Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bhanu Prakash Gollapudi | 8637 | 92.71% | 17 | 33.33% |
Saurav Kashyap | 210 | 2.25% | 3 | 5.88% |
Chad Dupuis | 196 | 2.10% | 10 | 19.61% |
Eddie Wai | 80 | 0.86% | 2 | 3.92% |
Vladislav Zolotarov | 80 | 0.86% | 1 | 1.96% |
Maurizio Lombardi | 42 | 0.45% | 4 | 7.84% |
Julia Lawall | 19 | 0.20% | 2 | 3.92% |
Peter Zijlstra | 16 | 0.17% | 1 | 1.96% |
Michael Chan | 8 | 0.09% | 1 | 1.96% |
Dan Carpenter | 7 | 0.08% | 1 | 1.96% |
Kees Cook | 6 | 0.06% | 1 | 1.96% |
Hannes Reinecke | 4 | 0.04% | 1 | 1.96% |
Joe Carnuccio | 3 | 0.03% | 1 | 1.96% |
Vasu Dev | 2 | 0.02% | 1 | 1.96% |
Lucas De Marchi | 2 | 0.02% | 1 | 1.96% |
Ding Xiang | 1 | 0.01% | 1 | 1.96% |
Andi Kleen | 1 | 0.01% | 1 | 1.96% |
Baoyou Xie | 1 | 0.01% | 1 | 1.96% |
Andy Grover | 1 | 0.01% | 1 | 1.96% |
Total | 9316 | 51 |
/* bnx2fc_io.c: QLogic Linux FCoE offload driver. * IO manager and SCSI IO processing. * * Copyright (c) 2008-2013 Broadcom Corporation * Copyright (c) 2014-2016 QLogic Corporation * Copyright (c) 2016-2017 Cavium Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com) */ #include "bnx2fc.h" #define RESERVE_FREE_LIST_INDEX num_possible_cpus() static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len, int bd_index); static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req); static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req); static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req); static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req); static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req, struct fcoe_fcp_rsp_payload *fcp_rsp, u8 num_rq); void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req, unsigned int timer_msec) { struct bnx2fc_interface *interface = io_req->port->priv; if (queue_delayed_work(interface->timer_work_queue, &io_req->timeout_work, msecs_to_jiffies(timer_msec))) kref_get(&io_req->refcount); } static void bnx2fc_cmd_timeout(struct work_struct *work) { struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd, timeout_work.work); u8 cmd_type = io_req->cmd_type; struct bnx2fc_rport *tgt = io_req->tgt; int rc; BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d," "req_flags = %lx\n", cmd_type, io_req->req_flags); spin_lock_bh(&tgt->tgt_lock); if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) { clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags); /* * ideally we should hold the io_req until RRQ complets, * and release io_req from timeout hold. */ spin_unlock_bh(&tgt->tgt_lock); bnx2fc_send_rrq(io_req); return; } if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n"); goto done; } switch (cmd_type) { case BNX2FC_SCSI_CMD: if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags)) { /* Handle eh_abort timeout */ BNX2FC_IO_DBG(io_req, "eh_abort timed out\n"); complete(&io_req->abts_done); } else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { /* Handle internally generated ABTS timeout */ BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n", kref_read(&io_req->refcount)); if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags))) { /* * Cleanup and return original command to * mid-layer. */ bnx2fc_initiate_cleanup(io_req); kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } } else { /* Hanlde IO timeout */ BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n"); if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "IO completed before " " timer expiry\n"); goto done; } if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { rc = bnx2fc_initiate_abts(io_req); if (rc == SUCCESS) goto done; kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } else { BNX2FC_IO_DBG(io_req, "IO already in " "ABTS processing\n"); } } break; case BNX2FC_ELS: if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n"); if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) { kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } } else { /* * Handle ELS timeout. * tgt_lock is used to sync compl path and timeout * path. If els compl path is processing this IO, we * have nothing to do here, just release the timer hold */ BNX2FC_IO_DBG(io_req, "ELS timed out\n"); if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE, &io_req->req_flags)) goto done; /* Indicate the cb_func that this ELS is timed out */ set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags); if ((io_req->cb_func) && (io_req->cb_arg)) { io_req->cb_func(io_req->cb_arg); io_req->cb_arg = NULL; } } break; default: printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n", cmd_type); break; } done: /* release the cmd that was held when timer was set */ kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); } static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code) { /* Called with host lock held */ struct scsi_cmnd *sc_cmd = io_req->sc_cmd; /* * active_cmd_queue may have other command types as well, * and during flush operation, we want to error back only * scsi commands. */ if (io_req->cmd_type != BNX2FC_SCSI_CMD) return; BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code); if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) { /* Do not call scsi done for this IO */ return; } bnx2fc_unmap_sg_list(io_req); io_req->sc_cmd = NULL; /* Sanity checks before returning command to mid-layer */ if (!sc_cmd) { printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. " "IO(0x%x) already cleaned up\n", io_req->xid); return; } if (!sc_cmd->device) { pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid); return; } if (!sc_cmd->device->host) { pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n", io_req->xid); return; } sc_cmd->result = err_code << 16; BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n", sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries, sc_cmd->allowed); scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd)); sc_cmd->SCp.ptr = NULL; sc_cmd->scsi_done(sc_cmd); } struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba) { struct bnx2fc_cmd_mgr *cmgr; struct io_bdt *bdt_info; struct bnx2fc_cmd *io_req; size_t len; u32 mem_size; u16 xid; int i; int num_ios, num_pri_ios; size_t bd_tbl_sz; int arr_sz = num_possible_cpus() + 1; u16 min_xid = BNX2FC_MIN_XID; u16 max_xid = hba->max_xid; if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) { printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \ and max_xid 0x%x\n", min_xid, max_xid); return NULL; } BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid); num_ios = max_xid - min_xid + 1; len = (num_ios * (sizeof(struct bnx2fc_cmd *))); len += sizeof(struct bnx2fc_cmd_mgr); cmgr = kzalloc(len, GFP_KERNEL); if (!cmgr) { printk(KERN_ERR PFX "failed to alloc cmgr\n"); return NULL; } cmgr->hba = hba; cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list), GFP_KERNEL); if (!cmgr->free_list) { printk(KERN_ERR PFX "failed to alloc free_list\n"); goto mem_err; } cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock), GFP_KERNEL); if (!cmgr->free_list_lock) { printk(KERN_ERR PFX "failed to alloc free_list_lock\n"); kfree(cmgr->free_list); cmgr->free_list = NULL; goto mem_err; } cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1); for (i = 0; i < arr_sz; i++) { INIT_LIST_HEAD(&cmgr->free_list[i]); spin_lock_init(&cmgr->free_list_lock[i]); } /* * Pre-allocated pool of bnx2fc_cmds. * Last entry in the free list array is the free list * of slow path requests. */ xid = BNX2FC_MIN_XID; num_pri_ios = num_ios - hba->elstm_xids; for (i = 0; i < num_ios; i++) { io_req = kzalloc(sizeof(*io_req), GFP_KERNEL); if (!io_req) { printk(KERN_ERR PFX "failed to alloc io_req\n"); goto mem_err; } INIT_LIST_HEAD(&io_req->link); INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout); io_req->xid = xid++; if (i < num_pri_ios) list_add_tail(&io_req->link, &cmgr->free_list[io_req->xid % num_possible_cpus()]); else list_add_tail(&io_req->link, &cmgr->free_list[num_possible_cpus()]); io_req++; } /* Allocate pool of io_bdts - one for each bnx2fc_cmd */ mem_size = num_ios * sizeof(struct io_bdt *); cmgr->io_bdt_pool = kzalloc(mem_size, GFP_KERNEL); if (!cmgr->io_bdt_pool) { printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n"); goto mem_err; } mem_size = sizeof(struct io_bdt); for (i = 0; i < num_ios; i++) { cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL); if (!cmgr->io_bdt_pool[i]) { printk(KERN_ERR PFX "failed to alloc " "io_bdt_pool[%d]\n", i); goto mem_err; } } /* Allocate an map fcoe_bdt_ctx structures */ bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx); for (i = 0; i < num_ios; i++) { bdt_info = cmgr->io_bdt_pool[i]; bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev, bd_tbl_sz, &bdt_info->bd_tbl_dma, GFP_KERNEL); if (!bdt_info->bd_tbl) { printk(KERN_ERR PFX "failed to alloc " "bdt_tbl[%d]\n", i); goto mem_err; } } return cmgr; mem_err: bnx2fc_cmd_mgr_free(cmgr); return NULL; } void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr) { struct io_bdt *bdt_info; struct bnx2fc_hba *hba = cmgr->hba; size_t bd_tbl_sz; u16 min_xid = BNX2FC_MIN_XID; u16 max_xid = hba->max_xid; int num_ios; int i; num_ios = max_xid - min_xid + 1; /* Free fcoe_bdt_ctx structures */ if (!cmgr->io_bdt_pool) goto free_cmd_pool; bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx); for (i = 0; i < num_ios; i++) { bdt_info = cmgr->io_bdt_pool[i]; if (bdt_info->bd_tbl) { dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz, bdt_info->bd_tbl, bdt_info->bd_tbl_dma); bdt_info->bd_tbl = NULL; } } /* Destroy io_bdt pool */ for (i = 0; i < num_ios; i++) { kfree(cmgr->io_bdt_pool[i]); cmgr->io_bdt_pool[i] = NULL; } kfree(cmgr->io_bdt_pool); cmgr->io_bdt_pool = NULL; free_cmd_pool: kfree(cmgr->free_list_lock); /* Destroy cmd pool */ if (!cmgr->free_list) goto free_cmgr; for (i = 0; i < num_possible_cpus() + 1; i++) { struct bnx2fc_cmd *tmp, *io_req; list_for_each_entry_safe(io_req, tmp, &cmgr->free_list[i], link) { list_del(&io_req->link); kfree(io_req); } } kfree(cmgr->free_list); free_cmgr: /* Free command manager itself */ kfree(cmgr); } struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type) { struct fcoe_port *port = tgt->port; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr; struct bnx2fc_cmd *io_req; struct list_head *listp; struct io_bdt *bd_tbl; int index = RESERVE_FREE_LIST_INDEX; u32 free_sqes; u32 max_sqes; u16 xid; max_sqes = tgt->max_sqes; switch (type) { case BNX2FC_TASK_MGMT_CMD: max_sqes = BNX2FC_TM_MAX_SQES; break; case BNX2FC_ELS: max_sqes = BNX2FC_ELS_MAX_SQES; break; default: break; } /* * NOTE: Free list insertions and deletions are protected with * cmgr lock */ spin_lock_bh(&cmd_mgr->free_list_lock[index]); free_sqes = atomic_read(&tgt->free_sqes); if ((list_empty(&(cmd_mgr->free_list[index]))) || (tgt->num_active_ios.counter >= max_sqes) || (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) { BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available " "ios(%d):sqes(%d)\n", tgt->num_active_ios.counter, tgt->max_sqes); if (list_empty(&(cmd_mgr->free_list[index]))) printk(KERN_ERR PFX "elstm_alloc: list_empty\n"); spin_unlock_bh(&cmd_mgr->free_list_lock[index]); return NULL; } listp = (struct list_head *) cmd_mgr->free_list[index].next; list_del_init(listp); io_req = (struct bnx2fc_cmd *) listp; xid = io_req->xid; cmd_mgr->cmds[xid] = io_req; atomic_inc(&tgt->num_active_ios); atomic_dec(&tgt->free_sqes); spin_unlock_bh(&cmd_mgr->free_list_lock[index]); INIT_LIST_HEAD(&io_req->link); io_req->port = port; io_req->cmd_mgr = cmd_mgr; io_req->req_flags = 0; io_req->cmd_type = type; /* Bind io_bdt for this io_req */ /* Have a static link between io_req and io_bdt_pool */ bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid]; bd_tbl->io_req = io_req; /* Hold the io_req against deletion */ kref_init(&io_req->refcount); return io_req; } struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt) { struct fcoe_port *port = tgt->port; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr; struct bnx2fc_cmd *io_req; struct list_head *listp; struct io_bdt *bd_tbl; u32 free_sqes; u32 max_sqes; u16 xid; int index = get_cpu(); max_sqes = BNX2FC_SCSI_MAX_SQES; /* * NOTE: Free list insertions and deletions are protected with * cmgr lock */ spin_lock_bh(&cmd_mgr->free_list_lock[index]); free_sqes = atomic_read(&tgt->free_sqes); if ((list_empty(&cmd_mgr->free_list[index])) || (tgt->num_active_ios.counter >= max_sqes) || (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) { spin_unlock_bh(&cmd_mgr->free_list_lock[index]); put_cpu(); return NULL; } listp = (struct list_head *) cmd_mgr->free_list[index].next; list_del_init(listp); io_req = (struct bnx2fc_cmd *) listp; xid = io_req->xid; cmd_mgr->cmds[xid] = io_req; atomic_inc(&tgt->num_active_ios); atomic_dec(&tgt->free_sqes); spin_unlock_bh(&cmd_mgr->free_list_lock[index]); put_cpu(); INIT_LIST_HEAD(&io_req->link); io_req->port = port; io_req->cmd_mgr = cmd_mgr; io_req->req_flags = 0; /* Bind io_bdt for this io_req */ /* Have a static link between io_req and io_bdt_pool */ bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid]; bd_tbl->io_req = io_req; /* Hold the io_req against deletion */ kref_init(&io_req->refcount); return io_req; } void bnx2fc_cmd_release(struct kref *ref) { struct bnx2fc_cmd *io_req = container_of(ref, struct bnx2fc_cmd, refcount); struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr; int index; if (io_req->cmd_type == BNX2FC_SCSI_CMD) index = io_req->xid % num_possible_cpus(); else index = RESERVE_FREE_LIST_INDEX; spin_lock_bh(&cmd_mgr->free_list_lock[index]); if (io_req->cmd_type != BNX2FC_SCSI_CMD) bnx2fc_free_mp_resc(io_req); cmd_mgr->cmds[io_req->xid] = NULL; /* Delete IO from retire queue */ list_del_init(&io_req->link); /* Add it to the free list */ list_add(&io_req->link, &cmd_mgr->free_list[index]); atomic_dec(&io_req->tgt->num_active_ios); spin_unlock_bh(&cmd_mgr->free_list_lock[index]); } static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req) { struct bnx2fc_mp_req *mp_req = &(io_req->mp_req); struct bnx2fc_interface *interface = io_req->port->priv; struct bnx2fc_hba *hba = interface->hba; size_t sz = sizeof(struct fcoe_bd_ctx); /* clear tm flags */ mp_req->tm_flags = 0; if (mp_req->mp_req_bd) { dma_free_coherent(&hba->pcidev->dev, sz, mp_req->mp_req_bd, mp_req->mp_req_bd_dma); mp_req->mp_req_bd = NULL; } if (mp_req->mp_resp_bd) { dma_free_coherent(&hba->pcidev->dev, sz, mp_req->mp_resp_bd, mp_req->mp_resp_bd_dma); mp_req->mp_resp_bd = NULL; } if (mp_req->req_buf) { dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, mp_req->req_buf, mp_req->req_buf_dma); mp_req->req_buf = NULL; } if (mp_req->resp_buf) { dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, mp_req->resp_buf, mp_req->resp_buf_dma); mp_req->resp_buf = NULL; } } int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req) { struct bnx2fc_mp_req *mp_req; struct fcoe_bd_ctx *mp_req_bd; struct fcoe_bd_ctx *mp_resp_bd; struct bnx2fc_interface *interface = io_req->port->priv; struct bnx2fc_hba *hba = interface->hba; dma_addr_t addr; size_t sz; mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req); memset(mp_req, 0, sizeof(struct bnx2fc_mp_req)); if (io_req->cmd_type != BNX2FC_ELS) { mp_req->req_len = sizeof(struct fcp_cmnd); io_req->data_xfer_len = mp_req->req_len; } else mp_req->req_len = io_req->data_xfer_len; mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, &mp_req->req_buf_dma, GFP_ATOMIC); if (!mp_req->req_buf) { printk(KERN_ERR PFX "unable to alloc MP req buffer\n"); bnx2fc_free_mp_resc(io_req); return FAILED; } mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, &mp_req->resp_buf_dma, GFP_ATOMIC); if (!mp_req->resp_buf) { printk(KERN_ERR PFX "unable to alloc TM resp buffer\n"); bnx2fc_free_mp_resc(io_req); return FAILED; } memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE); memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE); /* Allocate and map mp_req_bd and mp_resp_bd */ sz = sizeof(struct fcoe_bd_ctx); mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz, &mp_req->mp_req_bd_dma, GFP_ATOMIC); if (!mp_req->mp_req_bd) { printk(KERN_ERR PFX "unable to alloc MP req bd\n"); bnx2fc_free_mp_resc(io_req); return FAILED; } mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz, &mp_req->mp_resp_bd_dma, GFP_ATOMIC); if (!mp_req->mp_resp_bd) { printk(KERN_ERR PFX "unable to alloc MP resp bd\n"); bnx2fc_free_mp_resc(io_req); return FAILED; } /* Fill bd table */ addr = mp_req->req_buf_dma; mp_req_bd = mp_req->mp_req_bd; mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff; mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32); mp_req_bd->buf_len = CNIC_PAGE_SIZE; mp_req_bd->flags = 0; /* * MP buffer is either a task mgmt command or an ELS. * So the assumption is that it consumes a single bd * entry in the bd table */ mp_resp_bd = mp_req->mp_resp_bd; addr = mp_req->resp_buf_dma; mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff; mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32); mp_resp_bd->buf_len = CNIC_PAGE_SIZE; mp_resp_bd->flags = 0; return SUCCESS; } static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags) { struct fc_lport *lport; struct fc_rport *rport; struct fc_rport_libfc_priv *rp; struct fcoe_port *port; struct bnx2fc_interface *interface; struct bnx2fc_rport *tgt; struct bnx2fc_cmd *io_req; struct bnx2fc_mp_req *tm_req; struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; struct Scsi_Host *host = sc_cmd->device->host; struct fc_frame_header *fc_hdr; struct fcp_cmnd *fcp_cmnd; int task_idx, index; int rc = SUCCESS; u16 xid; u32 sid, did; unsigned long start = jiffies; lport = shost_priv(host); rport = starget_to_rport(scsi_target(sc_cmd->device)); port = lport_priv(lport); interface = port->priv; if (rport == NULL) { printk(KERN_ERR PFX "device_reset: rport is NULL\n"); rc = FAILED; goto tmf_err; } rp = rport->dd_data; rc = fc_block_scsi_eh(sc_cmd); if (rc) return rc; if (lport->state != LPORT_ST_READY || !(lport->link_up)) { printk(KERN_ERR PFX "device_reset: link is not ready\n"); rc = FAILED; goto tmf_err; } /* rport and tgt are allocated together, so tgt should be non-NULL */ tgt = (struct bnx2fc_rport *)&rp[1]; if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) { printk(KERN_ERR PFX "device_reset: tgt not offloaded\n"); rc = FAILED; goto tmf_err; } retry_tmf: io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD); if (!io_req) { if (time_after(jiffies, start + HZ)) { printk(KERN_ERR PFX "tmf: Failed TMF"); rc = FAILED; goto tmf_err; } msleep(20); goto retry_tmf; } /* Initialize rest of io_req fields */ io_req->sc_cmd = sc_cmd; io_req->port = port; io_req->tgt = tgt; tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req); rc = bnx2fc_init_mp_req(io_req); if (rc == FAILED) { printk(KERN_ERR PFX "Task mgmt MP request init failed\n"); spin_lock_bh(&tgt->tgt_lock); kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); goto tmf_err; } /* Set TM flags */ io_req->io_req_flags = 0; tm_req->tm_flags = tm_flags; /* Fill FCP_CMND */ bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf); fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf; memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len); fcp_cmnd->fc_dl = 0; /* Fill FC header */ fc_hdr = &(tm_req->req_fc_hdr); sid = tgt->sid; did = rport->port_id; __fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid, FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); /* Obtain exchange id */ xid = io_req->xid; BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid); task_idx = xid/BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; /* Initialize task context for this IO request */ task_page = (struct fcoe_task_ctx_entry *) interface->hba->task_ctx[task_idx]; task = &(task_page[index]); bnx2fc_init_mp_task(io_req, task); sc_cmd->SCp.ptr = (char *)io_req; /* Obtain free SQ entry */ spin_lock_bh(&tgt->tgt_lock); bnx2fc_add_2_sq(tgt, xid); /* Enqueue the io_req to active_tm_queue */ io_req->on_tmf_queue = 1; list_add_tail(&io_req->link, &tgt->active_tm_queue); init_completion(&io_req->abts_done); io_req->wait_for_abts_comp = 1; /* Ring doorbell */ bnx2fc_ring_doorbell(tgt); spin_unlock_bh(&tgt->tgt_lock); rc = wait_for_completion_timeout(&io_req->abts_done, interface->tm_timeout * HZ); spin_lock_bh(&tgt->tgt_lock); io_req->wait_for_abts_comp = 0; if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) { set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags); if (io_req->on_tmf_queue) { list_del_init(&io_req->link); io_req->on_tmf_queue = 0; } io_req->wait_for_cleanup_comp = 1; init_completion(&io_req->cleanup_done); bnx2fc_initiate_cleanup(io_req); spin_unlock_bh(&tgt->tgt_lock); rc = wait_for_completion_timeout(&io_req->cleanup_done, BNX2FC_FW_TIMEOUT); spin_lock_bh(&tgt->tgt_lock); io_req->wait_for_cleanup_comp = 0; if (!rc) kref_put(&io_req->refcount, bnx2fc_cmd_release); } spin_unlock_bh(&tgt->tgt_lock); if (!rc) { BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n"); rc = FAILED; } else { BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n"); rc = SUCCESS; } tmf_err: return rc; } int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req) { struct fc_lport *lport; struct bnx2fc_rport *tgt = io_req->tgt; struct fc_rport *rport = tgt->rport; struct fc_rport_priv *rdata = tgt->rdata; struct bnx2fc_interface *interface; struct fcoe_port *port; struct bnx2fc_cmd *abts_io_req; struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; struct fc_frame_header *fc_hdr; struct bnx2fc_mp_req *abts_req; int task_idx, index; u32 sid, did; u16 xid; int rc = SUCCESS; u32 r_a_tov = rdata->r_a_tov; /* called with tgt_lock held */ BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n"); port = io_req->port; interface = port->priv; lport = port->lport; if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n"); rc = FAILED; goto abts_err; } if (rport == NULL) { printk(KERN_ERR PFX "initiate_abts: rport is NULL\n"); rc = FAILED; goto abts_err; } if (lport->state != LPORT_ST_READY || !(lport->link_up)) { printk(KERN_ERR PFX "initiate_abts: link is not ready\n"); rc = FAILED; goto abts_err; } abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS); if (!abts_io_req) { printk(KERN_ERR PFX "abts: couldnt allocate cmd\n"); rc = FAILED; goto abts_err; } /* Initialize rest of io_req fields */ abts_io_req->sc_cmd = NULL; abts_io_req->port = port; abts_io_req->tgt = tgt; abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */ abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req); memset(abts_req, 0, sizeof(struct bnx2fc_mp_req)); /* Fill FC header */ fc_hdr = &(abts_req->req_fc_hdr); /* Obtain oxid and rxid for the original exchange to be aborted */ fc_hdr->fh_ox_id = htons(io_req->xid); fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id); sid = tgt->sid; did = rport->port_id; __fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid, FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); xid = abts_io_req->xid; BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n"); task_idx = xid/BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; /* Initialize task context for this IO request */ task_page = (struct fcoe_task_ctx_entry *) interface->hba->task_ctx[task_idx]; task = &(task_page[index]); bnx2fc_init_mp_task(abts_io_req, task); /* * ABTS task is a temporary task that will be cleaned up * irrespective of ABTS response. We need to start the timer * for the original exchange, as the CQE is posted for the original * IO request. * * Timer for ABTS is started only when it is originated by a * TM request. For the ABTS issued as part of ULP timeout, * scsi-ml maintains the timers. */ /* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/ bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov); /* Obtain free SQ entry */ bnx2fc_add_2_sq(tgt, xid); /* Ring doorbell */ bnx2fc_ring_doorbell(tgt); abts_err: return rc; } int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset, enum fc_rctl r_ctl) { struct fc_lport *lport; struct bnx2fc_rport *tgt = orig_io_req->tgt; struct bnx2fc_interface *interface; struct fcoe_port *port; struct bnx2fc_cmd *seq_clnp_req; struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; struct bnx2fc_els_cb_arg *cb_arg = NULL; int task_idx, index; u16 xid; int rc = 0; BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n", orig_io_req->xid); kref_get(&orig_io_req->refcount); port = orig_io_req->port; interface = port->priv; lport = port->lport; cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC); if (!cb_arg) { printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n"); rc = -ENOMEM; goto cleanup_err; } seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP); if (!seq_clnp_req) { printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n"); rc = -ENOMEM; kfree(cb_arg); goto cleanup_err; } /* Initialize rest of io_req fields */ seq_clnp_req->sc_cmd = NULL; seq_clnp_req->port = port; seq_clnp_req->tgt = tgt; seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */ xid = seq_clnp_req->xid; task_idx = xid/BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; /* Initialize task context for this IO request */ task_page = (struct fcoe_task_ctx_entry *) interface->hba->task_ctx[task_idx]; task = &(task_page[index]); cb_arg->aborted_io_req = orig_io_req; cb_arg->io_req = seq_clnp_req; cb_arg->r_ctl = r_ctl; cb_arg->offset = offset; seq_clnp_req->cb_arg = cb_arg; printk(KERN_ERR PFX "call init_seq_cleanup_task\n"); bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset); /* Obtain free SQ entry */ bnx2fc_add_2_sq(tgt, xid); /* Ring doorbell */ bnx2fc_ring_doorbell(tgt); cleanup_err: return rc; } int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req) { struct fc_lport *lport; struct bnx2fc_rport *tgt = io_req->tgt; struct bnx2fc_interface *interface; struct fcoe_port *port; struct bnx2fc_cmd *cleanup_io_req; struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; int task_idx, index; u16 xid, orig_xid; int rc = 0; /* ASSUMPTION: called with tgt_lock held */ BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n"); port = io_req->port; interface = port->priv; lport = port->lport; cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP); if (!cleanup_io_req) { printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n"); rc = -1; goto cleanup_err; } /* Initialize rest of io_req fields */ cleanup_io_req->sc_cmd = NULL; cleanup_io_req->port = port; cleanup_io_req->tgt = tgt; cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */ xid = cleanup_io_req->xid; task_idx = xid/BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; /* Initialize task context for this IO request */ task_page = (struct fcoe_task_ctx_entry *) interface->hba->task_ctx[task_idx]; task = &(task_page[index]); orig_xid = io_req->xid; BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid); bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid); /* Obtain free SQ entry */ bnx2fc_add_2_sq(tgt, xid); /* Set flag that cleanup request is pending