Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Robert Love | 3282 | 81.54% | 4 | 26.67% |
Hannes Reinecke | 637 | 15.83% | 3 | 20.00% |
Greg Kroah-Hartman | 87 | 2.16% | 3 | 20.00% |
Bart Van Assche | 14 | 0.35% | 2 | 13.33% |
Thomas Gleixner | 2 | 0.05% | 1 | 6.67% |
Bhumika Goyal | 2 | 0.05% | 1 | 6.67% |
Joe Perches | 1 | 0.02% | 1 | 6.67% |
Total | 4025 | 15 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2011 - 2012 Intel Corporation. All rights reserved. * * Maintained at www.Open-FCoE.org */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/etherdevice.h> #include <linux/ctype.h> #include <scsi/fcoe_sysfs.h> #include <scsi/libfcoe.h> /* * OK to include local libfcoe.h for debug_logging, but cannot include * <scsi/libfcoe.h> otherwise non-netdev based fcoe solutions would have * have to include more than fcoe_sysfs.h. */ #include "libfcoe.h" static atomic_t ctlr_num; static atomic_t fcf_num; /* * fcoe_fcf_dev_loss_tmo: the default number of seconds that fcoe sysfs * should insulate the loss of a fcf. */ static unsigned int fcoe_fcf_dev_loss_tmo = 1800; /* seconds */ module_param_named(fcf_dev_loss_tmo, fcoe_fcf_dev_loss_tmo, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(fcf_dev_loss_tmo, "Maximum number of seconds that libfcoe should" " insulate the loss of a fcf. Once this value is" " exceeded, the fcf is removed."); /* * These are used by the fcoe_*_show_function routines, they * are intentionally placed in the .c file as they're not intended * for use throughout the code. */ #define fcoe_ctlr_id(x) \ ((x)->id) #define fcoe_ctlr_work_q_name(x) \ ((x)->work_q_name) #define fcoe_ctlr_work_q(x) \ ((x)->work_q) #define fcoe_ctlr_devloss_work_q_name(x) \ ((x)->devloss_work_q_name) #define fcoe_ctlr_devloss_work_q(x) \ ((x)->devloss_work_q) #define fcoe_ctlr_mode(x) \ ((x)->mode) #define fcoe_ctlr_fcf_dev_loss_tmo(x) \ ((x)->fcf_dev_loss_tmo) #define fcoe_ctlr_link_fail(x) \ ((x)->lesb.lesb_link_fail) #define fcoe_ctlr_vlink_fail(x) \ ((x)->lesb.lesb_vlink_fail) #define fcoe_ctlr_miss_fka(x) \ ((x)->lesb.lesb_miss_fka) #define fcoe_ctlr_symb_err(x) \ ((x)->lesb.lesb_symb_err) #define fcoe_ctlr_err_block(x) \ ((x)->lesb.lesb_err_block) #define fcoe_ctlr_fcs_error(x) \ ((x)->lesb.lesb_fcs_error) #define fcoe_ctlr_enabled(x) \ ((x)->enabled) #define fcoe_fcf_state(x) \ ((x)->state) #define fcoe_fcf_fabric_name(x) \ ((x)->fabric_name) #define fcoe_fcf_switch_name(x) \ ((x)->switch_name) #define fcoe_fcf_fc_map(x) \ ((x)->fc_map) #define fcoe_fcf_vfid(x) \ ((x)->vfid) #define fcoe_fcf_mac(x) \ ((x)->mac) #define fcoe_fcf_priority(x) \ ((x)->priority) #define fcoe_fcf_fka_period(x) \ ((x)->fka_period) #define fcoe_fcf_dev_loss_tmo(x) \ ((x)->dev_loss_tmo) #define fcoe_fcf_selected(x) \ ((x)->selected) #define fcoe_fcf_vlan_id(x) \ ((x)->vlan_id) /* * dev_loss_tmo attribute */ static int fcoe_str_to_dev_loss(const char *buf, unsigned long *val) { int ret; ret = kstrtoul(buf, 0, val); if (ret) return -EINVAL; /* * Check for overflow; dev_loss_tmo is u32 */ if (*val > UINT_MAX) return -EINVAL; return 0; } static int fcoe_fcf_set_dev_loss_tmo(struct fcoe_fcf_device *fcf, unsigned long val) { if ((fcf->state == FCOE_FCF_STATE_UNKNOWN) || (fcf->state == FCOE_FCF_STATE_DISCONNECTED) || (fcf->state == FCOE_FCF_STATE_DELETED)) return -EBUSY; /* * Check for overflow; dev_loss_tmo is u32 */ if (val > UINT_MAX) return -EINVAL; fcoe_fcf_dev_loss_tmo(fcf) = val; return 0; } #define FCOE_DEVICE_ATTR(_prefix, _name, _mode, _show, _store) \ struct device_attribute device_attr_fcoe_##_prefix##_##_name = \ __ATTR(_name, _mode, _show, _store) #define fcoe_ctlr_show_function(field, format_string, sz, cast) \ static ssize_t show_fcoe_ctlr_device_##field(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); \ if (ctlr->f->get_fcoe_ctlr_##field) \ ctlr->f->get_fcoe_ctlr_##field(ctlr); \ return snprintf(buf, sz, format_string, \ cast fcoe_ctlr_##field(ctlr)); \ } #define fcoe_fcf_show_function(field, format_string, sz, cast) \ static ssize_t show_fcoe_fcf_device_##field(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct fcoe_fcf_device *fcf = dev_to_fcf(dev); \ struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf); \ if (ctlr->f->get_fcoe_fcf_##field) \ ctlr->f->get_fcoe_fcf_##field(fcf); \ return snprintf(buf, sz, format_string, \ cast fcoe_fcf_##field(fcf)); \ } #define fcoe_ctlr_private_show_function(field, format_string, sz, cast) \ static ssize_t show_fcoe_ctlr_device_##field(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); \ return snprintf(buf, sz, format_string, cast fcoe_ctlr_##field(ctlr)); \ } #define fcoe_fcf_private_show_function(field, format_string, sz, cast) \ static ssize_t show_fcoe_fcf_device_##field(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct fcoe_fcf_device *fcf = dev_to_fcf(dev); \ return snprintf(buf, sz, format_string, cast fcoe_fcf_##field(fcf)); \ } #define fcoe_ctlr_private_rd_attr(field, format_string, sz) \ fcoe_ctlr_private_show_function(field, format_string, sz, ) \ static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \ show_fcoe_ctlr_device_##field, NULL) #define fcoe_ctlr_rd_attr(field, format_string, sz) \ fcoe_ctlr_show_function(field, format_string, sz, ) \ static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \ show_fcoe_ctlr_device_##field, NULL) #define fcoe_fcf_rd_attr(field, format_string, sz) \ fcoe_fcf_show_function(field, format_string, sz, ) \ static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \ show_fcoe_fcf_device_##field, NULL) #define fcoe_fcf_private_rd_attr(field, format_string, sz) \ fcoe_fcf_private_show_function(field, format_string, sz, ) \ static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \ show_fcoe_fcf_device_##field, NULL) #define fcoe_ctlr_private_rd_attr_cast(field, format_string, sz, cast) \ fcoe_ctlr_private_show_function(field, format_string, sz, (cast)) \ static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \ show_fcoe_ctlr_device_##field, NULL) #define fcoe_fcf_private_rd_attr_cast(field, format_string, sz, cast) \ fcoe_fcf_private_show_function(field, format_string, sz, (cast)) \ static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \ show_fcoe_fcf_device_##field, NULL) #define fcoe_enum_name_search(title, table_type, table) \ static const char *get_fcoe_##title##_name(enum table_type table_key) \ { \ if (table_key < 0 || table_key >= ARRAY_SIZE(table)) \ return NULL; \ return table[table_key]; \ } static char *fip_conn_type_names[] = { [ FIP_CONN_TYPE_UNKNOWN ] = "Unknown", [ FIP_CONN_TYPE_FABRIC ] = "Fabric", [ FIP_CONN_TYPE_VN2VN ] = "VN2VN", }; fcoe_enum_name_search(ctlr_mode, fip_conn_type, fip_conn_type_names) static enum fip_conn_type fcoe_parse_mode(const char *buf) { int i; for (i = 0; i < ARRAY_SIZE(fip_conn_type_names); i++) { if (strcasecmp(buf, fip_conn_type_names[i]) == 0) return i; } return FIP_CONN_TYPE_UNKNOWN; } static char *fcf_state_names[] = { [ FCOE_FCF_STATE_UNKNOWN ] = "Unknown", [ FCOE_FCF_STATE_DISCONNECTED ] = "Disconnected", [ FCOE_FCF_STATE_CONNECTED ] = "Connected", }; fcoe_enum_name_search(fcf_state, fcf_state, fcf_state_names) #define FCOE_FCF_STATE_MAX_NAMELEN 50 static ssize_t show_fcf_state(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_fcf_device *fcf = dev_to_fcf(dev); const char *name; name = get_fcoe_fcf_state_name(fcf->state); if (!name) return -EINVAL; return snprintf(buf, FCOE_FCF_STATE_MAX_NAMELEN, "%s\n", name); } static FCOE_DEVICE_ATTR(fcf, state, S_IRUGO, show_fcf_state, NULL); #define FCOE_MAX_MODENAME_LEN 20 static ssize_t show_ctlr_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); const char *name; name = get_fcoe_ctlr_mode_name(ctlr->mode); if (!name) return -EINVAL; return snprintf(buf, FCOE_MAX_MODENAME_LEN, "%s\n", name); } static ssize_t store_ctlr_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); char mode[FCOE_MAX_MODENAME_LEN + 1]; if (count > FCOE_MAX_MODENAME_LEN) return -EINVAL; strncpy(mode, buf, count); if (mode[count - 1] == '\n') mode[count - 1] = '\0'; else mode[count] = '\0'; switch (ctlr->enabled) { case FCOE_CTLR_ENABLED: LIBFCOE_SYSFS_DBG(ctlr, "Cannot change mode when enabled.\n"); return -EBUSY; case FCOE_CTLR_DISABLED: if (!ctlr->f->set_fcoe_ctlr_mode) { LIBFCOE_SYSFS_DBG(ctlr, "Mode change not supported by LLD.\n"); return -ENOTSUPP; } ctlr->mode = fcoe_parse_mode(mode); if (ctlr->mode == FIP_CONN_TYPE_UNKNOWN) { LIBFCOE_SYSFS_DBG(ctlr, "Unknown mode %s provided.\n", buf); return -EINVAL; } ctlr->f->set_fcoe_ctlr_mode(ctlr); LIBFCOE_SYSFS_DBG(ctlr, "Mode changed to %s.\n", buf); return count; case FCOE_CTLR_UNUSED: default: LIBFCOE_SYSFS_DBG(ctlr, "Mode change not supported.\n"); return -ENOTSUPP; }; } static FCOE_DEVICE_ATTR(ctlr, mode, S_IRUGO | S_IWUSR, show_ctlr_mode, store_ctlr_mode); static ssize_t store_ctlr_enabled(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); bool enabled; int rc; if (*buf == '1') enabled = true; else if (*buf == '0') enabled = false; else return -EINVAL; switch (ctlr->enabled) { case FCOE_CTLR_ENABLED: if (enabled) return count; ctlr->enabled = FCOE_CTLR_DISABLED; break; case FCOE_CTLR_DISABLED: if (!enabled) return count; ctlr->enabled = FCOE_CTLR_ENABLED; break; case FCOE_CTLR_UNUSED: return -ENOTSUPP; }; rc = ctlr->f->set_fcoe_ctlr_enabled(ctlr); if (rc) return rc; return count; } static char *ctlr_enabled_state_names[] = { [ FCOE_CTLR_ENABLED ] = "1", [ FCOE_CTLR_DISABLED ] = "0", }; fcoe_enum_name_search(ctlr_enabled_state, ctlr_enabled_state, ctlr_enabled_state_names) #define FCOE_CTLR_ENABLED_MAX_NAMELEN 50 static ssize_t show_ctlr_enabled_state(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); const char *name; name = get_fcoe_ctlr_enabled_state_name(ctlr->enabled); if (!name) return -EINVAL; return snprintf(buf, FCOE_CTLR_ENABLED_MAX_NAMELEN, "%s\n", name); } static FCOE_DEVICE_ATTR(ctlr, enabled, S_IRUGO | S_IWUSR, show_ctlr_enabled_state, store_ctlr_enabled); static ssize_t store_ctlr_fip_resp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); struct fcoe_ctlr *fip = fcoe_ctlr_device_priv(ctlr); mutex_lock(&fip->ctlr_mutex); if ((buf[1] == '\0') || ((buf[1] == '\n') && (buf[2] == '\0'))) { if (buf[0] == '1') { fip->fip_resp = 1; mutex_unlock(&fip->ctlr_mutex); return count; } if (buf[0] == '0') { fip->fip_resp = 0; mutex_unlock(&fip->ctlr_mutex); return count; } } mutex_unlock(&fip->ctlr_mutex); return -EINVAL; } static ssize_t show_ctlr_fip_resp(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); struct fcoe_ctlr *fip = fcoe_ctlr_device_priv(ctlr); return sprintf(buf, "%d\n", fip->fip_resp ? 