Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Cyrille Pitchen | 1050 | 37.89% | 2 | 10.53% |
Piotr Bugalski | 980 | 35.37% | 3 | 15.79% |
Tudor-Dan Ambarus | 640 | 23.10% | 11 | 57.89% |
Claudiu Beznea | 100 | 3.61% | 2 | 10.53% |
Yue haibing | 1 | 0.04% | 1 | 5.26% |
Total | 2771 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Atmel QSPI Controller * * Copyright (C) 2015 Atmel Corporation * Copyright (C) 2018 Cryptera A/S * * Author: Cyrille Pitchen <cyrille.pitchen@atmel.com> * Author: Piotr Bugalski <bugalski.piotr@gmail.com> * * This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/spi/spi-mem.h> /* QSPI register offsets */ #define QSPI_CR 0x0000 /* Control Register */ #define QSPI_MR 0x0004 /* Mode Register */ #define QSPI_RD 0x0008 /* Receive Data Register */ #define QSPI_TD 0x000c /* Transmit Data Register */ #define QSPI_SR 0x0010 /* Status Register */ #define QSPI_IER 0x0014 /* Interrupt Enable Register */ #define QSPI_IDR 0x0018 /* Interrupt Disable Register */ #define QSPI_IMR 0x001c /* Interrupt Mask Register */ #define QSPI_SCR 0x0020 /* Serial Clock Register */ #define QSPI_IAR 0x0030 /* Instruction Address Register */ #define QSPI_ICR 0x0034 /* Instruction Code Register */ #define QSPI_WICR 0x0034 /* Write Instruction Code Register */ #define QSPI_IFR 0x0038 /* Instruction Frame Register */ #define QSPI_RICR 0x003C /* Read Instruction Code Register */ #define QSPI_SMR 0x0040 /* Scrambling Mode Register */ #define QSPI_SKR 0x0044 /* Scrambling Key Register */ #define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */ #define QSPI_WPSR 0x00E8 /* Write Protection Status Register */ #define QSPI_VERSION 0x00FC /* Version Register */ /* Bitfields in QSPI_CR (Control Register) */ #define QSPI_CR_QSPIEN BIT(0) #define QSPI_CR_QSPIDIS BIT(1) #define QSPI_CR_SWRST BIT(7) #define QSPI_CR_LASTXFER BIT(24) /* Bitfields in QSPI_MR (Mode Register) */ #define QSPI_MR_SMM BIT(0) #define QSPI_MR_LLB BIT(1) #define QSPI_MR_WDRBT BIT(2) #define QSPI_MR_SMRM BIT(3) #define QSPI_MR_CSMODE_MASK GENMASK(5, 4) #define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4) #define QSPI_MR_CSMODE_LASTXFER (1 << 4) #define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4) #define QSPI_MR_NBBITS_MASK GENMASK(11, 8) #define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK) #define QSPI_MR_DLYBCT_MASK GENMASK(23, 16) #define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK) #define QSPI_MR_DLYCS_MASK GENMASK(31, 24) #define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK) /* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */ #define QSPI_SR_RDRF BIT(0) #define QSPI_SR_TDRE BIT(1) #define QSPI_SR_TXEMPTY BIT(2) #define QSPI_SR_OVRES BIT(3) #define QSPI_SR_CSR BIT(8) #define QSPI_SR_CSS BIT(9) #define QSPI_SR_INSTRE BIT(10) #define QSPI_SR_QSPIENS BIT(24) #define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR) /* Bitfields in QSPI_SCR (Serial Clock Register) */ #define QSPI_SCR_CPOL BIT(0) #define QSPI_SCR_CPHA BIT(1) #define QSPI_SCR_SCBR_MASK GENMASK(15, 8) #define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK) #define QSPI_SCR_DLYBS_MASK GENMASK(23, 16) #define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK) /* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */ #define QSPI_ICR_INST_MASK GENMASK(7, 0) #define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK) #define QSPI_ICR_OPT_MASK GENMASK(23, 16) #define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK) /* Bitfields in QSPI_IFR (Instruction Frame Register) */ #define QSPI_IFR_WIDTH_MASK GENMASK(2, 0) #define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0) #define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0) #define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0) #define QSPI_IFR_WIDTH_DUAL_IO (3 << 0) #define QSPI_IFR_WIDTH_QUAD_IO (4 << 0) #define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0) #define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0) #define QSPI_IFR_INSTEN BIT(4) #define QSPI_IFR_ADDREN BIT(5) #define QSPI_IFR_OPTEN BIT(6) #define QSPI_IFR_DATAEN BIT(7) #define QSPI_IFR_OPTL_MASK GENMASK(9, 8) #define QSPI_IFR_OPTL_1BIT (0 << 8) #define QSPI_IFR_OPTL_2BIT (1 << 8) #define QSPI_IFR_OPTL_4BIT (2 << 8) #define QSPI_IFR_OPTL_8BIT (3 << 8) #define QSPI_IFR_ADDRL BIT(10) #define QSPI_IFR_TFRTYP_MEM BIT(12) #define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13) #define QSPI_IFR_CRM BIT(14) #define QSPI_IFR_NBDUM_MASK GENMASK(20, 16) #define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK) #define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */ /* Bitfields in QSPI_SMR (Scrambling Mode Register) */ #define QSPI_SMR_SCREN BIT(0) #define QSPI_SMR_RVDIS BIT(1) /* Bitfields in QSPI_WPMR (Write Protection Mode Register) */ #define QSPI_WPMR_WPEN BIT(0) #define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8) #define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK) /* Bitfields in QSPI_WPSR (Write Protection Status Register) */ #define QSPI_WPSR_WPVS BIT(0) #define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8) #define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC) struct atmel_qspi_caps { bool has_qspick; bool has_ricr; }; struct atmel_qspi { void __iomem *regs; void __iomem *mem; struct clk *pclk; struct clk *qspick; struct platform_device *pdev; const struct atmel_qspi_caps *caps; u32 pending; u32 mr; u32 scr; struct completion cmd_completion; }; struct atmel_qspi_mode { u8 cmd_buswidth; u8 addr_buswidth; u8 data_buswidth; u32 config; }; static const struct atmel_qspi_mode atmel_qspi_modes[] = { { 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI }, { 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT }, { 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT }, { 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO }, { 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO }, { 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD }, { 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD }, }; static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op, const struct atmel_qspi_mode *mode) { if (op->cmd.buswidth != mode->cmd_buswidth) return false; if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth) return false; if (op->data.nbytes && op->data.buswidth != mode->data_buswidth) return false; return true; } static int atmel_qspi_find_mode(const struct spi_mem_op *op) { u32 i; for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++) if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i])) return i; return -ENOTSUPP; } static bool atmel_qspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (atmel_qspi_find_mode(op) < 0) return false; /* special case not supported by hardware */ if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth && op->dummy.nbytes == 0) return false; return true; } static int atmel_qspi_set_cfg(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 *offset) { u32 iar, icr, ifr; u32 dummy_cycles = 0; int mode; iar = 0; icr = QSPI_ICR_INST(op->cmd.opcode); ifr = QSPI_IFR_INSTEN; mode = atmel_qspi_find_mode(op); if (mode < 0) return mode; ifr |= atmel_qspi_modes[mode].config; if (op->dummy.buswidth && op->dummy.nbytes) dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth; /* * The controller allows 24 and 32-bit addressing while NAND-flash * requires 16-bit long. Handling 8-bit long addresses is done using * the option field. For the 16-bit addresses, the workaround depends * of the number of requested dummy bits. If there are 8 or more dummy * cycles, the address is shifted and sent with the first dummy byte. * Otherwise opcode is disabled and the first byte of the address * contains the command opcode (works only if the opcode and address * use the same buswidth). The limitation is when the 16-bit address is * used without enough dummy cycles and the opcode is using a different * buswidth than the address. */ if (op->addr.buswidth) { switch (op->addr.nbytes) { case 0: break; case 1: ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT; icr |= QSPI_ICR_OPT(op->addr.val & 0xff); break; case 2: if (dummy_cycles < 8 / op->addr.buswidth) { ifr &= ~QSPI_IFR_INSTEN; ifr |= QSPI_IFR_ADDREN; iar = (op->cmd.opcode << 16) | (op->addr.val & 0xffff); } else { ifr |= QSPI_IFR_ADDREN; iar = (op->addr.val << 8) & 