Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Naresh Kumar Inna | 6891 | 94.18% | 1 | 7.14% |
Varun Prakash | 220 | 3.01% | 2 | 14.29% |
Hariprasad Shenai | 88 | 1.20% | 4 | 28.57% |
Arvind Bhushan | 70 | 0.96% | 2 | 14.29% |
Praveen Madhavan | 20 | 0.27% | 1 | 7.14% |
Christoph Hellwig | 19 | 0.26% | 1 | 7.14% |
Kees Cook | 7 | 0.10% | 1 | 7.14% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 7.14% |
Luis R. Rodriguez | 1 | 0.01% | 1 | 7.14% |
Total | 7317 | 14 |
/* * This file is part of the Chelsio FCoE driver for Linux. * * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/slab.h> #include <asm/page.h> #include <linux/cache.h> #include "t4_values.h" #include "csio_hw.h" #include "csio_wr.h" #include "csio_mb.h" #include "csio_defs.h" int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */ static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */ int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */ static int csio_sge_timer_reg = 1; #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \ csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A) static void csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg) { sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A + reg * sizeof(uint32_t)); } /* Free list buffer size */ static inline uint32_t csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf) { return sge->sge_fl_buf_size[buf->paddr & 0xF]; } /* Size of the egress queue status page */ static inline uint32_t csio_wr_qstat_pgsz(struct csio_hw *hw) { return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; } /* Ring freelist doorbell */ static inline void csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq) { /* * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ * number of bytes in the freelist queue. This translates to atleast * 8 freelist buffer pointers (since each pointer is 8 bytes). */ if (flq->inc_idx >= 8) { csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) | PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F, MYPF_REG(SGE_PF_KDOORBELL_A)); flq->inc_idx &= 7; } } /* Write a 0 cidx increment value to enable SGE interrupts for this queue */ static void csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid) { csio_wr_reg32(hw, CIDXINC_V(0) | INGRESSQID_V(iqid) | TIMERREG_V(X_TIMERREG_RESTART_COUNTER), MYPF_REG(SGE_PF_GTS_A)); } /* * csio_wr_fill_fl - Populate the FL buffers of a FL queue. * @hw: HW module. * @flq: Freelist queue. * * Fill up freelist buffer entries with buffers of size specified * in the size register. * */ static int csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; __be64 *d = (__be64 *)(flq->vstart); struct csio_dma_buf *buf = &flq->un.fl.bufs[0]; uint64_t paddr; int sreg = flq->un.fl.sreg; int n = flq->credits; while (n--) { buf->len = sge->sge_fl_buf_size[sreg]; buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len, &buf->paddr, GFP_KERNEL); if (!buf->vaddr) { csio_err(hw, "Could only fill %d buffers!\n", n + 1); return -ENOMEM; } paddr = buf->paddr | (sreg & 0xF); *d++ = cpu_to_be64(paddr); buf++; } return 0; } /* * csio_wr_update_fl - * @hw: HW module. * @flq: Freelist queue. * * */ static inline void csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n) { flq->inc_idx += n; flq->pidx += n; if (unlikely(flq->pidx >= flq->credits)) flq->pidx -= (uint16_t)flq->credits; CSIO_INC_STATS(flq, n_flq_refill); } /* * csio_wr_alloc_q - Allocate a WR queue and initialize it. * @hw: HW module * @qsize: Size of the queue in bytes * @wrsize: Since of WR in this queue, if fixed. * @type: Type of queue (Ingress/Egress/Freelist) * @owner: Module that owns this queue. * @nflb: Number of freelist buffers for FL. * @sreg: What is the FL buffer size register? * @iq_int_handler: Ingress queue handler in INTx mode. * * This function allocates and sets up a queue for the caller * of size qsize, aligned at the required boundary. This is subject to * be free entries being available in the queue array. If one is found, * it is initialized with the allocated queue, marked as being used (owner), * and a handle returned to the caller in form of the queue's index * into the q_arr array. * If user has indicated a freelist (by specifying nflb > 0), create * another queue (with its own index into q_arr) for the freelist. Allocate * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist * idx in the ingress queue's flq.idx. This is how a Freelist is associated * with its owning ingress queue. */ int csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize, uint16_t type, void *owner, uint32_t nflb, int sreg, iq_handler_t iq_intx_handler) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_q *q, *flq; int free_idx = wrm->free_qidx; int ret_idx = free_idx; uint32_t qsz; int flq_idx; if (free_idx >= wrm->num_q) { csio_err(hw, "No more free queues.