1 : 0); } static FCOE_DEVICE_ATTR(ctlr, fip_vlan_responder, S_IRUGO | S_IWUSR, show_ctlr_fip_resp, store_ctlr_fip_resp); static ssize_t fcoe_ctlr_var_store(u32 *var, const char *buf, size_t count) { int err; unsigned long v; err = kstrtoul(buf, 10, &v); if (err || v > UINT_MAX) return -EINVAL; *var = v; return count; } static ssize_t store_ctlr_r_a_tov(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev); struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev); if (ctlr_dev->enabled == FCOE_CTLR_ENABLED) return -EBUSY; if (ctlr_dev->enabled == FCOE_CTLR_DISABLED) return fcoe_ctlr_var_store(&ctlr->lp->r_a_tov, buf, count); return -ENOTSUPP; } static ssize_t show_ctlr_r_a_tov(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev); struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev); return sprintf(buf, "%d\n", ctlr->lp->r_a_tov); } static FCOE_DEVICE_ATTR(ctlr, r_a_tov, S_IRUGO | S_IWUSR, show_ctlr_r_a_tov, store_ctlr_r_a_tov); static ssize_t store_ctlr_e_d_tov(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev); struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev); if (ctlr_dev->enabled == FCOE_CTLR_ENABLED) return -EBUSY; if (ctlr_dev->enabled == FCOE_CTLR_DISABLED) return fcoe_ctlr_var_store(&ctlr->lp->e_d_tov, buf, count); return -ENOTSUPP; } static ssize_t show_ctlr_e_d_tov(struct device *dev, struct device_attribute *attr, char *buf) { struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev); struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev); return sprintf(buf, "%d\n", ctlr->lp->e_d_tov); } static FCOE_DEVICE_ATTR(ctlr, e_d_tov, S_IRUGO | S_IWUSR, show_ctlr_e_d_tov, store_ctlr_e_d_tov); static ssize_t store_private_fcoe_ctlr_fcf_dev_loss_tmo(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); struct fcoe_fcf_device *fcf; unsigned long val; int rc; rc = fcoe_str_to_dev_loss(buf, &val); if (rc) return rc; fcoe_ctlr_fcf_dev_loss_tmo(ctlr) = val; mutex_lock(&ctlr->lock); list_for_each_entry(fcf, &ctlr->fcfs, peers) fcoe_fcf_set_dev_loss_tmo(fcf, val); mutex_unlock(&ctlr->lock); return count; } fcoe_ctlr_private_show_function(fcf_dev_loss_tmo, "%d\n", 20, ); static FCOE_DEVICE_ATTR(ctlr, fcf_dev_loss_tmo, S_IRUGO | S_IWUSR, show_fcoe_ctlr_device_fcf_dev_loss_tmo, store_private_fcoe_ctlr_fcf_dev_loss_tmo); /* Link Error Status Block (LESB) */ fcoe_ctlr_rd_attr(link_fail, "%u\n", 20); fcoe_ctlr_rd_attr(vlink_fail, "%u\n", 20); fcoe_ctlr_rd_attr(miss_fka, "%u\n", 20); fcoe_ctlr_rd_attr(symb_err, "%u\n", 20); fcoe_ctlr_rd_attr(err_block, "%u\n", 20); fcoe_ctlr_rd_attr(fcs_error, "%u\n", 20); fcoe_fcf_private_rd_attr_cast(fabric_name, "0x%llx\n", 20, unsigned long long); fcoe_fcf_private_rd_attr_cast(switch_name, "0x%llx\n", 20, unsigned long long); fcoe_fcf_private_rd_attr(priority, "%u\n", 20); fcoe_fcf_private_rd_attr(fc_map, "0x%x\n", 20); fcoe_fcf_private_rd_attr(vfid, "%u\n", 20); fcoe_fcf_private_rd_attr(mac, "%pM\n", 20); fcoe_fcf_private_rd_attr(fka_period, "%u\n", 20); fcoe_fcf_rd_attr(selected, "%u\n", 