0xffffff; dummy_cycles -= 8 / op->addr.buswidth; } break; case 3: ifr |= QSPI_IFR_ADDREN; iar = op->addr.val & 0xffffff; break; case 4: ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL; iar = op->addr.val & 0x7ffffff; break; default: return -ENOTSUPP; } } /* offset of the data access in the QSPI memory space */ *offset = iar; /* Set number of dummy cycles */ if (dummy_cycles) ifr |= QSPI_IFR_NBDUM(dummy_cycles); /* Set data enable */ if (op->data.nbytes) ifr |= QSPI_IFR_DATAEN; /* * If the QSPI controller is set in regular SPI mode, set it in * Serial Memory Mode (SMM). */ if (aq->mr != QSPI_MR_SMM) { writel_relaxed(QSPI_MR_SMM, aq->regs + QSPI_MR); aq->mr = QSPI_MR_SMM; } /* Clear pending interrupts */ (void)readl_relaxed(aq->regs + QSPI_SR); if (aq->caps->has_ricr) { if (!op->addr.nbytes && op->data.dir == SPI_MEM_DATA_IN) ifr |= QSPI_IFR_APBTFRTYP_READ; /* Set QSPI Instruction Frame registers */ writel_relaxed(iar, aq->regs + QSPI_IAR); if (op->data.dir == SPI_MEM_DATA_IN) writel_relaxed(icr, aq->regs + QSPI_RICR); else writel_relaxed(icr, aq->regs + QSPI_WICR); writel_relaxed(ifr, aq->regs + QSPI_IFR); } else { if (op->data.dir == SPI_MEM_DATA_OUT) ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR; /* Set QSPI Instruction Frame registers */ writel_relaxed(iar, aq->regs + QSPI_IAR); writel_relaxed(icr, aq->regs + QSPI_ICR); writel_relaxed(ifr, aq->regs + QSPI_IFR); } return 0; } static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->master); u32 sr, offset; int err; err = atmel_qspi_set_cfg(aq, op, &offset); if (err) return err; /* Skip to the final steps if there is no data */ if (op->data.nbytes) { /* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */ (void)readl_relaxed(aq->regs + QSPI_IFR); /* Send/Receive data */ if (op->data.dir == SPI_MEM_DATA_IN) _memcpy_fromio(op->data.buf.in, aq->mem + offset, op->data.nbytes); else _memcpy_toio(aq->mem + offset, op->data.buf.out, op->data.nbytes); /* Release the chip-select */ writel_relaxed(QSPI_CR_LASTXFER, aq->regs + QSPI_CR); } /* Poll INSTRuction End status */ sr = readl_relaxed(aq->regs + QSPI_SR); if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED) return err; /* Wait for INSTRuction End interrupt */ reinit_completion(&aq->cmd_completion); aq->pending = sr & QSPI_SR_CMD_COMPLETED; writel_relaxed(QSPI_SR_CMD_COMPLETED, aq->regs + QSPI_IER); if (!wait_for_completion_timeout(&aq->cmd_completion, msecs_to_jiffies(1000))) err = -ETIMEDOUT; writel_relaxed(QSPI_SR_CMD_COMPLETED, aq->regs + QSPI_IDR); return err; } static const char *atmel_qspi_get_name(struct spi_mem *spimem) { return dev_name(spimem->spi->dev.parent); } static const struct spi_controller_mem_ops atmel_qspi_mem_ops = { .supports_op = atmel_qspi_supports_op, .exec_op = atmel_qspi_exec_op, .get_name = atmel_qspi_get_name }; static int atmel_qspi_setup(struct spi_device *spi) { struct spi_controller *ctrl = spi->master; struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); unsigned long src_rate; u32 scbr; if (ctrl->busy) return -EBUSY; if (!spi->max_speed_hz) return -EINVAL; src_rate = clk_get_rate(aq->pclk); if (!src_rate) return -EINVAL; /* Compute the QSPI baudrate */ scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz); if (scbr > 0) scbr--; aq->scr = QSPI_SCR_SCBR(scbr); writel_relaxed(aq->scr, aq->regs + QSPI_SCR); return 0; } static void atmel_qspi_init(struct atmel_qspi *aq) { /* Reset the QSPI controller */ writel_relaxed(QSPI_CR_SWRST, aq->regs + QSPI_CR); /* Set the QSPI controller by default in Serial Memory Mode */ writel_relaxed(QSPI_MR_SMM, aq->regs + QSPI_MR); aq->mr = QSPI_MR_SMM; /* Enable the QSPI controller */ writel_relaxed(QSPI_CR_QSPIEN, aq->regs + QSPI_CR); } static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id) { struct atmel_qspi *aq = dev_id; u32 status, mask, pending; status = readl_relaxed(aq->regs + QSPI_SR); mask = readl_relaxed(aq->regs + QSPI_IMR); pending = status & mask; if (!pending) return IRQ_NONE; aq->pending |= pending; if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED) complete(&aq->cmd_completion); return IRQ_HANDLED; } static int atmel_qspi_probe(struct platform_device *pdev) { struct