with the firmware */ set_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags); /* Ring doorbell */ bnx2fc_ring_doorbell(tgt); cleanup_err: return rc; } /** * bnx2fc_eh_target_reset: Reset a target * * @sc_cmd: SCSI command * * Set from SCSI host template to send task mgmt command to the target * and wait for the response */ int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd) { return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET); } /** * bnx2fc_eh_device_reset - Reset a single LUN * * @sc_cmd: SCSI command * * Set from SCSI host template to send task mgmt command to the target * and wait for the response */ int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd) { return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET); } static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req) { struct bnx2fc_rport *tgt = io_req->tgt; unsigned int time_left; init_completion(&io_req->cleanup_done); io_req->wait_for_cleanup_comp = 1; bnx2fc_initiate_cleanup(io_req); spin_unlock_bh(&tgt->tgt_lock); /* * Can't wait forever on cleanup response lest we let the SCSI error * handler wait forever */ time_left = wait_for_completion_timeout(&io_req->cleanup_done, BNX2FC_FW_TIMEOUT); if (!time_left) { BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n", __func__); /* * Put the extra reference to the SCSI command since it would * not have been returned in this case. */ kref_put(&io_req->refcount, bnx2fc_cmd_release); } spin_lock_bh(&tgt->tgt_lock); io_req->wait_for_cleanup_comp = 0; return SUCCESS; } /** * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding * SCSI command * * @sc_cmd: SCSI_ML command pointer * * SCSI abort request handler */ int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd) { struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); struct fc_rport_libfc_priv *rp = rport->dd_data; struct bnx2fc_cmd *io_req; struct fc_lport *lport; struct bnx2fc_rport *tgt; int rc; unsigned int time_left; rc = fc_block_scsi_eh(sc_cmd); if (rc) return rc; lport = shost_priv(sc_cmd->device->host); if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) { printk(KERN_ERR PFX "eh_abort: link not ready\n"); return FAILED; } tgt = (struct bnx2fc_rport *)&rp[1]; BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n"); spin_lock_bh(&tgt->tgt_lock); io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr; if (!io_req) { /* Command might have just completed */ printk(KERN_ERR PFX "eh_abort: io_req is NULL\n"); spin_unlock_bh(&tgt->tgt_lock); return SUCCESS; } BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n", kref_read(&io_req->refcount)); /* Hold IO request across abort processing */ kref_get(&io_req->refcount); BUG_ON(tgt != io_req->tgt); /* Remove the io_req from the active_q. */ /* * Task Mgmt functions (LUN RESET & TGT RESET) will not * issue an ABTS on this particular IO req, as the * io_req is no longer in the active_q. */ if (tgt->flush_in_prog) { printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " "flush in progress\n", io_req->xid); kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return SUCCESS; } if (io_req->on_active_queue == 0) { printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " "not on active_q\n", io_req->xid); /* * The IO is still with the FW. * Return failure and let SCSI-ml retry eh_abort. */ spin_unlock_bh(&tgt->tgt_lock); return FAILED; } /* * Only eh_abort processing will remove the IO from * active_cmd_q before processing the request. this is * done to avoid race conditions between IOs aborted * as part of task management completion and eh_abort * processing */ list_del_init(&io_req->link); io_req->on_active_queue = 0; /* Move IO req to retire queue */ list_add_tail(&io_req->link, &tgt->io_retire_queue); init_completion(&io_req->abts_done); init_completion(&io_req->cleanup_done); if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " "already in abts processing\n", io_req->xid); if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* drop timer hold */ /* * We don't want to hold off the upper layer timer so simply * cleanup the command and return that I/O was successfully * aborted. */ rc = bnx2fc_abts_cleanup(io_req); /* This only occurs when an task abort was requested while ABTS is in progress. Setting the IO_CLEANUP flag will skip the RRQ process in the case when the fw generated SCSI_CMD cmpl was a result from the ABTS request rather than the CLEANUP request */ set_bit(BNX2FC_FLAG_IO_CLEANUP, &io_req->req_flags); goto done; } /* Cancel the current timer running on this io_req */ if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* drop timer hold */ set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags); io_req->wait_for_abts_comp = 1; rc = bnx2fc_initiate_abts(io_req); if (rc == FAILED) { io_req->wait_for_cleanup_comp = 1; bnx2fc_initiate_cleanup(io_req); spin_unlock_bh(&tgt->tgt_lock); wait_for_completion(&io_req->cleanup_done); spin_lock_bh(&tgt->tgt_lock); io_req->wait_for_cleanup_comp = 0; goto done; } spin_unlock_bh(&tgt->tgt_lock); /* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */ time_left = wait_for_completion_timeout(&io_req->abts_done, (2 * rp->r_a_tov + 1) * HZ); if (time_left) BNX2FC_IO_DBG(io_req, "Timed out in eh_abort waiting for abts_done"); spin_lock_bh(&tgt->tgt_lock); io_req->wait_for_abts_comp = 0; if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "IO completed in a different context\n"); rc = SUCCESS; } else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags))) { /* Let the scsi-ml try to recover this command */ printk(KERN_ERR PFX "abort failed, xid = 0x%x\n", io_req->xid); /* * Cleanup firmware residuals before returning control back * to SCSI ML. */ rc = bnx2fc_abts_cleanup(io_req); goto done; } else { /* * We come here even when there was a race condition * between timeout and abts completion, and abts * completion happens just in time. */ BNX2FC_IO_DBG(io_req, "abort succeeded\n"); rc = SUCCESS; bnx2fc_scsi_done(io_req, DID_ABORT); kref_put(&io_req->refcount, bnx2fc_cmd_release); } done: /* release the reference taken in eh_abort */ kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return rc; } void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req, struct fcoe_task_ctx_entry *task, u8 rx_state) { struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg; struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req; u32 offset = cb_arg->offset; enum fc_rctl r_ctl = cb_arg->r_ctl; int rc = 0; struct bnx2fc_rport *tgt = orig_io_req->tgt; BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x" "cmd_type = %d\n", seq_clnp_req->xid, seq_clnp_req->cmd_type); if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) { printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n", seq_clnp_req->xid); goto