\n"); return -1; } switch (type) { case CSIO_EGRESS: qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw); break; case CSIO_INGRESS: switch (wrsize) { case 16: case 32: case 64: case 128: break; default: csio_err(hw, "Invalid Ingress queue WR size:%d\n", wrsize); return -1; } /* * Number of elements must be a multiple of 16 * So this includes status page size */ qsz = ALIGN(qsize/wrsize, 16) * wrsize; break; case CSIO_FREELIST: qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw); break; default: csio_err(hw, "Invalid queue type: 0x%x\n", type); return -1; } q = wrm->q_arr[free_idx]; q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart, GFP_KERNEL); if (!q->vstart) { csio_err(hw, "Failed to allocate DMA memory for " "queue at id: %d size: %d\n", free_idx, qsize); return -1; } q->type = type; q->owner = owner; q->pidx = q->cidx = q->inc_idx = 0; q->size = qsz; q->wr_sz = wrsize; /* If using fixed size WRs */ wrm->free_qidx++; if (type == CSIO_INGRESS) { /* Since queue area is set to zero */ q->un.iq.genbit = 1; /* * Ingress queue status page size is always the size of * the ingress queue entry. */ q->credits = (qsz - q->wr_sz) / q->wr_sz; q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz - q->wr_sz); /* Allocate memory for FL if requested */ if (nflb > 0) { flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64), sizeof(__be64), CSIO_FREELIST, owner, 0, sreg, NULL); if (flq_idx == -1) { csio_err(hw, "Failed to allocate FL queue" " for IQ idx:%d\n", free_idx); return -1; } /* Associate the new FL with the Ingress quue */ q->un.iq.flq_idx = flq_idx; flq = wrm->q_arr[q->un.iq.flq_idx]; flq->un.fl.bufs = kcalloc(flq->credits, sizeof(struct csio_dma_buf), GFP_KERNEL); if (!flq->un.fl.bufs) { csio_err(hw, "Failed to allocate FL queue bufs" " for IQ idx:%d\n", free_idx); return -1; } flq->un.fl.packen = 0; flq->un.fl.offset = 0; flq->un.fl.sreg = sreg; /* Fill up the free list buffers */ if (csio_wr_fill_fl(hw, flq)) return -1; /* * Make sure in a FLQ, atleast 1 credit (8 FL buffers) * remains unpopulated,otherwise HW thinks * FLQ is empty. */ flq->pidx = flq->inc_idx = flq->credits - 8; } else { q->un.iq.flq_idx = -1; } /* Associate the IQ INTx handler. */ q->un.iq.iq_intx_handler = iq_intx_handler; csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID; } else if (type == CSIO_EGRESS) { q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ; q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz - csio_wr_qstat_pgsz(hw)); csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID; } else { /* Freelist */ q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64); q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz - csio_wr_qstat_pgsz(hw)); csio_q_flid(hw, ret_idx) = CSIO_MAX_QID; } return ret_idx; } /* * csio_wr_iq_create_rsp - Response handler for IQ creation. * @hw: The HW module. * @mbp: Mailbox. * @iq_idx: Ingress queue that got created. * * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids. */ static int csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) { struct csio_iq_params iqp; enum fw_retval retval; uint32_t iq_id; int flq_idx; memset(&iqp, 0, sizeof(struct csio_iq_params)); csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp); if (retval != FW_SUCCESS) { csio_err(hw, "IQ cmd returned 0x%x!\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_q_iqid(hw, iq_idx) = iqp.iqid; csio_q_physiqid(hw, iq_idx) = iqp.physiqid; csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0; csio_q_inc_idx(hw, iq_idx) = 0; /* Actual iq-id. */ iq_id = iqp.iqid - hw->wrm.fw_iq_start; /* Set the iq-id to iq map table. */ if (iq_id >= CSIO_MAX_IQ) { csio_err(hw, "Exceeding MAX_IQ(%d) supported!" " iqid:%d rel_iqid:%d FW iq_start:%d\n", CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_q_set_intr_map(hw, iq_idx, iq_id); /* * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE * ingress context of this queue. This will block interrupts to * this queue until the next GTS write. Therefore, we do a * 0-cidx increment GTS write for this queue just to clear the * interrupt_sent bit. This will re-enable interrupts to this * queue. */ csio_wr_sge_intr_enable(hw, iqp.physiqid); flq_idx = csio_q_iq_flq_idx(hw, iq_idx); if (flq_idx != -1) { struct csio_q *flq = hw->wrm.q_arr[flq_idx]; csio_q_flid(hw, flq_idx) = iqp.fl0id; csio_q_cidx(hw, flq_idx) = 0; csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; /* Now update SGE about the buffers allocated during init */ csio_wr_ring_fldb(hw, flq); } mempool_free(mbp, hw->mb_mempool); return 0; } /* * csio_wr_iq_create - Configure an Ingress queue with FW. * @hw: The HW module. * @priv: Private data object. * @iq_idx: Ingress queue index in the WR module. * @vec: MSIX vector. * @portid: PCIE Channel to be associated with this queue. * @async: Is this a FW asynchronous message handling queue? * @cbfn: Completion callback. * * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox * with alloc/write bits set. */ int csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx, uint32_t vec, uint8_t portid, bool async, void (*cbfn) (struct csio_hw *, struct csio_mb *)) { struct csio_mb *mbp; struct csio_iq_params iqp; int flq_idx; memset(&iqp, 0, sizeof(struct csio_iq_params)); csio_q_portid(hw, iq_idx) = portid; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { csio_err(hw, "IQ command out of memory!