbuffer); writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, reg->inbound_msgaddr0); if (!arcmsr_hbaD_wait_msgint_ready(acb)) { pr_notice("arcmsr%d: 'set command Q window' timeout\n", acb->host->host_no); return 1; } } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; writel(ARCMSR_SIGNATURE_SET_CONFIG, ®->msgcode_rwbuffer[0]); writel(ARCMSR_SIGNATURE_1884, ®->msgcode_rwbuffer[1]); writel(cdb_phyaddr, ®->msgcode_rwbuffer[2]); writel(cdb_phyaddr_hi32, ®->msgcode_rwbuffer[3]); writel(acb->ccbsize, ®->msgcode_rwbuffer[4]); dma_coherent_handle = acb->dma_coherent_handle2; cdb_phyaddr = (uint32_t)(dma_coherent_handle & 0xffffffff); cdb_phyaddr_hi32 = (uint32_t)((dma_coherent_handle >> 16) >> 16); writel(cdb_phyaddr, ®->msgcode_rwbuffer[5]); writel(cdb_phyaddr_hi32, ®->msgcode_rwbuffer[6]); writel(acb->ioqueue_size, ®->msgcode_rwbuffer[7]); writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, ®->inbound_msgaddr0); acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(acb->out_doorbell, ®->iobound_doorbell); if (!arcmsr_hbaE_wait_msgint_ready(acb)) { pr_notice("arcmsr%d: 'set command Q window' timeout \n", acb->host->host_no); return 1; } } break; } return 0; } static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb) { uint32_t firmware_state = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; do { if (!(acb->acb_flags & ACB_F_IOP_INITED)) msleep(20); firmware_state = readl(®->outbound_msgaddr1); } while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; do { if (!(acb->acb_flags & ACB_F_IOP_INITED)) msleep(20); firmware_state = readl(reg->iop2drv_doorbell); } while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0); writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell); } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; do { if (!(acb->acb_flags & ACB_F_IOP_INITED)) msleep(20); firmware_state = readl(®->outbound_msgaddr1); } while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK) == 0); } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; do { if (!(acb->acb_flags & ACB_F_IOP_INITED)) msleep(20); firmware_state = readl(reg->outbound_msgaddr1); } while ((firmware_state & ARCMSR_ARC1214_MESSAGE_FIRMWARE_OK) == 0); } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; do { if (!(acb->acb_flags & ACB_F_IOP_INITED)) msleep(20); firmware_state = readl(®->outbound_msgaddr1); } while ((firmware_state & ARCMSR_HBEMU_MESSAGE_FIRMWARE_OK) == 0); } break; } } static void arcmsr_request_device_map(struct timer_list *t) { struct AdapterControlBlock *acb = from_timer(acb, t, eternal_timer); if (unlikely(atomic_read(&acb->rq_map_token) == 0) || (acb->acb_flags & ACB_F_BUS_RESET) || (acb->acb_flags & ACB_F_ABORT)) { mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ)); } else { acb->fw_flag = FW_NORMAL; if (atomic_read(&acb->ante_token_value) == atomic_read(&acb->rq_map_token)) { atomic_set(&acb->rq_map_token, 16); } atomic_set(&acb->ante_token_value, atomic_read(&acb->rq_map_token)); if (atomic_dec_and_test(&acb->rq_map_token)) { mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ)); return; } switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); break; } case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell); break; } case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, ®->inbound_doorbell); break; } case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, reg->inbound_msgaddr0); break; } case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(acb->out_doorbell, ®->iobound_doorbell); break; } default: return; } acb->acb_flags |= ACB_F_MSG_GET_CONFIG; mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ)); } } static void arcmsr_hbaA_start_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = acb->pmuA; acb->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_START_BGRB, ®->inbound_msgaddr0); if (!arcmsr_hbaA_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \ rebuild' timeout \n", acb->host->host_no); } } static void arcmsr_hbaB_start_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = acb->pmuB; acb->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \ rebuild' timeout \n",acb->host->host_no); } } static void arcmsr_hbaC_start_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_C __iomem *phbcmu = pACB->pmuC; pACB->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_START_BGRB, &phbcmu->inbound_msgaddr0); writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &phbcmu->inbound_doorbell); if (!arcmsr_hbaC_wait_msgint_ready(pACB)) { printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \ rebuild' timeout \n", pACB->host->host_no); } return; } static void arcmsr_hbaD_start_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_D *pmu = pACB->pmuD; pACB->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_START_BGRB, pmu->inbound_msgaddr0); if (!arcmsr_hbaD_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait 'start adapter " "background rebuild' timeout\n", pACB->host->host_no); } } static void arcmsr_hbaE_start_bgrb(struct AdapterControlBlock *pACB) { struct MessageUnit_E __iomem *pmu = pACB->pmuE; pACB->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_START_BGRB, &pmu->inbound_msgaddr0); pACB->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE; writel(pACB->out_doorbell, &pmu->iobound_doorbell); if (!arcmsr_hbaE_wait_msgint_ready(pACB)) { pr_notice("arcmsr%d: wait 'start adapter " "background rebuild' timeout \n", pACB->host->host_no); } } static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: arcmsr_hbaA_start_bgrb(acb); break; case ACB_ADAPTER_TYPE_B: arcmsr_hbaB_start_bgrb(acb); break; case ACB_ADAPTER_TYPE_C: arcmsr_hbaC_start_bgrb(acb); break; case ACB_ADAPTER_TYPE_D: arcmsr_hbaD_start_bgrb(acb); break; case ACB_ADAPTER_TYPE_E: arcmsr_hbaE_start_bgrb(acb); break; } } static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = acb->pmuA; uint32_t outbound_doorbell; /* empty doorbell Qbuffer if door bell ringed */ outbound_doorbell = readl(®->outbound_doorbell); /*clear doorbell interrupt */ writel(outbound_doorbell, ®->outbound_doorbell); writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; uint32_t outbound_doorbell, i; writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell); /* let IOP know data has been read */ for(i=0; i < 200; i++) { msleep(20); outbound_doorbell = readl(reg->iop2drv_doorbell); if( outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) { writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell); } else break; } } break; case ACB_ADAPTER_TYPE_C: { struct MessageUnit_C __iomem *reg = acb->pmuC; uint32_t outbound_doorbell, i; /* empty doorbell Qbuffer if door bell ringed */ outbound_doorbell = readl(®->outbound_doorbell); writel(outbound_doorbell, ®->outbound_doorbell_clear); writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, ®->inbound_doorbell); for (i = 0; i < 200; i++) { msleep(20); outbound_doorbell = readl(®->outbound_doorbell); if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) { writel(outbound_doorbell, ®->outbound_doorbell_clear); writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, ®->inbound_doorbell); } else break; } } break; case ACB_ADAPTER_TYPE_D: { struct MessageUnit_D *reg = acb->pmuD; uint32_t outbound_doorbell, i; /* empty doorbell Qbuffer if door bell ringed */ outbound_doorbell = readl(reg->outbound_doorbell); writel(outbound_doorbell, reg->outbound_doorbell); writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ, reg->inbound_doorbell); for (i = 0; i < 200; i++) { msleep(20); outbound_doorbell = readl(reg->outbound_doorbell); if (outbound_doorbell & ARCMSR_ARC1214_IOP2DRV_DATA_WRITE_OK) { writel(outbound_doorbell, reg->outbound_doorbell); writel(ARCMSR_ARC1214_DRV2IOP_DATA_OUT_READ, reg->inbound_doorbell); } else break; } } break; case ACB_ADAPTER_TYPE_E: { struct MessageUnit_E __iomem *reg = acb->pmuE; uint32_t i, tmp; acb->in_doorbell = readl(®->iobound_doorbell); writel(0, ®->host_int_status); /*clear interrupt*/ acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK; writel(acb->out_doorbell, ®->iobound_doorbell); for(i=0; i < 200; i++) { msleep(20); tmp = acb->in_doorbell; acb->in_doorbell = readl(®->iobound_doorbell); if((tmp ^ acb->in_doorbell) & ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK) { writel(0, ®->host_int_status); /*clear interrupt*/ acb->out_doorbell ^= ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK; writel(acb->out_doorbell, ®->iobound_doorbell); } else break; } } break; } } static void arcmsr_enable_eoi_mode(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: return; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = acb->pmuB; writel(ARCMSR_MESSAGE_ACTIVE_EOI_MODE, reg->drv2iop_doorbell); if (!arcmsr_hbaB_wait_msgint_ready(acb)) { printk(KERN_NOTICE "ARCMSR IOP enables EOI_MODE TIMEOUT"); return; } } break; case ACB_ADAPTER_TYPE_C: return; } return; } static void arcmsr_hardware_reset(struct AdapterControlBlock *acb) { uint8_t value[64]; int i, count = 0; struct MessageUnit_A __iomem *pmuA = acb->pmuA; struct MessageUnit_C __iomem *pmuC = acb->pmuC; struct MessageUnit_D *pmuD = acb->pmuD; /* backup pci config data */ printk(KERN_NOTICE "arcmsr%d: executing hw bus reset .....\n", acb->host->host_no); for (i = 0; i < 64; i++) { pci_read_config_byte(acb->pdev, i, &value[i]); } /* hardware reset signal */ if (acb->dev_id == 0x1680) { writel(ARCMSR_ARC1680_BUS_RESET, &pmuA->reserved1[0]); } else if (acb->dev_id == 0x1880) { do { count++; writel(0xF, &pmuC->write_sequence); writel(0x4, &pmuC->write_sequence); writel(0xB, &pmuC->write_sequence); writel(0x2, &pmuC->write_sequence); writel(0x7, &pmuC->write_sequence); writel(0xD, &pmuC->write_sequence); } while (((readl(&pmuC->host_diagnostic) & ARCMSR_ARC1880_DiagWrite_ENABLE) == 0) && (count < 5)); writel(ARCMSR_ARC1880_RESET_ADAPTER, &pmuC->host_diagnostic); } else if (acb->dev_id == 0x1884) { struct MessageUnit_E __iomem *pmuE = acb->pmuE; do { count++; writel(0x4, &pmuE->write_sequence_3xxx); writel(0xB, &pmuE->write_sequence_3xxx); writel(0x2, &pmuE->write_sequence_3xxx); writel(0x7, &pmuE->write_sequence_3xxx); writel(0xD, &pmuE->write_sequence_3xxx); mdelay(10); } while (((readl(&pmuE->host_diagnostic_3xxx) & ARCMSR_ARC1884_DiagWrite_ENABLE) == 