free_cb_arg; } spin_unlock_bh(&tgt->tgt_lock); rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl); spin_lock_bh(&tgt->tgt_lock); if (rc) printk(KERN_ERR PFX "clnup_compl: Unable to send SRR" " IO will abort\n"); seq_clnp_req->cb_arg = NULL; kref_put(&orig_io_req->refcount, bnx2fc_cmd_release); free_cb_arg: kfree(cb_arg); return; } void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task, u8 num_rq) { BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl " "refcnt = %d, cmd_type = %d\n", kref_read(&io_req->refcount), io_req->cmd_type); /* * Test whether there is a cleanup request pending. If not just * exit. */ if (!test_and_clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) return; /* * If we receive a cleanup completion for this request then the * firmware will not give us an abort completion for this request * so clear any ABTS pending flags. */ if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags) && !test_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) { set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags); if (io_req->wait_for_abts_comp) complete(&io_req->abts_done); } bnx2fc_scsi_done(io_req, DID_ERROR); kref_put(&io_req->refcount, bnx2fc_cmd_release); if (io_req->wait_for_cleanup_comp) complete(&io_req->cleanup_done); } void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task, u8 num_rq) { u32 r_ctl; u32 r_a_tov = FC_DEF_R_A_TOV; u8 issue_rrq = 0; struct bnx2fc_rport *tgt = io_req->tgt; BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x" "refcnt = %d, cmd_type = %d\n", io_req->xid, kref_read(&io_req->refcount), io_req->cmd_type); if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "Timer context finished processing" " this io\n"); return; } /* * If we receive an ABTS completion here then we will not receive * a cleanup completion so clear any cleanup pending flags. */ if (test_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) { clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags); if (io_req->wait_for_cleanup_comp) complete(&io_req->cleanup_done); } /* Do not issue RRQ as this IO is already cleanedup */ if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP, &io_req->req_flags)) goto io_compl; /* * For ABTS issued due to SCSI eh_abort_handler, timeout * values are maintained by scsi-ml itself. Cancel timeout * in case ABTS issued as part of task management function * or due to FW error. */ if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* drop timer hold */ r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl; switch (r_ctl) { case FC_RCTL_BA_ACC: /* * Dont release this cmd yet. It will be relesed * after we get RRQ response */ BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n"); issue_rrq = 1; break; case FC_RCTL_BA_RJT: BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n"); break; default: printk(KERN_ERR PFX "Unknown ABTS response\n"); break; } if (issue_rrq) { BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n"); set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags); } set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags); bnx2fc_cmd_timer_set(io_req, r_a_tov); io_compl: if (io_req->wait_for_abts_comp) { if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags)) complete(&io_req->abts_done); } else { /* * We end up here when ABTS is issued as * in asynchronous context, i.e., as part * of task management completion, or * when FW error is received or when the * ABTS is issued when the IO is timed * out. */ if (io_req->on_active_queue) { list_del_init(&io_req->link); io_req->on_active_queue = 0; /* Move IO req to retire queue */ list_add_tail(&io_req->link, &tgt->io_retire_queue); } bnx2fc_scsi_done(io_req, DID_ERROR); kref_put(&io_req->refcount, bnx2fc_cmd_release); } } static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct bnx2fc_rport *tgt = io_req->tgt; struct bnx2fc_cmd *cmd, *tmp; u64 tm_lun = sc_cmd->device->lun; u64 lun; int rc = 0; /* called with tgt_lock held */ BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n"); /* * Walk thru the active_ios queue and ABORT the IO * that matches with the LUN that was reset */ list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) { BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n"); lun = cmd->sc_cmd->device->lun; if (lun == tm_lun) { /* Initiate ABTS on this cmd */ if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &cmd->req_flags)) { /* cancel the IO timeout */ if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* timer hold */ rc = bnx2fc_initiate_abts(cmd); /* abts shouldn't fail in this context */ WARN_ON(rc != SUCCESS); } else printk(KERN_ERR PFX "lun_rst: abts already in" " progress for this IO 0x%x\n", cmd->xid); } } } static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req) { struct bnx2fc_rport *tgt = io_req->tgt; struct bnx2fc_cmd *cmd, *tmp; int rc = 0; /* called with tgt_lock held */ BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n"); /* * Walk thru the active_ios queue and ABORT the IO * that matches with the LUN that was reset */ list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) { BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n"); /* Initiate ABTS */ if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &cmd->req_flags)) { /* cancel the IO timeout */ if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* timer hold */ rc = bnx2fc_initiate_abts(cmd); /* abts shouldn't fail in this context */ WARN_ON(rc != SUCCESS); } else printk(KERN_ERR PFX "tgt_rst: abts already in progress" " for this IO 0x%x\n", cmd->xid); } } void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task, u8 num_rq) { struct bnx2fc_mp_req *tm_req; struct fc_frame_header *fc_hdr; struct scsi_cmnd *sc_cmd = io_req->sc_cmd; u64 *hdr; u64 *temp_hdr; void *rsp_buf; /* Called with tgt_lock held */ BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n"); if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags))) set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags); else { /* TM has already timed out and we got * delayed completion. Ignore completion * processing. */ return; } tm_req = &(io_req->mp_req); fc_hdr = &(tm_req->resp_fc_hdr); hdr = (u64 *)fc_hdr; temp_hdr = (u64 *) &task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr; hdr[0] = cpu_to_be64(temp_hdr[0]); hdr[1] = cpu_to_be64(temp_hdr[1]); hdr[2] = cpu_to_be64(temp_hdr[2]); tm_req->resp_len = task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len; rsp_buf = tm_req->resp_buf; if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) { bnx2fc_parse_fcp_rsp(io_req, (struct fcoe_fcp_rsp_payload *) rsp_buf, num_rq); if (io_req->fcp_rsp_code == 0) { /* TM successful */ if (tm_req->tm_flags & FCP_TMF_LUN_RESET) bnx2fc_lun_reset_cmpl(io_req); else if (tm_req->tm_flags & FCP_TMF_TGT_RESET) bnx2fc_tgt_reset_cmpl(io_req); } } else { printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n", fc_hdr->fh_r_ctl); } if (!sc_cmd->SCp.ptr) { printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n"); return; } switch (io_req->fcp_status) { case FC_GOOD: if (io_req->cdb_status == 0) { /* Good IO completion */ sc_cmd->result = DID_OK << 16; } else { /* Transport status is good, SCSI status not good */ sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; } if (io_req->fcp_resid) scsi_set_resid(sc_cmd, io_req->fcp_resid); break; default: BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n", io_req->fcp_status); break; } sc_cmd = io_req->sc_cmd; io_req->sc_cmd = NULL; /* check if the io_req exists in tgt's tmf_q */ if (io_req->on_tmf_queue) { list_del_init(&io_req->link); io_req->on_tmf_queue = 0; } else { printk(KERN_ERR PFX "Command not on active_cmd_queue!