\n"); return -ENOMEM; } switch (hw->intr_mode) { case CSIO_IM_INTX: case CSIO_IM_MSI: /* For interrupt forwarding queue only */ if (hw->intr_iq_idx == iq_idx) iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; else iqp.iqandst = X_INTERRUPTDESTINATION_IQ; iqp.iqandstindex = csio_q_physiqid(hw, hw->intr_iq_idx); break; case CSIO_IM_MSIX: iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; iqp.iqandstindex = (uint16_t)vec; break; case CSIO_IM_NONE: mempool_free(mbp, hw->mb_mempool); return -EINVAL; } /* Pass in the ingress queue cmd parameters */ iqp.pfn = hw->pfn; iqp.vfn = 0; iqp.iq_start = 1; iqp.viid = 0; iqp.type = FW_IQ_TYPE_FL_INT_CAP; iqp.iqasynch = async; if (csio_intr_coalesce_cnt) iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER; else iqp.iqanus = X_UPDATESCHEDULING_TIMER; iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT; iqp.iqpciech = portid; iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg; switch (csio_q_wr_sz(hw, iq_idx)) { case 16: iqp.iqesize = 0; break; case 32: iqp.iqesize = 1; break; case 64: iqp.iqesize = 2; break; case 128: iqp.iqesize = 3; break; } iqp.iqsize = csio_q_size(hw, iq_idx) / csio_q_wr_sz(hw, iq_idx); iqp.iqaddr = csio_q_pstart(hw, iq_idx); flq_idx = csio_q_iq_flq_idx(hw, iq_idx); if (flq_idx != -1) { enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); struct csio_q *flq = hw->wrm.q_arr[flq_idx]; iqp.fl0paden = 1; iqp.fl0packen = flq->un.fl.packen ? 1 : 0; iqp.fl0fbmin = X_FETCHBURSTMIN_64B; iqp.fl0fbmax = ((chip == CHELSIO_T5) ? X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B); iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ; iqp.fl0addr = csio_q_pstart(hw, flq_idx); } csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of IQ cmd failed!\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } if (cbfn != NULL) return 0; return csio_wr_iq_create_rsp(hw, mbp, iq_idx); } /* * csio_wr_eq_create_rsp - Response handler for EQ creation. * @hw: The HW module. * @mbp: Mailbox. * @eq_idx: Egress queue that got created. * * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids. */ static int csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) { struct csio_eq_params eqp; enum fw_retval retval; memset(&eqp, 0, sizeof(struct csio_eq_params)); csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp); if (retval != FW_SUCCESS) { csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid; csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid; csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0; csio_q_inc_idx(hw, eq_idx) = 0; mempool_free(mbp, hw->mb_mempool); return 0; } /* * csio_wr_eq_create - Configure an Egress queue with FW. * @hw: HW module. * @priv: Private data. * @eq_idx: Egress queue index in the WR module. * @iq_idx: Associated ingress queue index. * @cbfn: Completion callback. * * This API configures a offload egress queue with FW by issuing a * FW_EQ_OFLD_CMD (with alloc + write ) mailbox. */ int csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx, int iq_idx, uint8_t portid, void (*cbfn) (struct csio_hw *, struct csio_mb *)) { struct csio_mb *mbp; struct csio_eq_params eqp; memset(&eqp, 0, sizeof(struct csio_eq_params)); mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { csio_err(hw, "EQ command out of memory!\n"); return -ENOMEM; } eqp.pfn = hw->pfn; eqp.vfn = 0; eqp.eqstart = 1; eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE; eqp.iqid = csio_q_iqid(hw, iq_idx); eqp.fbmin = X_FETCHBURSTMIN_64B; eqp.fbmax = X_FETCHBURSTMAX_512B; eqp.cidxfthresh = 0; eqp.pciechn = portid; eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ; eqp.eqaddr = csio_q_pstart(hw, eq_idx); csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of EQ OFLD cmd failed!\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } if (cbfn != NULL) return 0; return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx); } /* * csio_wr_iq_destroy_rsp - Response handler for IQ removal. * @hw: The HW module. * @mbp: Mailbox. * @iq_idx: Ingress queue that was freed. * * Handle FW_IQ_CMD (free) mailbox completion. */ static int csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) { enum fw_retval retval = csio_mb_fw_retval(mbp); int rv = 0; if (retval != FW_SUCCESS) rv = -EINVAL; mempool_free(mbp, hw->mb_mempool); return rv; } /* * csio_wr_iq_destroy - Free an ingress queue. * @hw: The HW module. * @priv: Private data object. * @iq_idx: Ingress queue index to destroy * @cbfn: Completion callback. * * This API frees an ingress queue by issuing the FW_IQ_CMD * with the free bit set. */ static int csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx, void (*cbfn)(struct csio_hw *, struct csio_mb *)) { int rv = 0; struct csio_mb *mbp; struct csio_iq_params iqp; int flq_idx; memset(&iqp, 0, sizeof(struct csio_iq_params)); mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) return -ENOMEM; iqp.pfn = hw->pfn; iqp.vfn = 0; iqp.iqid = csio_q_iqid(hw, iq_idx); iqp.type = FW_IQ_TYPE_FL_INT_CAP; flq_idx = csio_q_iq_flq_idx(hw, iq_idx); if (flq_idx != -1) iqp.fl0id = csio_q_flid(hw, flq_idx); else iqp.fl0id = 0xFFFF; iqp.fl1id = 0xFFFF; csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); rv = csio_mb_issue(hw, mbp); if (rv != 0) { mempool_free(mbp, hw->mb_mempool); return rv; } if (cbfn != NULL) return 0; return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx); } /* * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation. * @hw: The HW module. * @mbp: Mailbox. * @eq_idx: Egress queue that was freed. * * Handle FW_OFLD_EQ_CMD (free) mailbox completion. */ static int csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) { enum fw_retval retval = csio_mb_fw_retval(mbp); int rv = 0; if (retval != FW_SUCCESS) rv = -EINVAL; mempool_free(mbp, hw->mb_mempool); return rv; } /* * csio_wr_eq_destroy - Free an Egress queue. * @hw: The HW module. * @priv: Private data object. * @eq_idx: Egress queue index to destroy * @cbfn: Completion callback. * * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD * with the free bit set. */ static int csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx, void (*cbfn) (struct csio_hw *, struct csio_mb *)) { int rv = 0; struct csio_mb *mbp; struct csio_eq_params eqp; memset(&eqp, 0, sizeof(struct csio_eq_params)); mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) return -ENOMEM; eqp.pfn = hw->pfn; eqp.vfn = 0; eqp.eqid = csio_q_eqid(hw, eq_idx); csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn); rv = csio_mb_issue(hw, mbp); if (rv != 0) { mempool_free(mbp, hw->mb_mempool); return rv; } if (cbfn != NULL) return 0; return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx); } /* * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page * @hw: HW module * @qidx: Egress queue index * * Cleanup the Egress queue status page. */ static void csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx) { struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx]; struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; memset(stp, 0, sizeof(*stp)); } /* * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ * @hw: HW module * @qidx: Ingress queue index * * Cleanup the footer entries in the given ingress queue, * set to 1 the internal copy of genbit. */ static void csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_q *q = wrm->q_arr[qidx]; void *wr; struct csio_iqwr_footer *ftr; uint32_t i = 0; /* set to 1 since we are just about zero out genbit */ q->un.iq.genbit = 1; for (i = 0; i < q->credits; i++) { /* Get the WR */ wr = (void *)((uintptr_t)q->vstart + (i * q->wr_sz)); /* Get the footer */ ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + (q->wr_sz - sizeof(*ftr))); /* Zero out footer */ memset(ftr, 0, sizeof(*ftr)); } } int csio_wr_destroy_queues(struct csio_hw *hw, bool cmd) { int i, flq_idx; struct csio_q *q; struct csio_wrm *wrm = csio_hw_to_wrm(hw); int rv; for (i = 0; i < wrm->free_qidx; i++) { q = wrm->q_arr[i]; switch (q->type) { case CSIO_EGRESS: if (csio_q_eqid(hw, i) != CSIO_MAX_QID) { csio_wr_cleanup_eq_stpg(hw, i); if (!cmd) { csio_q_eqid(hw, i) = CSIO_MAX_QID; continue; } rv = csio_wr_eq_destroy(hw, NULL, i, NULL); if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) cmd = false; csio_q_eqid(hw, i) = CSIO_MAX_QID; } /* fall through */ case CSIO_INGRESS: if (csio_q_iqid(hw, i) != CSIO_MAX_QID) { csio_wr_cleanup_iq_ftr(hw, i); if (!cmd) { csio_q_iqid(hw, i) = CSIO_MAX_QID; flq_idx = csio_q_iq_flq_idx(hw, i); if (flq_idx != -1) csio_q_flid(hw, flq_idx) = CSIO_MAX_QID; continue; } rv = csio_wr_iq_destroy(hw, NULL, i, NULL); if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) cmd = false; csio_q_iqid(hw, i) = CSIO_MAX_QID; flq_idx = csio_q_iq_flq_idx(hw, i); if (flq_idx != -1) csio_q_flid(hw, flq_idx) = CSIO_MAX_QID; } default: break; } } hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED; return 0; } /* * csio_wr_get - Get requested size of WR entry/entries from queue. * @hw: HW module. * @qidx: Index of queue. * @size: Cumulative size of Work request(s). * @wrp: Work request pair. * * If requested credits are available, return the start address of the * work request in the work request pair. Set pidx accordingly and * return. * * NOTE about WR pair: * ================== * A WR can start towards the end of a queue, and then continue at the * beginning, since the queue is considered to be circular. This will * require a pair of address/size to be passed back to the caller - * hence Work request pair format. */ int csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size, struct csio_wr_pair *wrp) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_q *q = wrm->q_arr[qidx]; void *cwr = (void *)((uintptr_t)(q->vstart) + (q->pidx * CSIO_QCREDIT_SZ)); struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; uint16_t cidx = q->cidx = ntohs(stp->cidx); uint16_t pidx = q->pidx; uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ); int req_credits = req_sz / CSIO_QCREDIT_SZ; int credits; CSIO_DB_ASSERT(q->owner != NULL); CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); CSIO_DB_ASSERT(cidx <= q->credits); /* Calculate credits */ if (pidx > cidx) { credits = q->credits - (pidx - cidx) - 1; } else if (cidx > pidx) { credits = cidx - pidx - 1; } else { /* cidx == pidx, empty queue */ credits = q->credits; CSIO_INC_STATS(q, n_qempty); } /* * Check if we have enough credits. * credits = 1 implies queue is full. */ if (!credits || (req_credits > credits)) { CSIO_INC_STATS(q, n_qfull); return -EBUSY; } /* * If we are here, we have enough credits to satisfy the * request. Check if we are near the end of