Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Sperl | 2217 | 89.87% | 10 | 52.63% |
Stephan Olbrich | 237 | 9.61% | 4 | 21.05% |
Yue haibing | 5 | 0.20% | 1 | 5.26% |
Trent Piepho | 4 | 0.16% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.08% | 1 | 5.26% |
kbuild test robot | 1 | 0.04% | 1 | 5.26% |
Stefan Wahren | 1 | 0.04% | 1 | 5.26% |
Total | 2467 | 19 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Broadcom BCM2835 auxiliary SPI Controllers * * the driver does not rely on the native chipselects at all * but only uses the gpio type chipselects * * Based on: spi-bcm2835.c * * Copyright (C) 2015 Martin Sperl */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/of_irq.h> #include <linux/regmap.h> #include <linux/spi/spi.h> #include <linux/spinlock.h> /* define polling limits */ static unsigned int polling_limit_us = 30; module_param(polling_limit_us, uint, 0664); MODULE_PARM_DESC(polling_limit_us, "time in us to run a transfer in polling mode - if zero no polling is used\n"); /* * spi register defines * * note there is garbage in the "official" documentation, * so some data is taken from the file: * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h * inside of: * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz */ /* SPI register offsets */ #define BCM2835_AUX_SPI_CNTL0 0x00 #define BCM2835_AUX_SPI_CNTL1 0x04 #define BCM2835_AUX_SPI_STAT 0x08 #define BCM2835_AUX_SPI_PEEK 0x0C #define BCM2835_AUX_SPI_IO 0x20 #define BCM2835_AUX_SPI_TXHOLD 0x30 /* Bitfields in CNTL0 */ #define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20 #define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000 #define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000 #define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800 #define BCM2835_AUX_SPI_CNTL0_IN_RISING 0x00000400 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING 0x00000100 #define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F /* Bitfields in CNTL1 */ #define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000080 #define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000040 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001 /* Bitfields in STAT */ #define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000 #define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000 #define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400 #define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200 #define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100 #define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080 #define BCM2835_AUX_SPI_STAT_BUSY 0x00000040 #define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F struct bcm2835aux_spi { void __iomem *regs; struct clk *clk; int irq; u32 cntl[2]; const u8 *tx_buf; u8 *rx_buf; int tx_len; int rx_len; int pending; u64 count_transfer_polling; u64 count_transfer_irq; u64 count_transfer_irq_after_poll; struct dentry *debugfs_dir; }; #if defined(CONFIG_DEBUG_FS) static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs, const char *dname) { char name[64]; struct dentry *dir; /* get full name */ snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname); /* the base directory */ dir = debugfs_create_dir(name, NULL); bs->debugfs_dir = dir; /* the counters */ debugfs_create_u64("count_transfer_polling", 0444, dir, &bs->count_transfer_polling); debugfs_create_u64("count_transfer_irq", 0444, dir, &bs->count_transfer_irq); debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir, &bs->count_transfer_irq_after_poll); } static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs) { debugfs_remove_recursive(bs->debugfs_dir); bs->debugfs_dir = NULL; } #else static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs, const char *dname) { } static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs) { } #endif /* CONFIG_DEBUG_FS */ static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg) { return readl(bs->regs + reg); } static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg, u32 val) { writel(val, bs->regs + reg); } static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs) { u32 data; int count = min(bs->rx_len, 3); data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO); if (bs->rx_buf) { switch (count) { case 3: *bs->rx_buf++ = (data >> 16) & 0xff; /* fallthrough */ case 2: *bs->rx_buf++ = (data >> 8) & 0xff; /* fallthrough */ case 1: *bs->rx_buf++ = (data >> 0) & 0xff; /* fallthrough - no default */ } } bs->rx_len -= count; bs->pending -= count; } static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs) { u32 data; u8 byte; int count; int i; /* gather up to 3 bytes to write to the FIFO */ count = min(bs->tx_len, 3); data = 0; for (i = 0; i < count; i++) { byte = bs->tx_buf ? *bs->tx_buf++ : 0; data |= byte << (8 * (2 - i)); } /* and set the variable bit-length */ data |= (count * 8) << 24; /* and decrement length */ bs->tx_len -= count; bs->pending += count; /* write to the correct TX-register */ if (bs->tx_len) bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data); else bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data); } static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs) { /* disable spi clearing fifo and interrupts */ bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, BCM2835_AUX_SPI_CNTL0_CLEARFIFO); } static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs) { u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT); /* check if we have data to read */ for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL); stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT)) bcm2835aux_rd_fifo(bs); /* check if we have data to write */ while (bs->tx_len && (bs->pending < 12) && (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) & BCM2835_AUX_SPI_STAT_TX_FULL))) { bcm2835aux_wr_fifo(bs); } } static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id) { struct spi_master *master = dev_id; struct bcm2835aux_spi *bs = spi_master_get_devdata(master); /* IRQ may be shared, so return if our interrupts are disabled */ if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) & (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE))) return IRQ_NONE; /* do common fifo handling */ bcm2835aux_spi_transfer_helper(bs); if (!bs->tx_len) { /* disable tx fifo empty interrupt */ bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] | BCM2835_AUX_SPI_CNTL1_IDLE); } /* and if rx_len is 0 then disable interrupts and wake up completion */ if (!bs->rx_len) { bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); complete(&master->xfer_completion); } return IRQ_HANDLED; } static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); /* enable interrupts */ bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] | BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE); /* and wait for finish... */ return 1; } static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); /* update statistics */ bs->count_transfer_irq++; /* fill in registers and fifos before enabling interrupts */ bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]); /* fill in tx fifo with data before enabling interrupts */ while ((bs->tx_len) && (bs->pending < 12) && (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) & BCM2835_AUX_SPI_STAT_TX_FULL))) { bcm2835aux_wr_fifo(bs); } /* now run the interrupt mode */ return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr); } static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); unsigned long timeout; /* update statistics */ bs->count_transfer_polling++; /* configure spi */ bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]); /* set the timeout to at least 2 jiffies */ timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; /* loop until finished the transfer */ while (bs->rx_len) { /* do common fifo handling */ bcm2835aux_spi_transfer_helper(bs); /* there is still data pending to read check the timeout */ if (bs->rx_len && time_after(jiffies, timeout)) { dev_dbg_ratelimited(&spi->dev, "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", jiffies - timeout, bs->tx_len, bs->rx_len); /* forward to interrupt handler */ bs->count_transfer_irq_after_poll++; return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr); } } /* and return without waiting for completion */ return 0; } static int bcm2835aux_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *tfr) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); unsigned long spi_hz, clk_hz, speed, spi_used_hz; unsigned long hz_per_byte, byte_limit; /* calculate the registers to handle * * note that we use the variable data mode, which * is not optimal for longer transfers as we waste registers * resulting (potentially) in more interrupts when transferring * more than 12 bytes */ /* set clock */ spi_hz = tfr->speed_hz; clk_hz = clk_get_rate(bs->clk); if (spi_hz >= clk_hz / 2) { speed = 0; } else if (spi_hz) { speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1; if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX) speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX; } else { /* the slowest we can go */ speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX; } /* mask out old speed from previous spi_transfer */ bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED); /* set the new speed */ bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT; spi_used_hz = clk_hz / (2 * (speed + 1)); /* set transmit buffers and length */ bs->tx_buf = tfr->tx_buf; bs->rx_buf = tfr->rx_buf; bs->tx_len = tfr->len; bs->rx_len = tfr->len; bs->pending = 0; /* Calculate the estimated time in us the transfer runs. Note that * there are are 2 idle clocks cycles after each chunk getting * transferred - in our case the chunk size is 3 bytes, so we * approximate this by 9 cycles/byte. This is used to find the number * of Hz per byte per polling limit. E.g., we can transfer 1 byte in * 30 µs per 300,000 Hz of bus clock. */ hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1; /* run in polling mode for short transfers */ if (tfr->len < byte_limit) return bcm2835aux_spi_transfer_one_poll(master, spi, tfr); /* run in interrupt mode for all others */ return bcm2835aux_spi_transfer_one_irq(master, spi, tfr); } static int bcm2835aux_spi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct spi_device *spi = msg->spi; struct bcm2835aux_spi *bs = spi_master_get_devdata(master); bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE | BCM2835_AUX_SPI_CNTL0_VAR_WIDTH | BCM2835_AUX_SPI_CNTL0_MSBF_OUT; bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN; /* handle all the modes */ if (spi->mode & SPI_CPOL) { bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL; bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING; } else { bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING; } bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]); return 0; } static int bcm2835aux_spi_unprepare_message(struct spi_master *master, struct spi_message *msg) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); bcm2835aux_spi_reset_hw(bs); return 0; } static void bcm2835aux_spi_handle_err(struct spi_master *master, struct spi_message *msg) { struct bcm2835aux_spi *bs = spi_master_get_devdata(master); bcm2835aux_spi_reset_hw(bs); } static int bcm2835aux_spi_setup(struct spi_device *spi) { int ret; /* sanity check for native cs */ if (spi->mode & SPI_NO_CS) return 0; if (gpio_is_valid(spi->cs_gpio)) { /* with gpio-cs set the GPIO to the correct level * and as output (in case the dt has the gpio not configured * as output but native cs) */ ret = gpio_direction_output(spi->cs_gpio, (spi->mode & SPI_CS_HIGH) ? 0 : 1); if (ret) dev_err(&spi->dev, "could not set gpio %i as output: %i\n", spi->cs_gpio, ret); return ret; } /* for dt-backwards compatibility: only support native on CS0 * known things not supported with broken native CS: * * multiple chip-selects: cs0-cs2 are all * simultaniously asserted whenever there is a transfer * this even includes SPI_NO_CS * * SPI_CS_HIGH: cs are always asserted low * * cs_change: cs is deasserted after each spi_transfer * * cs_delay_usec: cs is always deasserted one SCK cycle * after the last transfer * probably more... */ dev_warn(&spi->dev, "Native CS is not supported - please configure cs-gpio in device-tree\n"); if (spi->chip_select == 0) return 0; dev_warn(&spi->dev, "Native CS is not working for cs > 0\n"); return -EINVAL; } static int bcm2835aux_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct bcm2835aux_spi *bs; struct resource *res; unsigned long clk_hz; int err; master = spi_alloc_master(&pdev->dev, sizeof(*bs)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS); master->bits_per_word_mask = SPI_BPW_MASK(8); /* even though the driver never officially supported native CS * allow a single native CS for legacy DT support purposes when * no cs-gpio is configured. * Known limitations for native cs are: * * multiple chip-selects: cs0-cs2 are all simultaniously asserted * whenever there is a transfer - this even includes SPI_NO_CS * * SPI_CS_HIGH: is ignores - cs are always asserted low * * cs_change: cs is deasserted after each spi_transfer * * cs_delay_usec: cs is always deasserted one SCK cycle after * a spi_transfer */ master->num_chipselect = 1; master->setup = bcm2835aux_spi_setup; master->transfer_one = bcm2835aux_spi_transfer_one; master->handle_err = bcm2835aux_spi_handle_err; master->prepare_message = bcm2835aux_spi_prepare_message; master->unprepare_message = bcm2835aux_spi_unprepare_message; master->dev.of_node = pdev->dev.of_node; bs = spi_master_get_devdata(master); /* the main area */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); bs->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(bs->regs)) { err = PTR_ERR(bs->regs); goto out_master_put; } bs->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(bs->clk)) { err = PTR_ERR(bs->clk); dev_err(&pdev->dev, "could not get clk: %d\n", err); goto out_master_put; } bs->irq = platform_get_irq(pdev, 0); if (bs->irq <= 0) { dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq); err = bs->irq ? bs->irq : -ENODEV; goto out_master_put; } /* this also enables the HW block */ err = clk_prepare_enable(bs->clk); if (err) { dev_err(&pdev->dev, "could not prepare clock: %d\n", err); goto out_master_put; } /* just checking if the clock returns a sane value */ clk_hz = clk_get_rate(bs->clk); if (!clk_hz) { dev_err(&pdev->dev, "clock returns 0 Hz\n"); err = -ENODEV; goto out_clk_disable; } /* reset SPI-HW block */ bcm2835aux_spi_reset_hw(bs); err = devm_request_irq(&pdev->dev, bs->irq, bcm2835aux_spi_interrupt, IRQF_SHARED, dev_name(&pdev->dev), master); if (err) { dev_err(&pdev->dev, "could not request IRQ: %d\n", err); goto out_clk_disable; } err = devm_spi_register_master(&pdev->dev, master); if (err) { dev_err(&pdev->dev, "could not register SPI master: %d\n", err); goto out_clk_disable; } bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev)); return 0; out_clk_disable: clk_disable_unprepare(bs->clk); out_master_put: spi_master_put(master); return err; } static int bcm2835aux_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct bcm2835aux_spi *bs = spi_master_get_devdata(master); bcm2835aux_debugfs_remove(bs); bcm2835aux_spi_reset_hw(bs); /* disable the HW block by releasing the clock */ clk_disable_unprepare(bs->clk); return 0; } static const struct of_device_id bcm2835aux_spi_match[] = { { .compatible = "brcm,bcm2835-aux-spi", }, {} }; MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match); static struct platform_driver bcm2835aux_spi_driver = { .driver = { .name = "spi-bcm2835aux", .of_match_table = bcm2835aux_spi_match, }, .probe = bcm2835aux_spi_probe, .remove = bcm2835aux_spi_remove, }; module_platform_driver(bcm2835aux_spi_driver); MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux"); MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1