Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 2660 | 95.65% | 8 | 38.10% |
Grant C. Likely | 52 | 1.87% | 5 | 23.81% |
Christoph Hellwig | 31 | 1.11% | 3 | 14.29% |
Johan Hovold | 28 | 1.01% | 1 | 4.76% |
Tejun Heo | 3 | 0.11% | 1 | 4.76% |
Andrea Righi | 3 | 0.11% | 1 | 4.76% |
Rob Herring | 3 | 0.11% | 1 | 4.76% |
Thomas Gleixner | 1 | 0.04% | 1 | 4.76% |
Total | 2781 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* sun_esp.c: ESP front-end for Sparc SBUS systems. * * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/gfp.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/dma.h> #include <scsi/scsi_host.h> #include "esp_scsi.h" #define DRV_MODULE_NAME "sun_esp" #define PFX DRV_MODULE_NAME ": " #define DRV_VERSION "1.100" #define DRV_MODULE_RELDATE "August 27, 2008" #define dma_read32(REG) \ sbus_readl(esp->dma_regs + (REG)) #define dma_write32(VAL, REG) \ sbus_writel((VAL), esp->dma_regs + (REG)) /* DVMA chip revisions */ enum dvma_rev { dvmarev0, dvmaesc1, dvmarev1, dvmarev2, dvmarev3, dvmarevplus, dvmahme }; static int esp_sbus_setup_dma(struct esp *esp, struct platform_device *dma_of) { esp->dma = dma_of; esp->dma_regs = of_ioremap(&dma_of->resource[0], 0, resource_size(&dma_of->resource[0]), "espdma"); if (!esp->dma_regs) return -ENOMEM; switch (dma_read32(DMA_CSR) & DMA_DEVICE_ID) { case DMA_VERS0: esp->dmarev = dvmarev0; break; case DMA_ESCV1: esp->dmarev = dvmaesc1; break; case DMA_VERS1: esp->dmarev = dvmarev1; break; case DMA_VERS2: esp->dmarev = dvmarev2; break; case DMA_VERHME: esp->dmarev = dvmahme; break; case DMA_VERSPLUS: esp->dmarev = dvmarevplus; break; } return 0; } static int esp_sbus_map_regs(struct esp *esp, int hme) { struct platform_device *op = to_platform_device(esp->dev); struct resource *res; /* On HME, two reg sets exist, first is DVMA, * second is ESP registers. */ if (hme) res = &op->resource[1]; else res = &op->resource[0]; esp->regs = of_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP"); if (!esp->regs) return -ENOMEM; return 0; } static int esp_sbus_map_command_block(struct esp *esp) { esp->command_block = dma_alloc_coherent(esp->dev, 16, &esp->command_block_dma, GFP_KERNEL); if (!esp->command_block) return -ENOMEM; return 0; } static int esp_sbus_register_irq(struct esp *esp) { struct Scsi_Host *host = esp->host; struct platform_device *op = to_platform_device(esp->dev); host->irq = op->archdata.irqs[0]; return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp); } static void esp_get_scsi_id(struct esp *esp, struct platform_device *espdma) { struct platform_device *op = to_platform_device(esp->dev); struct device_node *dp; dp = op->dev.of_node; esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff); if (esp->scsi_id != 0xff) goto done; esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff); if (esp->scsi_id != 0xff) goto done; esp->scsi_id = of_getintprop_default(espdma->dev.of_node, "scsi-initiator-id", 7); done: esp->host->this_id = esp->scsi_id; esp->scsi_id_mask = (1 << esp->scsi_id); } static void esp_get_differential(struct esp *esp) { struct platform_device *op = to_platform_device(esp->dev); struct device_node *dp; dp = op->dev.of_node; if (of_find_property(dp, "differential", NULL)) esp->flags |= ESP_FLAG_DIFFERENTIAL; else esp->flags &= ~ESP_FLAG_DIFFERENTIAL; } static void esp_get_clock_params(struct esp *esp) { struct platform_device *op = to_platform_device(esp->dev); struct device_node *bus_dp, *dp; int fmhz; dp = op->dev.of_node; bus_dp = dp->parent; fmhz = of_getintprop_default(dp, "clock-frequency", 0); if (fmhz == 0) fmhz = of_getintprop_default(bus_dp, "clock-frequency", 0); esp->cfreq = fmhz; } static void esp_get_bursts(struct esp *esp, struct platform_device *dma_of) { struct device_node *dma_dp = dma_of->dev.of_node; struct platform_device *op = to_platform_device(esp->dev); struct device_node *dp; u8 bursts, val; dp = op->dev.of_node; bursts = of_getintprop_default(dp, "burst-sizes", 0xff); val = of_getintprop_default(dma_dp, "burst-sizes", 0xff); if (val != 0xff) bursts &= val; val = of_getintprop_default(dma_dp->parent, "burst-sizes", 0xff); if (val != 0xff) bursts &= val; if (bursts == 0xff || (bursts & DMA_BURST16) == 0 || (bursts & DMA_BURST32) == 0) bursts = (DMA_BURST32 - 1); esp->bursts = bursts; } static void esp_sbus_get_props(struct esp *esp, struct platform_device *espdma) { esp_get_scsi_id(esp, espdma); esp_get_differential(esp); esp_get_clock_params(esp); esp_get_bursts(esp, espdma); } static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg) { sbus_writeb(val, esp->regs + (reg * 4UL)); } static u8 sbus_esp_read8(struct esp *esp, unsigned long reg) { return sbus_readb(esp->regs + (reg * 4UL)); } static int sbus_esp_irq_pending(struct esp *esp) { if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)) return 1; return 0; } static void sbus_esp_reset_dma(struct esp *esp) { int can_do_burst16, can_do_burst32, can_do_burst64; int can_do_sbus64, lim; struct platform_device *op = to_platform_device(esp->dev); u32 val; can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; can_do_burst64 = 0; can_do_sbus64 = 0; if (sbus_can_dma_64bit()) can_do_sbus64 = 1; if (sbus_can_burst64()) can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; /* Put the DVMA into a known state. */ if (esp->dmarev != dvmahme) { val = dma_read32(DMA_CSR); dma_write32(val | DMA_RST_SCSI, DMA_CSR); dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); } switch (esp->dmarev) { case dvmahme: dma_write32(DMA_RESET_FAS366, DMA_CSR); dma_write32(DMA_RST_SCSI, DMA_CSR); esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS | DMA_SCSI_DISAB | DMA_INT_ENAB); esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BRST_SZ); if (can_do_burst64) esp->prev_hme_dmacsr |= DMA_BRST64; else if (can_do_burst32) esp->prev_hme_dmacsr |= DMA_BRST32; if (can_do_sbus64) { esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; sbus_set_sbus64(&op->dev, esp->bursts); } lim = 1000; while (dma_read32(DMA_CSR) & DMA_PEND_READ) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ " "will not clear!