spi_controller *ctrl; struct atmel_qspi *aq; struct resource *res; int irq, err = 0; ctrl = spi_alloc_master(&pdev->dev, sizeof(*aq)); if (!ctrl) return -ENOMEM; ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctrl->setup = atmel_qspi_setup; ctrl->bus_num = -1; ctrl->mem_ops = &atmel_qspi_mem_ops; ctrl->num_chipselect = 1; ctrl->dev.of_node = pdev->dev.of_node; platform_set_drvdata(pdev, ctrl); aq = spi_controller_get_devdata(ctrl); init_completion(&aq->cmd_completion); aq->pdev = pdev; /* Map the registers */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base"); aq->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(aq->regs)) { dev_err(&pdev->dev, "missing registers\n"); err = PTR_ERR(aq->regs); goto exit; } /* Map the AHB memory */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap"); aq->mem = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(aq->mem)) { dev_err(&pdev->dev, "missing AHB memory\n"); err = PTR_ERR(aq->mem); goto exit; } /* Get the peripheral clock */ aq->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(aq->pclk)) aq->pclk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(aq->pclk)) { dev_err(&pdev->dev, "missing peripheral clock\n"); err = PTR_ERR(aq->pclk); goto exit; } /* Enable the peripheral clock */ err = clk_prepare_enable(aq->pclk); if (err) { dev_err(&pdev->dev, "failed to enable the peripheral clock\n"); goto exit; } aq->caps = of_device_get_match_data(&pdev->dev); if (!aq->caps) { dev_err(&pdev->dev, "Could not retrieve QSPI caps\n"); err = -EINVAL; goto exit; } if (aq->caps->has_qspick) { /* Get the QSPI system clock */ aq->qspick = devm_clk_get(&pdev->dev, "qspick"); if (IS_ERR(aq->qspick)) { dev_err(&pdev->dev, "missing system clock\n"); err = PTR_ERR(aq->qspick); goto disable_pclk; } /* Enable the QSPI system clock */ err = clk_prepare_enable(aq->qspick); if (err) { dev_err(&pdev->dev, "failed to enable the QSPI system clock\n"); goto disable_pclk; } } /* Request the IRQ */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "missing IRQ\n"); err = irq; goto disable_qspick; } err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt, 0, dev_name(&pdev->dev), aq); if (err) goto disable_qspick; atmel_qspi_init(aq); err = spi_register_controller(ctrl); if (err) goto disable_qspick; return 0; disable_qspick: clk_disable_unprepare(aq->qspick); disable_pclk: clk_disable_unprepare(aq->pclk); exit: spi_controller_put(ctrl); return err; } static int atmel_qspi_remove(struct platform_device *pdev) { struct spi_controller *ctrl = platform_get_drvdata(pdev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); spi_unregister_controller(ctrl); writel_relaxed(QSPI_CR_QSPIDIS, aq->regs + QSPI_CR); clk_disable_unprepare(aq->qspick); clk_disable_unprepare(aq->pclk); return 0; } static int __maybe_unused atmel_qspi_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); clk_disable_unprepare(aq->qspick); clk_disable_unprepare(aq->pclk); return 0; } static int __maybe_unused atmel_qspi_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); clk_prepare_enable(aq->pclk); clk_prepare_enable(aq->qspick); atmel_qspi_init(aq); writel_relaxed(aq->scr, aq->regs + QSPI_SCR); return 0; } static SIMPLE_DEV_PM_OPS(atmel_qspi_pm_ops, atmel_qspi_suspend, atmel_qspi_resume); static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {}; static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = { .has_qspick = true, .has_ricr = true, }; static const struct of_device_id atmel_qspi_dt_ids[] = { { .compatible = "atmel,sama5d2-qspi", .data = &atmel_sama5d2_qspi_caps, }, { .compatible = "microchip,sam9x60-qspi", .data = &atmel_sam9x60_qspi_caps, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids); static struct platform_driver atmel_qspi_driver = { .driver = { .name = "atmel_qspi", .of_match_table = atmel_qspi_dt_ids, .pm = &atmel_qspi_pm_ops, }, .probe = atmel_qspi_probe, .remove = atmel_qspi_remove, }; module_platform_driver(atmel_qspi_driver); MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>"); MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com"); MODULE_DESCRIPTION("Atmel QSPI Controller driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1