0) && (count < 5)); writel(ARCMSR_ARC188X_RESET_ADAPTER, &pmuE->host_diagnostic_3xxx); } else if (acb->dev_id == 0x1214) { writel(0x20, pmuD->reset_request); } else { pci_write_config_byte(acb->pdev, 0x84, 0x20); } msleep(2000); /* write back pci config data */ for (i = 0; i < 64; i++) { pci_write_config_byte(acb->pdev, i, value[i]); } msleep(1000); return; } static bool arcmsr_reset_in_progress(struct AdapterControlBlock *acb) { bool rtn = true; switch(acb->adapter_type) { case ACB_ADAPTER_TYPE_A:{ struct MessageUnit_A __iomem *reg = acb->pmuA; rtn = ((readl(®->outbound_msgaddr1) & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) ? true : false; } break; case ACB_ADAPTER_TYPE_B:{ struct MessageUnit_B *reg = acb->pmuB; rtn = ((readl(reg->iop2drv_doorbell) & ARCMSR_MESSAGE_FIRMWARE_OK) == 0) ? true : false; } break; case ACB_ADAPTER_TYPE_C:{ struct MessageUnit_C __iomem *reg = acb->pmuC; rtn = (readl(®->host_diagnostic) & 0x04) ? true : false; } break; case ACB_ADAPTER_TYPE_D:{ struct MessageUnit_D *reg = acb->pmuD; rtn = ((readl(reg->sample_at_reset) & 0x80) == 0) ? true : false; } break; case ACB_ADAPTER_TYPE_E:{ struct MessageUnit_E __iomem *reg = acb->pmuE; rtn = (readl(®->host_diagnostic_3xxx) & ARCMSR_ARC188X_RESET_ADAPTER) ? true : false; } break; } return rtn; } static void arcmsr_iop_init(struct AdapterControlBlock *acb) { uint32_t intmask_org; /* disable all outbound interrupt */ intmask_org = arcmsr_disable_outbound_ints(acb); arcmsr_wait_firmware_ready(acb); arcmsr_iop_confirm(acb); /*start background rebuild*/ arcmsr_start_adapter_bgrb(acb); /* empty doorbell Qbuffer if door bell ringed */ arcmsr_clear_doorbell_queue_buffer(acb); arcmsr_enable_eoi_mode(acb); /* enable outbound Post Queue,outbound doorbell Interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); acb->acb_flags |= ACB_F_IOP_INITED; } static uint8_t arcmsr_iop_reset(struct AdapterControlBlock *acb) { struct CommandControlBlock *ccb; uint32_t intmask_org; uint8_t rtnval = 0x00; int i = 0; unsigned long flags; if (atomic_read(&acb->ccboutstandingcount) != 0) { /* disable all outbound interrupt */ intmask_org = arcmsr_disable_outbound_ints(acb); /* talk to iop 331 outstanding command aborted */ rtnval = arcmsr_abort_allcmd(acb); /* clear all outbound posted Q */ arcmsr_done4abort_postqueue(acb); for (i = 0; i < acb->maxFreeCCB; i++) { ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { scsi_dma_unmap(ccb->pcmd); ccb->startdone = ARCMSR_CCB_DONE; ccb->ccb_flags = 0; spin_lock_irqsave(&acb->ccblist_lock, flags); list_add_tail(&ccb->list, &acb->ccb_free_list); spin_unlock_irqrestore(&acb->ccblist_lock, flags); } } atomic_set(&acb->ccboutstandingcount, 0); /* enable all outbound interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); return rtnval; } return rtnval; } static int arcmsr_bus_reset(struct scsi_cmnd *cmd) { struct AdapterControlBlock *acb; int retry_count = 0; int rtn = FAILED; acb = (struct AdapterControlBlock *) cmd->device->host->hostdata; if (acb->acb_flags & ACB_F_ADAPTER_REMOVED) return SUCCESS; pr_notice("arcmsr: executing bus reset eh.....num_resets = %d," " num_aborts = %d \n", acb->num_resets, acb->num_aborts); acb->num_resets++; if (acb->acb_flags & ACB_F_BUS_RESET) { long timeout; pr_notice("arcmsr: there is a bus reset eh proceeding...