q, and if WR spills over. * If it does, use the first addr/size to cover the queue until * the end. Fit the remainder portion of the request at the top * of queue and return it in the second addr/len. Set pidx * accordingly. */ if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) { wrp->addr1 = cwr; wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr); wrp->addr2 = q->vstart; wrp->size2 = req_sz - wrp->size1; q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) / CSIO_QCREDIT_SZ); CSIO_INC_STATS(q, n_qwrap); CSIO_INC_STATS(q, n_eq_wr_split); } else { wrp->addr1 = cwr; wrp->size1 = req_sz; wrp->addr2 = NULL; wrp->size2 = 0; q->pidx += (uint16_t)req_credits; /* We are the end of queue, roll back pidx to top of queue */ if (unlikely(q->pidx == q->credits)) { q->pidx = 0; CSIO_INC_STATS(q, n_qwrap); } } q->inc_idx = (uint16_t)req_credits; CSIO_INC_STATS(q, n_tot_reqs); return 0; } /* * csio_wr_copy_to_wrp - Copies given data into WR. * @data_buf - Data buffer * @wrp - Work request pair. * @wr_off - Work request offset. * @data_len - Data length. * * Copies the given data in Work Request. Work request pair(wrp) specifies * address information of Work request. * Returns: none */ void csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp, uint32_t wr_off, uint32_t data_len) { uint32_t nbytes; /* Number of space available in buffer addr1 of WRP */ nbytes = ((wrp->size1 - wr_off) >= data_len) ? data_len : (wrp->size1 - wr_off); memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes); data_len -= nbytes; /* Write the remaining data from the begining of circular buffer */ if (data_len) { CSIO_DB_ASSERT(data_len <= wrp->size2); CSIO_DB_ASSERT(wrp->addr2 != NULL); memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len); } } /* * csio_wr_issue - Notify chip of Work request. * @hw: HW module. * @qidx: Index of queue. * @prio: 0: Low priority, 1: High priority * * Rings the SGE Doorbell by writing the current producer index of the passed * in queue into the register. * */ int csio_wr_issue(struct csio_hw *hw, int qidx, bool prio) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_q *q = wrm->q_arr[qidx]; CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); wmb(); /* Ring SGE Doorbell writing q->pidx into it */ csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) | PIDX_T5_V(q->inc_idx) | DBTYPE_F, MYPF_REG(SGE_PF_KDOORBELL_A)); q->inc_idx = 0; return 0; } static inline uint32_t csio_wr_avail_qcredits(struct csio_q *q) { if (q->pidx > q->cidx) return q->pidx - q->cidx; else if (q->cidx > q->pidx) return q->credits - (q->cidx - q->pidx); else return 0; /* cidx == pidx, empty queue */ } /* * csio_wr_inval_flq_buf - Invalidate a free list buffer entry. * @hw: HW module. * @flq: The freelist queue. * * Invalidate the driver's version of a freelist buffer entry, * without freeing the associated the DMA memory. The entry * to be invalidated is picked up from the current Free list * queue cidx. * */ static inline void csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq) { flq->cidx++; if (flq->cidx == flq->credits) { flq->cidx = 0; CSIO_INC_STATS(flq, n_qwrap); } } /* * csio_wr_process_fl - Process a freelist completion. * @hw: HW module. * @q: The ingress queue attached to the Freelist. * @wr: The freelist completion WR in the ingress queue. * @len_to_qid: The lower 32-bits of the first flit of the RSP footer * @iq_handler: Caller's handler for this completion. * @priv: Private pointer of caller * */ static inline void csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q, void *wr, uint32_t len_to_qid, void (*iq_handler)(struct csio_hw *, void *, uint32_t, struct csio_fl_dma_buf *, void *), void *priv) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; struct csio_fl_dma_buf flb; struct csio_dma_buf *buf, *fbuf; uint32_t bufsz, len, lastlen = 0; int n; struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx]; CSIO_DB_ASSERT(flq != NULL); len = len_to_qid; if (len & IQWRF_NEWBUF) { if (flq->un.fl.offset > 0) { csio_wr_inval_flq_buf(hw, flq); flq->un.fl.offset = 0; } len = IQWRF_LEN_GET(len); } CSIO_DB_ASSERT(len != 0); flb.totlen = len; /* Consume all freelist buffers used for len bytes */ for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) { buf = &flq->un.fl.bufs[flq->cidx]; bufsz = csio_wr_fl_bufsz(sge, buf); fbuf->paddr = buf->paddr; fbuf->vaddr = buf->vaddr; flb.offset = flq->un.fl.offset; lastlen = min(bufsz, len); fbuf->len = lastlen; len -= lastlen; if (!len) break; csio_wr_inval_flq_buf(hw, flq); } flb.defer_free = flq->un.fl.packen ? 