\n", esp->host->unique_id); break; } udelay(1); } dma_write32(0, DMA_CSR); dma_write32(esp->prev_hme_dmacsr, DMA_CSR); dma_write32(0, DMA_ADDR); break; case dvmarev2: if (esp->rev != ESP100) { val = dma_read32(DMA_CSR); dma_write32(val | DMA_3CLKS, DMA_CSR); } break; case dvmarev3: val = dma_read32(DMA_CSR); val &= ~DMA_3CLKS; val |= DMA_2CLKS; if (can_do_burst32) { val &= ~DMA_BRST_SZ; val |= DMA_BRST32; } dma_write32(val, DMA_CSR); break; case dvmaesc1: val = dma_read32(DMA_CSR); val |= DMA_ADD_ENABLE; val &= ~DMA_BCNT_ENAB; if (!can_do_burst32 && can_do_burst16) { val |= DMA_ESC_BURST; } else { val &= ~(DMA_ESC_BURST); } dma_write32(val, DMA_CSR); break; default: break; } /* Enable interrupts. */ val = dma_read32(DMA_CSR); dma_write32(val | DMA_INT_ENAB, DMA_CSR); } static void sbus_esp_dma_drain(struct esp *esp) { u32 csr; int lim; if (esp->dmarev == dvmahme) return; csr = dma_read32(DMA_CSR); if (!(csr & DMA_FIFO_ISDRAIN)) return; if (esp->dmarev != dvmarev3 && esp->dmarev != dvmaesc1) dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR); lim = 1000; while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n", esp->host->unique_id); break; } udelay(1); } } static void sbus_esp_dma_invalidate(struct esp *esp) { if (esp->dmarev == dvmahme) { dma_write32(DMA_RST_SCSI, DMA_CSR); esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | (DMA_PARITY_OFF | DMA_2CLKS | DMA_SCSI_DISAB | DMA_INT_ENAB)) & ~(DMA_ST_WRITE | DMA_ENABLE)); dma_write32(0, DMA_CSR); dma_write32(esp->prev_hme_dmacsr, DMA_CSR); /* This is necessary to avoid having the SCSI channel * engine lock up on us. */ dma_write32(0, DMA_ADDR); } else { u32 val; int lim; lim = 1000; while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) { if (--lim == 0) { printk(KERN_ALERT PFX "esp%d: DMA will not " "invalidate!\n", esp->host->unique_id); break; } udelay(1); } val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); val |= DMA_FIFO_INV; dma_write32(val, DMA_CSR); val &= ~DMA_FIFO_INV; dma_write32(val, DMA_CSR); } } static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count, u32 dma_count, int write, u8 cmd) { u32 csr; BUG_ON(!(cmd & ESP_CMD_DMA)); sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW); sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED); if (esp->rev == FASHME) { sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO); sbus_esp_write8(esp, 0, FAS_RHI); scsi_esp_cmd(esp, cmd); csr = esp->prev_hme_dmacsr; csr |= DMA_SCSI_DISAB | DMA_ENABLE; if (write) csr |= DMA_ST_WRITE; else csr &= ~DMA_ST_WRITE; esp->prev_hme_dmacsr = csr; dma_write32(dma_count, DMA_COUNT); dma_write32(addr, DMA_ADDR); dma_write32(csr, DMA_CSR); } else { csr = dma_read32(DMA_CSR); csr |= DMA_ENABLE; if (write) csr |= DMA_ST_WRITE; else csr &= ~DMA_ST_WRITE; dma_write32(csr, DMA_CSR); if (esp->dmarev == dvmaesc1) { u32 end = PAGE_ALIGN(addr + dma_count + 16U); dma_write32(end - addr, DMA_COUNT); } dma_write32(addr, DMA_ADDR); scsi_esp_cmd(esp, cmd); } } static int sbus_esp_dma_error(struct esp *esp) { u32 csr = dma_read32(DMA_CSR); if (csr & DMA_HNDL_ERROR) return 1; return 0; } static const struct esp_driver_ops sbus_esp_ops = { .esp_write8 = sbus_esp_write8, .esp_read8 = sbus_esp_read8, .irq_pending = sbus_esp_irq_pending, .reset_dma = sbus_esp_reset_dma, .dma_drain = sbus_esp_dma_drain, .dma_invalidate = sbus_esp_dma_invalidate, .send_dma_cmd = sbus_esp_send_dma_cmd, .dma_error = sbus_esp_dma_error, }; static int esp_sbus_probe_one(struct platform_device *op, struct platform_device *espdma, int hme) { struct scsi_host_template *tpnt = &scsi_esp_template; struct Scsi_Host *host; struct esp *esp; int err; host = scsi_host_alloc(tpnt, sizeof(struct esp)); err = -ENOMEM; if (!host) goto fail; host->max_id = (hme ? 