20); fcoe_fcf_rd_attr(vlan_id, "%u\n", 20); fcoe_fcf_private_show_function(dev_loss_tmo, "%d\n", 20, ) static ssize_t store_fcoe_fcf_dev_loss_tmo(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fcoe_fcf_device *fcf = dev_to_fcf(dev); unsigned long val; int rc; rc = fcoe_str_to_dev_loss(buf, &val); if (rc) return rc; rc = fcoe_fcf_set_dev_loss_tmo(fcf, val); if (rc) return rc; return count; } static FCOE_DEVICE_ATTR(fcf, dev_loss_tmo, S_IRUGO | S_IWUSR, show_fcoe_fcf_device_dev_loss_tmo, store_fcoe_fcf_dev_loss_tmo); static struct attribute *fcoe_ctlr_lesb_attrs[] = { &device_attr_fcoe_ctlr_link_fail.attr, &device_attr_fcoe_ctlr_vlink_fail.attr, &device_attr_fcoe_ctlr_miss_fka.attr, &device_attr_fcoe_ctlr_symb_err.attr, &device_attr_fcoe_ctlr_err_block.attr, &device_attr_fcoe_ctlr_fcs_error.attr, NULL, }; static struct attribute_group fcoe_ctlr_lesb_attr_group = { .name = "lesb", .attrs = fcoe_ctlr_lesb_attrs, }; static struct attribute *fcoe_ctlr_attrs[] = { &device_attr_fcoe_ctlr_fip_vlan_responder.attr, &device_attr_fcoe_ctlr_fcf_dev_loss_tmo.attr, &device_attr_fcoe_ctlr_r_a_tov.attr, &device_attr_fcoe_ctlr_e_d_tov.attr, &device_attr_fcoe_ctlr_enabled.attr, &device_attr_fcoe_ctlr_mode.attr, NULL, }; static struct attribute_group fcoe_ctlr_attr_group = { .attrs = fcoe_ctlr_attrs, }; static const struct attribute_group *fcoe_ctlr_attr_groups[] = { &fcoe_ctlr_attr_group, &fcoe_ctlr_lesb_attr_group, NULL, }; static struct attribute *fcoe_fcf_attrs[] = { &device_attr_fcoe_fcf_fabric_name.attr, &device_attr_fcoe_fcf_switch_name.attr, &device_attr_fcoe_fcf_dev_loss_tmo.attr, &device_attr_fcoe_fcf_fc_map.attr, &device_attr_fcoe_fcf_vfid.attr, &device_attr_fcoe_fcf_mac.attr, &device_attr_fcoe_fcf_priority.attr, &device_attr_fcoe_fcf_fka_period.attr, &device_attr_fcoe_fcf_state.attr, &device_attr_fcoe_fcf_selected.attr, &device_attr_fcoe_fcf_vlan_id.attr, NULL }; static struct attribute_group fcoe_fcf_attr_group = { .attrs = fcoe_fcf_attrs, }; static const struct attribute_group *fcoe_fcf_attr_groups[] = { &fcoe_fcf_attr_group, NULL, }; static struct bus_type fcoe_bus_type; static int fcoe_bus_match(struct device *dev, struct device_driver *drv) { if (dev->bus == &fcoe_bus_type) return 1; return 0; } /** * fcoe_ctlr_device_release() - Release the FIP ctlr memory * @dev: Pointer to the FIP ctlr's embedded device * * Called when the last FIP ctlr reference is released. */ static void fcoe_ctlr_device_release(struct device *dev) { struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); kfree(ctlr); } /** * fcoe_fcf_device_release() - Release the FIP fcf memory * @dev: Pointer to the fcf's embedded device * * Called when the last FIP fcf reference is released. */ static void fcoe_fcf_device_release(struct device *dev) { struct fcoe_fcf_device *fcf = dev_to_fcf(dev); kfree(fcf); } static const struct device_type fcoe_ctlr_device_type = { .name = "fcoe_ctlr", .groups = fcoe_ctlr_attr_groups, .release = fcoe_ctlr_device_release, }; static const struct device_type fcoe_fcf_device_type = { .name = "fcoe_fcf", .groups = fcoe_fcf_attr_groups, .release = fcoe_fcf_device_release, }; static ssize_t ctlr_create_store(struct bus_type *bus, const char *buf, size_t count) { return fcoe_ctlr_create_store(bus, buf, count); } static BUS_ATTR_WO(ctlr_create); static ssize_t ctlr_destroy_store(struct bus_type *bus, const char *buf, size_t