\n"); return; } sc_cmd->SCp.ptr = NULL; sc_cmd->scsi_done(sc_cmd); kref_put(&io_req->refcount, bnx2fc_cmd_release); if (io_req->wait_for_abts_comp) { BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n"); complete(&io_req->abts_done); } } static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len, int bd_index) { struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; int frag_size, sg_frags; sg_frags = 0; while (sg_len) { if (sg_len >= BNX2FC_BD_SPLIT_SZ) frag_size = BNX2FC_BD_SPLIT_SZ; else frag_size = sg_len; bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff; bd[bd_index + sg_frags].buf_addr_hi = addr >> 32; bd[bd_index + sg_frags].buf_len = (u16)frag_size; bd[bd_index + sg_frags].flags = 0; addr += (u64) frag_size; sg_frags++; sg_len -= frag_size; } return sg_frags; } static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req) { struct bnx2fc_interface *interface = io_req->port->priv; struct bnx2fc_hba *hba = interface->hba; struct scsi_cmnd *sc = io_req->sc_cmd; struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; struct scatterlist *sg; int byte_count = 0; int sg_count = 0; int bd_count = 0; int sg_frags; unsigned int sg_len; u64 addr; int i; WARN_ON(scsi_sg_count(sc) > BNX2FC_MAX_BDS_PER_CMD); /* * Use dma_map_sg directly to ensure we're using the correct * dev struct off of pcidev. */ sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc), scsi_sg_count(sc), sc->sc_data_direction); scsi_for_each_sg(sc, sg, sg_count, i) { sg_len = sg_dma_len(sg); addr = sg_dma_address(sg); if (sg_len > BNX2FC_MAX_BD_LEN) { sg_frags = bnx2fc_split_bd(io_req, addr, sg_len, bd_count); } else { sg_frags = 1; bd[bd_count].buf_addr_lo = addr & 0xffffffff; bd[bd_count].buf_addr_hi = addr >> 32; bd[bd_count].buf_len = (u16)sg_len; bd[bd_count].flags = 0; } bd_count += sg_frags; byte_count += sg_len; } if (byte_count != scsi_bufflen(sc)) printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, " "task_id = 0x%x\n", byte_count, scsi_bufflen(sc), io_req->xid); return bd_count; } static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req) { struct scsi_cmnd *sc = io_req->sc_cmd; struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; int bd_count; if (scsi_sg_count(sc)) { bd_count = bnx2fc_map_sg(io_req); if (bd_count == 0) return -ENOMEM; } else { bd_count = 0; bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0; bd[0].buf_len = bd[0].flags = 0; } io_req->bd_tbl->bd_valid = bd_count; /* * Return the command to ML if BD count exceeds the max number * that can be handled by FW. */ if (bd_count > BNX2FC_FW_MAX_BDS_PER_CMD) { pr_err("bd_count = %d exceeded FW supported max BD(255), task_id = 0x%x\n", bd_count, io_req->xid); return -ENOMEM; } return 0; } static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req) { struct scsi_cmnd *sc = io_req->sc_cmd; struct bnx2fc_interface *interface = io_req->port->priv; struct bnx2fc_hba *hba = interface->hba; /* * Use dma_unmap_sg directly to ensure we're using the correct * dev struct off of pcidev. */ if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) { dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc), scsi_sg_count(sc), sc->sc_data_direction); io_req->bd_tbl->bd_valid = 0; } } void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req, struct fcp_cmnd *fcp_cmnd) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun); fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len); memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len); fcp_cmnd->fc_cmdref = 0; fcp_cmnd->fc_pri_ta = 0; fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags; fcp_cmnd->fc_flags = io_req->io_req_flags; fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE; } static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req, struct fcoe_fcp_rsp_payload *fcp_rsp, u8 num_rq) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct bnx2fc_rport *tgt = io_req->tgt; u8 rsp_flags = fcp_rsp->fcp_flags.flags; u32 rq_buff_len = 0; int i; unsigned char *rq_data; unsigned char *dummy; int fcp_sns_len = 0; int fcp_rsp_len = 0; io_req->fcp_status = FC_GOOD; io_req->fcp_resid = 0; if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER | FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER)) io_req->fcp_resid = fcp_rsp->fcp_resid; io_req->scsi_comp_flags = rsp_flags; CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status = fcp_rsp->scsi_status_code; /* Fetch fcp_rsp_info and fcp_sns_info if available */ if (num_rq) { /* * We do not anticipate num_rq >1, as the linux defined * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO * 256 bytes of single rq buffer is good enough to hold this. */ if (rsp_flags & FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) { fcp_rsp_len = rq_buff_len = fcp_rsp->fcp_rsp_len; } if (rsp_flags & FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) { fcp_sns_len = fcp_rsp->fcp_sns_len; rq_buff_len += fcp_rsp->fcp_sns_len; } io_req->fcp_rsp_len = fcp_rsp_len; io_req->fcp_sns_len = fcp_sns_len; if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) { /* Invalid sense sense length. */ printk(KERN_ERR PFX "invalid sns length %d\n", rq_buff_len); /* reset rq_buff_len */ rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ; } rq_data = bnx2fc_get_next_rqe(tgt, 1); if (num_rq > 1) { /* We do not need extra sense data */ for (i = 1; i < num_rq; i++) dummy = bnx2fc_get_next_rqe(tgt, 1); } /* fetch fcp_rsp_code */ if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) { /* Only for task management function */ io_req->fcp_rsp_code = rq_data[3]; BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n", io_req->fcp_rsp_code); } /* fetch sense data */ rq_data += fcp_rsp_len; if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) { printk(KERN_ERR PFX "Truncating sense buffer\n"); fcp_sns_len = SCSI_SENSE_BUFFERSIZE; } memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); if (fcp_sns_len) memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len); /* return RQ entries */ for (i = 0; i < num_rq; i++) bnx2fc_return_rqe(tgt, 1); } } /** * bnx2fc_queuecommand - Queuecommand function of the scsi template * * @host: The Scsi_Host the command was issued to * @sc_cmd: struct scsi_cmnd to be executed * * This is the IO strategy routine, called by SCSI-ML **/ int bnx2fc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *sc_cmd) { struct fc_lport *lport = shost_priv(host); struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); struct fc_rport_libfc_priv *rp = rport->dd_data; struct bnx2fc_rport *tgt; struct bnx2fc_cmd *io_req; int rc = 0; int rval; rval = fc_remote_port_chkready(rport); if (rval) { sc_cmd->result = rval; sc_cmd->scsi_done(sc_cmd); return 0; } if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) { rc = SCSI_MLQUEUE_HOST_BUSY; goto exit_qcmd; } /* rport and tgt are allocated together, so tgt should be non-NULL */ tgt = (struct bnx2fc_rport *)&rp[1]; if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { /* * Session is not offloaded yet. Let SCSI-ml retry * the command. */ rc = SCSI_MLQUEUE_TARGET_BUSY; goto exit_qcmd; } if (tgt->retry_delay_timestamp) { if (time_after(jiffies, tgt->retry_delay_timestamp)) { tgt->retry_delay_timestamp = 0; } else { /* If retry_delay timer is active, flow off the ML */ rc = SCSI_MLQUEUE_TARGET_BUSY; goto exit_qcmd; } } spin_lock_bh(&tgt->tgt_lock); io_req = bnx2fc_cmd_alloc(tgt); if (!io_req) { rc = SCSI_MLQUEUE_HOST_BUSY; goto exit_qcmd_tgtlock; } io_req->sc_cmd = sc_cmd; if (bnx2fc_post_io_req(tgt, io_req)) { printk(KERN_ERR PFX "Unable to post io_req\n"); rc = SCSI_MLQUEUE_HOST_BUSY; goto exit_qcmd_tgtlock; } exit_qcmd_tgtlock: spin_unlock_bh(&tgt->tgt_lock); exit_qcmd: return rc; } void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task, u8 num_rq) { struct fcoe_fcp_rsp_payload *fcp_rsp; struct bnx2fc_rport *tgt = io_req->tgt; struct scsi_cmnd *sc_cmd; struct Scsi_Host *host; /* scsi_cmd_cmpl is called with tgt lock held */ if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { /* we will not receive ABTS response for this IO */ BNX2FC_IO_DBG(io_req, "Timer context finished processing " "this scsi cmd\n"); return; } /* Cancel the timeout_work, as we received IO completion */ if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); /* drop timer hold */ sc_cmd = io_req->sc_cmd; if (sc_cmd == NULL) { printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n"); return; } /* Fetch fcp_rsp from task context and perform cmd completion */ fcp_rsp = (struct fcoe_fcp_rsp_payload *) &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload); /* parse fcp_rsp and obtain sense data from RQ if available */ bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq); host = sc_cmd->device->host; if (!sc_cmd->SCp.ptr) { printk(KERN_ERR PFX "SCp.ptr is NULL\n"); return; } if (io_req->on_active_queue) { list_del_init(&io_req->link); io_req->on_active_queue = 0; /* Move IO req to retire queue */ list_add_tail(&io_req->link, &tgt->io_retire_queue); } else { /* This should not happen, but could have been pulled * by bnx2fc_flush_active_ios(), or during a race * between command abort and (late) completion. */ BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n"); if (io_req->wait_for_abts_comp) if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags)) complete(&io_req->abts_done); } bnx2fc_unmap_sg_list(io_req); io_req->sc_cmd = NULL; switch (io_req->fcp_status) { case FC_GOOD: if (io_req->cdb_status == 0) { /* Good IO completion */ sc_cmd->result = DID_OK << 16; } else { /* Transport status is good, SCSI status not good */ BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d" " fcp_resid = 0x%x\n", io_req->cdb_status, io_req->fcp_resid); sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL || io_req->cdb_status == SAM_STAT_BUSY) { /* Set the jiffies + retry_delay_timer * 100ms for the rport/tgt */ tgt->retry_delay_timestamp = jiffies + fcp_rsp->retry_delay_timer * HZ / 10; } } if (io_req->fcp_resid) scsi_set_resid(sc_cmd, io_req->fcp_resid); break; default: printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n", io_req->fcp_status); break; } sc_cmd->SCp.ptr = NULL; sc_cmd->scsi_done(sc_cmd); kref_put(&io_req->refcount, bnx2fc_cmd_release); } int bnx2fc_post_io_req(struct bnx2fc_rport *tgt, struct bnx2fc_cmd *io_req) { struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct fcoe_port *port = tgt->port; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_hba *hba = interface->hba; struct fc_lport *lport = port->lport; struct fc_stats *stats; int task_idx, index; u16 xid; /* bnx2fc_post_io_req() is called with the tgt_lock held */ /* Initialize rest of io_req fields */ io_req->cmd_type = BNX2FC_SCSI_CMD; io_req->port = port; io_req->tgt = tgt; io_req->data_xfer_len = scsi_bufflen(sc_cmd); sc_cmd->SCp.ptr = (char *)io_req; stats = per_cpu_ptr(lport->stats, get_cpu()); if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) { io_req->io_req_flags = BNX2FC_READ; stats->InputRequests++; stats->InputBytes += io_req->data_xfer_len; } else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) { io_req->io_req_flags = BNX2FC_WRITE; stats->OutputRequests++; stats->OutputBytes += io_req->data_xfer_len; } else { io_req->io_req_flags = 0; stats->ControlRequests++; } put_cpu(); xid = io_req->xid; /* Build buffer descriptor list for firmware from sg list */ if (bnx2fc_build_bd_list_from_sg(io_req)) { printk(KERN_ERR PFX "BD list creation failed\n"); kref_put(&io_req->refcount, bnx2fc_cmd_release); return -EAGAIN; } task_idx = xid / BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; /* Initialize task context for this IO request */ task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx]; task = &(task_page[index]); bnx2fc_init_task(io_req, task); if (tgt->flush_in_prog) { printk(KERN_ERR PFX "Flush in progress..Host Busy\n"); kref_put(&io_req->refcount, bnx2fc_cmd_release); return -EAGAIN; } if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { printk(KERN_ERR PFX "Session not ready...post_io\n"); kref_put(&io_req->refcount, bnx2fc_cmd_release); return -EAGAIN; } /* Time IO req */ if (tgt->io_timeout) bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT); /* Obtain free SQ entry */ bnx2fc_add_2_sq(tgt, xid); /* Enqueue the io_req to active_cmd_queue */ io_req->on_active_queue = 1; /* move io_req from pending_queue to active_queue */ list_add_tail(&io_req->link, &tgt->active_cmd_queue); /* Ring doorbell */ bnx2fc_ring_doorbell(tgt); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1