16 : 8); esp = shost_priv(host); esp->host = host; esp->dev = &op->dev; esp->ops = &sbus_esp_ops; if (hme) esp->flags |= ESP_FLAG_WIDE_CAPABLE; err = esp_sbus_setup_dma(esp, espdma); if (err < 0) goto fail_unlink; err = esp_sbus_map_regs(esp, hme); if (err < 0) goto fail_unlink; err = esp_sbus_map_command_block(esp); if (err < 0) goto fail_unmap_regs; err = esp_sbus_register_irq(esp); if (err < 0) goto fail_unmap_command_block; esp_sbus_get_props(esp, espdma); /* Before we try to touch the ESP chip, ESC1 dma can * come up with the reset bit set, so make sure that * is clear first. */ if (esp->dmarev == dvmaesc1) { u32 val = dma_read32(DMA_CSR); dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); } dev_set_drvdata(&op->dev, esp); err = scsi_esp_register(esp); if (err) goto fail_free_irq; return 0; fail_free_irq: free_irq(host->irq, esp); fail_unmap_command_block: dma_free_coherent(&op->dev, 16, esp->command_block, esp->command_block_dma); fail_unmap_regs: of_iounmap(&op->resource[(hme ? 1 : 0)], esp->regs, SBUS_ESP_REG_SIZE); fail_unlink: scsi_host_put(host); fail: return err; } static int esp_sbus_probe(struct platform_device *op) { struct device_node *dma_node = NULL; struct device_node *dp = op->dev.of_node; struct platform_device *dma_of = NULL; int hme = 0; int ret; if (of_node_name_eq(dp->parent, "espdma") || of_node_name_eq(dp->parent, "dma")) dma_node = dp->parent; else if (of_node_name_eq(dp, "SUNW,fas")) { dma_node = op->dev.of_node; hme = 1; } if (dma_node) dma_of = of_find_device_by_node(dma_node); if (!dma_of) return -ENODEV; ret = esp_sbus_probe_one(op, dma_of, hme); if (ret) put_device(&dma_of->dev); return ret; } static int esp_sbus_remove(struct platform_device *op) { struct esp *esp = dev_get_drvdata(&op->dev); struct platform_device *dma_of = esp->dma; unsigned int irq = esp->host->irq; bool is_hme; u32 val; scsi_esp_unregister(esp); /* Disable interrupts. */ val = dma_read32(DMA_CSR); dma_write32(val & ~DMA_INT_ENAB, DMA_CSR); free_irq(irq, esp); is_hme = (esp->dmarev == dvmahme); dma_free_coherent(&op->dev, 16, esp->command_block, esp->command_block_dma); of_iounmap(&op->resource[(is_hme ? 1 : 0)], esp->regs, SBUS_ESP_REG_SIZE); of_iounmap(&dma_of->resource[0], esp->dma_regs, resource_size(&dma_of->resource[0])); scsi_host_put(esp->host); dev_set_drvdata(&op->dev, NULL); put_device(&dma_of->dev); return 0; } static const struct of_device_id esp_match[] = { { .name = "SUNW,esp", }, { .name = "SUNW,fas", }, { .name = "esp", }, {}, }; MODULE_DEVICE_TABLE(of, esp_match); static struct platform_driver esp_sbus_driver = { .driver = { .name = "esp", .of_match_table = esp_match, }, .probe = esp_sbus_probe, .remove = esp_sbus_remove, }; static int __init sunesp_init(void) { return platform_driver_register(&esp_sbus_driver); } static void __exit sunesp_exit(void) { platform_driver_unregister(&esp_sbus_driver); } MODULE_DESCRIPTION("Sun ESP SCSI driver"); MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); module_init(sunesp_init); module_exit(sunesp_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1