count) { return fcoe_ctlr_destroy_store(bus, buf, count); } static BUS_ATTR_WO(ctlr_destroy); static struct attribute *fcoe_bus_attrs[] = { &bus_attr_ctlr_create.attr, &bus_attr_ctlr_destroy.attr, NULL, }; ATTRIBUTE_GROUPS(fcoe_bus); static struct bus_type fcoe_bus_type = { .name = "fcoe", .match = &fcoe_bus_match, .bus_groups = fcoe_bus_groups, }; /** * fcoe_ctlr_device_flush_work() - Flush a FIP ctlr's workqueue * @ctlr: Pointer to the FIP ctlr whose workqueue is to be flushed */ static void fcoe_ctlr_device_flush_work(struct fcoe_ctlr_device *ctlr) { if (!fcoe_ctlr_work_q(ctlr)) { printk(KERN_ERR "ERROR: FIP Ctlr '%d' attempted to flush work, " "when no workqueue created.\n", ctlr->id); dump_stack(); return; } flush_workqueue(fcoe_ctlr_work_q(ctlr)); } /** * fcoe_ctlr_device_queue_work() - Schedule work for a FIP ctlr's workqueue * @ctlr: Pointer to the FIP ctlr who owns the devloss workqueue * @work: Work to queue for execution * * Return value: * 1 on success / 0 already queued / < 0 for error */ static int fcoe_ctlr_device_queue_work(struct fcoe_ctlr_device *ctlr, struct work_struct *work) { if (unlikely(!fcoe_ctlr_work_q(ctlr))) { printk(KERN_ERR "ERROR: FIP Ctlr '%d' attempted to queue work, " "when no workqueue created.\n", ctlr->id); dump_stack(); return -EINVAL; } return queue_work(fcoe_ctlr_work_q(ctlr), work); } /** * fcoe_ctlr_device_flush_devloss() - Flush a FIP ctlr's devloss workqueue * @ctlr: Pointer to FIP ctlr whose workqueue is to be flushed */ static void fcoe_ctlr_device_flush_devloss(struct fcoe_ctlr_device *ctlr) { if (!fcoe_ctlr_devloss_work_q(ctlr)) { printk(KERN_ERR "ERROR: FIP Ctlr '%d' attempted to flush work, " "when no workqueue created.\n", ctlr->id); dump_stack(); return; } flush_workqueue(fcoe_ctlr_devloss_work_q(ctlr)); } /** * fcoe_ctlr_device_queue_devloss_work() - Schedule work for a FIP ctlr's devloss workqueue * @ctlr: Pointer to the FIP ctlr who owns the devloss workqueue * @work: Work to queue for execution * @delay: jiffies to delay the work queuing * * Return value: * 1 on success / 0 already queued / < 0 for error */ static int fcoe_ctlr_device_queue_devloss_work(struct fcoe_ctlr_device *ctlr, struct delayed_work *work, unsigned long delay) { if (unlikely(!fcoe_ctlr_devloss_work_q(ctlr))) { printk(KERN_ERR "ERROR: FIP Ctlr '%d' attempted to queue work, " "when no workqueue created.\n", ctlr->id); dump_stack(); return -EINVAL; } return queue_delayed_work(fcoe_ctlr_devloss_work_q(ctlr), work, delay); } static int fcoe_fcf_device_match(struct fcoe_fcf_device *new, struct fcoe_fcf_device *old) { if (new->switch_name == old->switch_name && new->fabric_name == old->fabric_name && new->fc_map == old->fc_map && ether_addr_equal(new->mac, old->mac)) return 1; return 0; } /** * fcoe_ctlr_device_add() - Add a FIP ctlr to sysfs * @parent: The parent device to which the fcoe_ctlr instance * should be attached * @f: The LLD's FCoE sysfs function template pointer * @priv_size: Size to be allocated with the fcoe_ctlr_device for the LLD * * This routine allocates a FIP ctlr object with some additional memory * for the LLD. The FIP ctlr is initialized, added to sysfs and then * attributes are added to it. */ struct fcoe_ctlr_device *fcoe_ctlr_device_add(struct device *parent, struct fcoe_sysfs_function_template *f, int priv_size) { struct fcoe_ctlr_device *ctlr; int error = 0; ctlr = kzalloc(sizeof(struct