\n"); timeout = wait_event_timeout(wait_q, (acb->acb_flags & ACB_F_BUS_RESET) == 0, 220 * HZ); if (timeout) return SUCCESS; } acb->acb_flags |= ACB_F_BUS_RESET; if (!arcmsr_iop_reset(acb)) { arcmsr_hardware_reset(acb); acb->acb_flags &= ~ACB_F_IOP_INITED; wait_reset_done: ssleep(ARCMSR_SLEEPTIME); if (arcmsr_reset_in_progress(acb)) { if (retry_count > ARCMSR_RETRYCOUNT) { acb->fw_flag = FW_DEADLOCK; pr_notice("arcmsr%d: waiting for hw bus reset" " return, RETRY TERMINATED!!\n", acb->host->host_no); return FAILED; } retry_count++; goto wait_reset_done; } arcmsr_iop_init(acb); atomic_set(&acb->rq_map_token, 16); atomic_set(&acb->ante_token_value, 16); acb->fw_flag = FW_NORMAL; mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ)); acb->acb_flags &= ~ACB_F_BUS_RESET; rtn = SUCCESS; pr_notice("arcmsr: scsi bus reset eh returns with success\n"); } else { acb->acb_flags &= ~ACB_F_BUS_RESET; atomic_set(&acb->rq_map_token, 16); atomic_set(&acb->ante_token_value, 16); acb->fw_flag = FW_NORMAL; mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ)); rtn = SUCCESS; } return rtn; } static int arcmsr_abort_one_cmd(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb) { int rtn; rtn = arcmsr_polling_ccbdone(acb, ccb); return rtn; } static int arcmsr_abort(struct scsi_cmnd *cmd) { struct AdapterControlBlock *acb = (struct AdapterControlBlock *)cmd->device->host->hostdata; int i = 0; int rtn = FAILED; uint32_t intmask_org; if (acb->acb_flags & ACB_F_ADAPTER_REMOVED) return SUCCESS; printk(KERN_NOTICE "arcmsr%d: abort device command of scsi id = %d lun = %d\n", acb->host->host_no, cmd->device->id, (u32)cmd->device->lun); acb->acb_flags |= ACB_F_ABORT; acb->num_aborts++; /* ************************************************ ** the all interrupt service routine is locked ** we need to handle it as soon as possible and exit ************************************************ */ if (!atomic_read(&acb->ccboutstandingcount)) { acb->acb_flags &= ~ACB_F_ABORT; return rtn; } intmask_org = arcmsr_disable_outbound_ints(acb); for (i = 0; i < acb->maxFreeCCB; i++) { struct CommandControlBlock *ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) { ccb->startdone = ARCMSR_CCB_ABORTED; rtn = arcmsr_abort_one_cmd(acb, ccb); break; } } acb->acb_flags &= ~ACB_F_ABORT; arcmsr_enable_outbound_ints(acb, intmask_org); return rtn; } static const char *arcmsr_info(struct Scsi_Host *host) { struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; static char buf[256]; char *type; int raid6 = 1; switch (acb->pdev->device) { case PCI_DEVICE_ID_ARECA_1110: case PCI_DEVICE_ID_ARECA_1200: case PCI_DEVICE_ID_ARECA_1202: case PCI_DEVICE_ID_ARECA_1210: raid6 = 0; /*FALLTHRU*/ case PCI_DEVICE_ID_ARECA_1120: case PCI_DEVICE_ID_ARECA_1130: case PCI_DEVICE_ID_ARECA_1160: case PCI_DEVICE_ID_ARECA_1170: case PCI_DEVICE_ID_ARECA_1201: case PCI_DEVICE_ID_ARECA_1203: case PCI_DEVICE_ID_ARECA_1220: case PCI_DEVICE_ID_ARECA_1230: case PCI_DEVICE_ID_ARECA_1260: case PCI_DEVICE_ID_ARECA_1270: case PCI_DEVICE_ID_ARECA_1280: type = "SATA"; break; case PCI_DEVICE_ID_ARECA_1214: case PCI_DEVICE_ID_ARECA_1380: case PCI_DEVICE_ID_ARECA_1381: case PCI_DEVICE_ID_ARECA_1680: case PCI_DEVICE_ID_ARECA_1681: case PCI_DEVICE_ID_ARECA_1880: case PCI_DEVICE_ID_ARECA_1884: type = "SAS/SATA"; break; default: type = "unknown"; raid6 = 0; break; } sprintf(buf, "Areca %s RAID Controller %s\narcmsr version %s\n", type, raid6 ? "(RAID6 capable)" : "", ARCMSR_DRIVER_VERSION); return buf; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1