0 : 1; iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer), &flb, priv); if (flq->un.fl.packen) flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align); else csio_wr_inval_flq_buf(hw, flq); } /* * csio_is_new_iqwr - Is this a new Ingress queue entry ? * @q: Ingress quueue. * @ftr: Ingress queue WR SGE footer. * * The entry is new if our generation bit matches the corresponding * bit in the footer of the current WR. */ static inline bool csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr) { return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT)); } /* * csio_wr_process_iq - Process elements in Ingress queue. * @hw: HW pointer * @qidx: Index of queue * @iq_handler: Handler for this queue * @priv: Caller's private pointer * * This routine walks through every entry of the ingress queue, calling * the provided iq_handler with the entry, until the generation bit * flips. */ int csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q, void (*iq_handler)(struct csio_hw *, void *, uint32_t, struct csio_fl_dma_buf *, void *), void *priv) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz)); struct csio_iqwr_footer *ftr; uint32_t wr_type, fw_qid, qid; struct csio_q *q_completed; struct csio_q *flq = csio_iq_has_fl(q) ? wrm->q_arr[q->un.iq.flq_idx] : NULL; int rv = 0; /* Get the footer */ ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + (q->wr_sz - sizeof(*ftr))); /* * When q wrapped around last time, driver should have inverted * ic.genbit as well. */ while (csio_is_new_iqwr(q, ftr)) { CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <= (uintptr_t)q->vwrap); rmb(); wr_type = IQWRF_TYPE_GET(ftr->u.type_gen); switch (wr_type) { case X_RSPD_TYPE_CPL: /* Subtract footer from WR len */ iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv); break; case X_RSPD_TYPE_FLBUF: csio_wr_process_fl(hw, q, wr, ntohl(ftr->pldbuflen_qid), iq_handler, priv); break; case X_RSPD_TYPE_INTR: fw_qid = ntohl(ftr->pldbuflen_qid); qid = fw_qid - wrm->fw_iq_start; q_completed = hw->wrm.intr_map[qid]; if (unlikely(qid == csio_q_physiqid(hw, hw->intr_iq_idx))) { /* * We are already in the Forward Interrupt * Interrupt Queue Service! Do-not service * again! * */ } else { CSIO_DB_ASSERT(q_completed); CSIO_DB_ASSERT( q_completed->un.iq.iq_intx_handler); /* Call the queue handler. */ q_completed->un.iq.iq_intx_handler(hw, NULL, 0, NULL, (void *)q_completed); } break; default: csio_warn(hw, "Unknown resp type 0x%x received\n", wr_type); CSIO_INC_STATS(q, n_rsp_unknown); break; } /* * Ingress *always* has fixed size WR entries. Therefore, * there should always be complete WRs towards the end of * queue. */ if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) { /* Roll over to start of queue */ q->cidx = 0; wr = q->vstart; /* Toggle genbit */ q->un.iq.genbit ^= 0x1; CSIO_INC_STATS(q, n_qwrap); } else { q->cidx++; wr = (void *)((uintptr_t)(q->vstart) + (q->cidx * q->wr_sz)); } ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + (q->wr_sz - sizeof(*ftr))); q->inc_idx++; } /* while (q->un.iq.genbit == hdr->genbit) */ /* * We need to re-arm SGE interrupts in case we got a stray interrupt, * especially in msix mode. With INTx, this may be a common occurence. */ if (unlikely(!q->inc_idx)) { CSIO_INC_STATS(q, n_stray_comp); rv = -EINVAL; goto restart; } /* Replenish free list buffers if pending falls below low water mark */ if (flq) { uint32_t avail = csio_wr_avail_qcredits(flq); if (avail <= 16) { /* Make sure in FLQ, atleast 1 credit (8 FL buffers) * remains unpopulated otherwise HW thinks * FLQ is empty. */ csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail); csio_wr_ring_fldb(hw, flq); } } restart: /* Now inform SGE about our incremental index value */ csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) | INGRESSQID_V(q->un.iq.physiqid) | TIMERREG_V(csio_sge_timer_reg), MYPF_REG(SGE_PF_GTS_A)); q->stats.n_tot_rsps += q->inc_idx; q->inc_idx = 0; return rv; } int csio_wr_process_iq_idx(struct csio_hw *hw, int qidx, void (*iq_handler)(struct csio_hw *, void *, uint32_t, struct csio_fl_dma_buf *, void *), void *priv) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_q *iq = wrm->q_arr[qidx]; return csio_wr_process_iq(hw, iq, iq_handler, priv); } static int csio_closest_timer(struct csio_sge *s, int time) { int i, delta, match = 0, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { delta = time - s->timer_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } static int csio_closest_thresh(struct csio_sge *s, int cnt) { int i, delta, match = 0, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { delta = cnt - s->counter_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } static void csio_wr_fixup_host_params(struct csio_hw *hw) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; uint32_t clsz = L1_CACHE_BYTES; uint32_t s_hps = PAGE_SHIFT - 10; uint32_t stat_len = clsz > 64 ? 128 : 64; u32 fl_align = clsz < 32 ? 32 : clsz; u32 pack_align; u32 ingpad, ingpack; int pcie_cap; csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) | HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) | HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) | HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps), SGE_HOST_PAGE_SIZE_A); /* T5 introduced the separation of the Free List Padding and * Packing Boundaries. Thus, we can select a smaller Padding * Boundary to avoid uselessly chewing up PCIe Link and Memory * Bandwidth, and use a Packing Boundary which is large enough * to avoid false sharing between CPUs, etc. * * For the PCI Link, the smaller the Padding Boundary the * better. For the Memory Controller, a smaller Padding * Boundary is better until we cross under the Memory Line * Size (the minimum unit of transfer to/from Memory). If we * have a Padding Boundary which is smaller than the Memory * Line Size, that'll involve a Read-Modify-Write cycle on the * Memory Controller which is never good. */ /* We want the Packing Boundary to be based on the Cache Line * Size in order to help avoid False Sharing performance * issues between CPUs, etc. We also want the Packing * Boundary to incorporate the PCI-E Maximum Payload Size. We * get best performance when the Packing Boundary is a * multiple of the Maximum Payload Size. */ pack_align = fl_align; pcie_cap = pci_find_capability(hw->pdev, PCI_CAP_ID_EXP); if (pcie_cap) { u32 mps, mps_log; u16 devctl; /* The PCIe Device Control Maximum Payload Size field * [bits 7:5] encodes sizes as powers of 2 starting at * 128 bytes. */ pci_read_config_word(hw->pdev, pcie_cap + PCI_EXP_DEVCTL, &devctl); mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; mps = 1 << mps_log; if (mps > pack_align) pack_align = mps; } /* T5/T6 have a special interpretation of the "0" * value for the Packing Boundary. This corresponds to 16 * bytes instead of the expected 32 bytes. */ if (pack_align <= 16) { ingpack = INGPACKBOUNDARY_16B_X; fl_align = 16; } else if (pack_align == 32) { ingpack = INGPACKBOUNDARY_64B_X; fl_align = 64; } else { u32 pack_align_log = fls(pack_align) - 1; ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; fl_align = pack_align; } /* Use the smallest Ingress Padding which isn't smaller than * the Memory Controller Read/Write Size. We'll take that as * being 8 bytes since we don't know of any system with a * wider Memory Controller Bus Width. */ if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) ingpad = INGPADBOUNDARY_32B_X; else ingpad = T6_INGPADBOUNDARY_8B_X; csio_set_reg_field(hw, SGE_CONTROL_A, INGPADBOUNDARY_V(INGPADBOUNDARY_M) | EGRSTATUSPAGESIZE_F, INGPADBOUNDARY_V(ingpad) | EGRSTATUSPAGESIZE_V(stat_len != 64)); csio_set_reg_field(hw, SGE_CONTROL2_A, INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), INGPACKBOUNDARY_V(ingpack)); /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */ csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A); /* * If using hard params, the following will get set correctly * in csio_wr_set_sge(). */ if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) { csio_wr_reg32(hw, (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) + fl_align - 1) & ~(fl_align - 1), SGE_FL_BUFFER_SIZE2_A); csio_wr_reg32(hw, (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) + fl_align - 1) & ~(fl_align - 1), SGE_FL_BUFFER_SIZE3_A); } sge->csio_fl_align = fl_align; csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A); /* default value of rx_dma_offset of the NIC driver */ csio_set_reg_field(hw, SGE_CONTROL_A, PKTSHIFT_V(PKTSHIFT_M), PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET)); csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A, CSUM_HAS_PSEUDO_HDR_F, 0); } static void csio_init_intr_coalesce_parms(struct csio_hw *hw) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt); if (csio_intr_coalesce_cnt) { csio_sge_thresh_reg = 0; csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER; return; } csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time); } /* * csio_wr_get_sge - Get SGE register values. * @hw: HW module. * * Used by non-master functions and by master-functions relying on config file. */ static void csio_wr_get_sge(struct csio_hw *hw) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; uint32_t ingpad; int i; u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; u32 ingress_rx_threshold; sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); ingpad = INGPADBOUNDARY_G(sge->sge_control); switch (ingpad) { case X_INGPCIEBOUNDARY_32B: sge->csio_fl_align = 32; break; case X_INGPCIEBOUNDARY_64B: sge->csio_fl_align = 64; break; case X_INGPCIEBOUNDARY_128B: sge->csio_fl_align = 128; break; case X_INGPCIEBOUNDARY_256B: sge->csio_fl_align = 256; break; case X_INGPCIEBOUNDARY_512B: sge->csio_fl_align = 512; break; case X_INGPCIEBOUNDARY_1024B: sge->csio_fl_align = 1024; break; case X_INGPCIEBOUNDARY_2048B: sge->csio_fl_align = 2048; break; case X_INGPCIEBOUNDARY_4096B: sge->csio_fl_align = 4096; break; } for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) csio_get_flbuf_size(hw, sge, i); timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A); timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A); timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A); sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE0_G(timer_value_0_and_1)); sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE1_G(timer_value_0_and_1)); sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE2_G(timer_value_2_and_3)); sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE3_G(timer_value_2_and_3)); sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE4_G(timer_value_4_and_5)); sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw, TIMERVALUE5_G(timer_value_4_and_5)); ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A); sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); csio_init_intr_coalesce_parms(hw); } /* * csio_wr_set_sge - Initialize SGE registers * @hw: HW module. * * Used by Master function to initialize SGE registers in the absence * of a config file. */ static void csio_wr_set_sge(struct csio_hw *hw) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_sge *sge = &wrm->sge; int i; /* * Set up our basic SGE mode to deliver CPL messages to our Ingress * Queue and Packet Date to the Free List. */ csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F); sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */ /* * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows * and generate an interrupt when this occurs so we can recover. */ csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A, LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A, HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F, ENABLE_DROP_F); /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */ CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1); csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A); csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A); CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4); CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5); CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6); CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7); CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8); for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) csio_get_flbuf_size(hw, sge, i); /* Initialize interrupt coalescing attributes */ sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0; sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1; sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2; sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3; sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4; sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5; sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0; sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1; sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2; sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3; csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) | THRESHOLD_1_V(sge->counter_val[1]) | THRESHOLD_2_V(sge->counter_val[2]) | THRESHOLD_3_V(sge->counter_val[3]), SGE_INGRESS_RX_THRESHOLD_A); csio_wr_reg32(hw, TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) | TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])), SGE_TIMER_VALUE_0_AND_1_A); csio_wr_reg32(hw, TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) | TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])), SGE_TIMER_VALUE_2_AND_3_A); csio_wr_reg32(hw, TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) | TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])), SGE_TIMER_VALUE_4_AND_5_A); csio_init_intr_coalesce_parms(hw); } void csio_wr_sge_init(struct csio_hw *hw) { /* * If we are master and chip is not initialized: * - If we plan to use the config file, we need to fixup some * host specific registers, and read the rest of the SGE * configuration. * - If we dont plan to use the config file, we need to initialize * SGE entirely, including fixing the host specific registers. * If we are master and chip is initialized, just read and work off of * the already initialized SGE values. * If we arent the master, we are only allowed to read and work off of * the already initialized SGE values. * * Therefore, before calling this function, we assume that the master- * ship of the card, state and whether to use config file or not, have * already been decided. */ if (csio_is_hw_master(hw)) { if (hw->fw_state != CSIO_DEV_STATE_INIT) csio_wr_fixup_host_params(hw); if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) csio_wr_get_sge(hw); else csio_wr_set_sge(hw); } else csio_wr_get_sge(hw); } /* * csio_wrm_init - Initialize Work request module. * @wrm: WR module * @hw: HW pointer * * Allocates memory for an array of queue pointers starting at q_arr. */ int csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw) { int i; if (!wrm->num_q) { csio_err(hw, "Num queues is not set\n"); return -EINVAL; } wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL); if (!wrm->q_arr) goto err; for (i = 0; i < wrm->num_q; i++) { wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL); if (!wrm->q_arr[i]) { while (--i >= 0) kfree(wrm->q_arr[i]); goto err_free_arr; } } wrm->free_qidx = 0; return 0; err_free_arr: kfree(wrm->q_arr); err: return -ENOMEM; } /* * csio_wrm_exit - Initialize Work request module. * @wrm: WR module * @hw: HW module * * Uninitialize WR module. Free q_arr and pointers in it. * We have the additional job of freeing the DMA memory associated * with the queues. */ void csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw) { int i; uint32_t j; struct csio_q *q; struct csio_dma_buf *buf; for (i = 0; i < wrm->num_q; i++) { q = wrm->q_arr[i]; if (wrm->free_qidx && (i < wrm->free_qidx)) { if (q->type == CSIO_FREELIST) { if (!q->un.fl.bufs) continue; for (j = 0; j < q->credits; j++) { buf = &q->un.fl.bufs[j]; if (!buf->vaddr) continue; dma_free_coherent(&hw->pdev->dev, buf->len, buf->vaddr, buf->paddr); } kfree(q->un.fl.bufs); } dma_free_coherent(&hw->pdev->dev, q->size, q->vstart, q->pstart); } kfree(q); } hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED; kfree(wrm->q_arr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1