fcoe_ctlr_device) + priv_size, GFP_KERNEL); if (!ctlr) goto out; ctlr->id = atomic_inc_return(&ctlr_num) - 1; ctlr->f = f; ctlr->mode = FIP_CONN_TYPE_FABRIC; INIT_LIST_HEAD(&ctlr->fcfs); mutex_init(&ctlr->lock); ctlr->dev.parent = parent; ctlr->dev.bus = &fcoe_bus_type; ctlr->dev.type = &fcoe_ctlr_device_type; ctlr->fcf_dev_loss_tmo = fcoe_fcf_dev_loss_tmo; snprintf(ctlr->work_q_name, sizeof(ctlr->work_q_name), "ctlr_wq_%d", ctlr->id); ctlr->work_q = create_singlethread_workqueue( ctlr->work_q_name); if (!ctlr->work_q) goto out_del; snprintf(ctlr->devloss_work_q_name, sizeof(ctlr->devloss_work_q_name), "ctlr_dl_wq_%d", ctlr->id); ctlr->devloss_work_q = create_singlethread_workqueue( ctlr->devloss_work_q_name); if (!ctlr->devloss_work_q) goto out_del_q; dev_set_name(&ctlr->dev, "ctlr_%d", ctlr->id); error = device_register(&ctlr->dev); if (error) goto out_del_q2; return ctlr; out_del_q2: destroy_workqueue(ctlr->devloss_work_q); ctlr->devloss_work_q = NULL; out_del_q: destroy_workqueue(ctlr->work_q); ctlr->work_q = NULL; out_del: kfree(ctlr); out: return NULL; } EXPORT_SYMBOL_GPL(fcoe_ctlr_device_add); /** * fcoe_ctlr_device_delete() - Delete a FIP ctlr and its subtree from sysfs * @ctlr: A pointer to the ctlr to be deleted * * Deletes a FIP ctlr and any fcfs attached * to it. Deleting fcfs will cause their childen * to be deleted as well. * * The ctlr is detached from sysfs and it's resources * are freed (work q), but the memory is not freed * until its last reference is released. * * This routine expects no locks to be held before * calling. * * TODO: Currently there are no callbacks to clean up LLD data * for a fcoe_fcf_device. LLDs must keep this in mind as they need * to clean up each of their LLD data for all fcoe_fcf_device before * calling fcoe_ctlr_device_delete. */ void fcoe_ctlr_device_delete(struct fcoe_ctlr_device *ctlr) { struct fcoe_fcf_device *fcf, *next; /* Remove any attached fcfs */ mutex_lock(&ctlr->lock); list_for_each_entry_safe(fcf, next, &ctlr->fcfs, peers) { list_del(&fcf->peers); fcf->state = FCOE_FCF_STATE_DELETED; fcoe_ctlr_device_queue_work(ctlr, &fcf->delete_work); } mutex_unlock(&ctlr->lock); fcoe_ctlr_device_flush_work(ctlr); destroy_workqueue(ctlr->devloss_work_q); ctlr->devloss_work_q = NULL; destroy_workqueue(ctlr->work_q); ctlr->work_q = NULL; device_unregister(&ctlr->dev); } EXPORT_SYMBOL_GPL(fcoe_ctlr_device_delete); /** * fcoe_fcf_device_final_delete() - Final delete routine * @work: The FIP fcf's embedded work struct * * It is expected that the fcf has been removed from * the FIP ctlr's list before calling this routine. */ static void fcoe_fcf_device_final_delete(struct work_struct *work) { struct fcoe_fcf_device *fcf = container_of(work, struct fcoe_fcf_device, delete_work); struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf); /* * Cancel any outstanding timers. These should really exist * only when rmmod'ing the LLDD and we're asking for * immediate termination of the rports */ if (!cancel_delayed_work(&fcf->dev_loss_work)) fcoe_ctlr_device_flush_devloss(ctlr); device_unregister(&fcf->dev); } /** * fip_timeout_deleted_fcf() - Delete a fcf when the devloss timer fires * @work: The FIP fcf's embedded work struct * * Removes the fcf from the FIP ctlr's list of fcfs and * queues the final deletion. */ static void fip_timeout_deleted_fcf(struct work_struct *work) { struct fcoe_fcf_device *fcf = container_of(work, struct fcoe_fcf_device, dev_loss_work.work); struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf); mutex_lock(&ctlr->lock); /* * If the fcf is deleted or reconnected before the timer * fires the devloss queue will be flushed, but the state will * either be CONNECTED or DELETED. If that is the case we * cancel deleting the fcf. */ if (fcf->state != FCOE_FCF_STATE_DISCONNECTED) goto out; dev_printk(KERN_ERR, &fcf->dev, "FIP fcf connection time out: removing fcf\n"); list_del(&fcf->peers); fcf->state = FCOE_FCF_STATE_DELETED; fcoe_ctlr_device_queue_work(ctlr, &fcf->delete_work); out: mutex_unlock(&ctlr->lock); } /** * fcoe_fcf_device_delete() - Delete a FIP fcf * @fcf: Pointer to the fcf which is to be deleted * * Queues the FIP fcf on the devloss workqueue * * Expects the ctlr_attrs mutex to be held for fcf * state change. */ void fcoe_fcf_device_delete(struct fcoe_fcf_device *fcf) { struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf); int timeout = fcf->dev_loss_tmo; if (fcf->state != FCOE_FCF_STATE_CONNECTED) return; fcf->state = FCOE_FCF_STATE_DISCONNECTED; /* * FCF will only be re-connected by the LLD calling * fcoe_fcf_device_add, and it should be setting up * priv then. */ fcf->priv = NULL; fcoe_ctlr_device_queue_devloss_work(ctlr, &fcf->dev_loss_work, timeout * HZ); } EXPORT_SYMBOL_GPL(fcoe_fcf_device_delete); /** * fcoe_fcf_device_add() - Add a FCoE sysfs fcoe_fcf_device to the system * @ctlr: The fcoe_ctlr_device that will be the fcoe_fcf_device parent * @new_fcf: A temporary FCF used for lookups on the current list of fcfs * * Expects to be called with the ctlr->lock held */ struct fcoe_fcf_device *fcoe_fcf_device_add(struct fcoe_ctlr_device *ctlr, struct fcoe_fcf_device *new_fcf) { struct fcoe_fcf_device *fcf; int error = 0; list_for_each_entry(fcf, &ctlr->fcfs, peers) { if (fcoe_fcf_device_match(new_fcf, fcf)) { if (fcf->state == FCOE_FCF_STATE_CONNECTED) return fcf; fcf->state = FCOE_FCF_STATE_CONNECTED; if (!cancel_delayed_work(&fcf->dev_loss_work)) fcoe_ctlr_device_flush_devloss(ctlr); return fcf; } } fcf = kzalloc(sizeof(struct fcoe_fcf_device), GFP_ATOMIC); if (unlikely(!fcf)) goto out; INIT_WORK(&fcf->delete_work, fcoe_fcf_device_final_delete); INIT_DELAYED_WORK(&fcf->dev_loss_work, fip_timeout_deleted_fcf); fcf->dev.parent = &ctlr->dev; fcf->dev.bus = &fcoe_bus_type; fcf->dev.type = &fcoe_fcf_device_type; fcf->id = atomic_inc_return(&fcf_num) - 1; fcf->state = FCOE_FCF_STATE_UNKNOWN; fcf->dev_loss_tmo = ctlr->fcf_dev_loss_tmo; dev_set_name(&fcf->dev, "fcf_%d", fcf->id); fcf->fabric_name = new_fcf->fabric_name; fcf->switch_name = new_fcf->switch_name; fcf->fc_map = new_fcf->fc_map; fcf->vfid = new_fcf->vfid; memcpy(fcf->mac, new_fcf->mac, ETH_ALEN); fcf->priority = new_fcf->priority; fcf->fka_period = new_fcf->fka_period; fcf->selected = new_fcf->selected; error = device_register(&fcf->dev); if (error) goto out_del; fcf->state = FCOE_FCF_STATE_CONNECTED; list_add_tail(&fcf->peers, &ctlr->fcfs); return fcf; out_del: kfree(fcf); out: return NULL; } EXPORT_SYMBOL_GPL(fcoe_fcf_device_add); int __init fcoe_sysfs_setup(void) { int error; atomic_set(&ctlr_num, 0); atomic_set(&fcf_num, 0); error = bus_register(&fcoe_bus_type); if (error) return error; return 0; } void __exit fcoe_sysfs_teardown(void) { bus_unregister(&fcoe_bus_type); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1