Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ludovic Barre | 3167 | 99.06% | 5 | 62.50% |
Fabien Dessenne | 25 | 0.78% | 1 | 12.50% |
Patrice Chotard | 4 | 0.13% | 1 | 12.50% |
kbuild test robot | 1 | 0.03% | 1 | 12.50% |
Total | 3197 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/sizes.h> #include <linux/spi/spi-mem.h> #define QSPI_CR 0x00 #define CR_EN BIT(0) #define CR_ABORT BIT(1) #define CR_DMAEN BIT(2) #define CR_TCEN BIT(3) #define CR_SSHIFT BIT(4) #define CR_DFM BIT(6) #define CR_FSEL BIT(7) #define CR_FTHRES_SHIFT 8 #define CR_TEIE BIT(16) #define CR_TCIE BIT(17) #define CR_FTIE BIT(18) #define CR_SMIE BIT(19) #define CR_TOIE BIT(20) #define CR_PRESC_MASK GENMASK(31, 24) #define QSPI_DCR 0x04 #define DCR_FSIZE_MASK GENMASK(20, 16) #define QSPI_SR 0x08 #define SR_TEF BIT(0) #define SR_TCF BIT(1) #define SR_FTF BIT(2) #define SR_SMF BIT(3) #define SR_TOF BIT(4) #define SR_BUSY BIT(5) #define SR_FLEVEL_MASK GENMASK(13, 8) #define QSPI_FCR 0x0c #define FCR_CTEF BIT(0) #define FCR_CTCF BIT(1) #define QSPI_DLR 0x10 #define QSPI_CCR 0x14 #define CCR_INST_MASK GENMASK(7, 0) #define CCR_IMODE_MASK GENMASK(9, 8) #define CCR_ADMODE_MASK GENMASK(11, 10) #define CCR_ADSIZE_MASK GENMASK(13, 12) #define CCR_DCYC_MASK GENMASK(22, 18) #define CCR_DMODE_MASK GENMASK(25, 24) #define CCR_FMODE_MASK GENMASK(27, 26) #define CCR_FMODE_INDW (0U << 26) #define CCR_FMODE_INDR (1U << 26) #define CCR_FMODE_APM (2U << 26) #define CCR_FMODE_MM (3U << 26) #define CCR_BUSWIDTH_0 0x0 #define CCR_BUSWIDTH_1 0x1 #define CCR_BUSWIDTH_2 0x2 #define CCR_BUSWIDTH_4 0x3 #define QSPI_AR 0x18 #define QSPI_ABR 0x1c #define QSPI_DR 0x20 #define QSPI_PSMKR 0x24 #define QSPI_PSMAR 0x28 #define QSPI_PIR 0x2c #define QSPI_LPTR 0x30 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M #define STM32_QSPI_MAX_NORCHIP 2 #define STM32_FIFO_TIMEOUT_US 30000 #define STM32_BUSY_TIMEOUT_US 100000 #define STM32_ABT_TIMEOUT_US 100000 #define STM32_COMP_TIMEOUT_MS 1000 struct stm32_qspi_flash { struct stm32_qspi *qspi; u32 cs; u32 presc; }; struct stm32_qspi { struct device *dev; struct spi_controller *ctrl; phys_addr_t phys_base; void __iomem *io_base; void __iomem *mm_base; resource_size_t mm_size; struct clk *clk; u32 clk_rate; struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP]; struct completion data_completion; u32 fmode; struct dma_chan *dma_chtx; struct dma_chan *dma_chrx; struct completion dma_completion; u32 cr_reg; u32 dcr_reg; /* * to protect device configuration, could be different between * 2 flash access (bk1, bk2) */ struct mutex lock; }; static irqreturn_t stm32_qspi_irq(int irq, void *dev_id) { struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id; u32 cr, sr; sr = readl_relaxed(qspi->io_base + QSPI_SR); if (sr & (SR_TEF | SR_TCF)) { /* disable irq */ cr = readl_relaxed(qspi->io_base + QSPI_CR); cr &= ~CR_TCIE & ~CR_TEIE; writel_relaxed(cr, qspi->io_base + QSPI_CR); complete(&qspi->data_completion); } return IRQ_HANDLED; } static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr) { *val = readb_relaxed(addr); } static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr) { writeb_relaxed(*val, addr); } static int stm32_qspi_tx_poll(struct stm32_qspi *qspi, const struct spi_mem_op *op) { void (*tx_fifo)(u8 *val, void __iomem *addr); u32 len = op->data.nbytes, sr; u8 *buf; int ret; if (op->data.dir == SPI_MEM_DATA_IN) { tx_fifo = stm32_qspi_read_fifo; buf = op->data.buf.in; } else { tx_fifo = stm32_qspi_write_fifo; buf = (u8 *)op->data.buf.out; } while (len--) { ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, (sr & SR_FTF), 1, STM32_FIFO_TIMEOUT_US); if (ret) { dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n", len, sr); return ret; } tx_fifo(buf++, qspi->io_base + QSPI_DR); } return 0; } static int stm32_qspi_tx_mm(struct stm32_qspi *qspi, const struct spi_mem_op *op) { memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val, op->data.nbytes); return 0; } static void stm32_qspi_dma_callback(void *arg) { struct completion *dma_completion = arg; complete(dma_completion); } static int stm32_qspi_tx_dma(struct stm32_qspi *qspi, const struct spi_mem_op *op) { struct dma_async_tx_descriptor *desc; enum dma_transfer_direction dma_dir; struct dma_chan *dma_ch; struct sg_table sgt; dma_cookie_t cookie; u32 cr, t_out; int err; if (op->data.dir == SPI_MEM_DATA_IN) { dma_dir = DMA_DEV_TO_MEM; dma_ch = qspi->dma_chrx; } else { dma_dir = DMA_MEM_TO_DEV; dma_ch = qspi->dma_chtx; } /* * spi_map_buf return -EINVAL if the buffer is not DMA-able * (DMA-able: in vmalloc | kmap | virt_addr_valid) */ err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt); if (err) return err; desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents, dma_dir, DMA_PREP_INTERRUPT); if (!desc) { err = -ENOMEM; goto out_unmap; } cr = readl_relaxed(qspi->io_base + QSPI_CR); reinit_completion(&qspi->dma_completion); desc->callback = stm32_qspi_dma_callback; desc->callback_param = &qspi->dma_completion; cookie = dmaengine_submit(desc); err = dma_submit_error(cookie); if (err) goto out; dma_async_issue_pending(dma_ch); writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR); t_out = sgt.nents * STM32_COMP_TIMEOUT_MS; if (!wait_for_completion_timeout(&qspi->dma_completion, msecs_to_jiffies(t_out))) err = -ETIMEDOUT; if (err) dmaengine_terminate_all(dma_ch); out: writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR); out_unmap: spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt); return err; } static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op) { if (!op->data.nbytes) return 0; if (qspi->fmode == CCR_FMODE_MM) return stm32_qspi_tx_mm(qspi, op); else if ((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) || (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) if (!stm32_qspi_tx_dma(qspi, op)) return 0; return stm32_qspi_tx_poll(qspi, op); } static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi) { u32 sr; return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr, !(sr & SR_BUSY), 1, STM32_BUSY_TIMEOUT_US); } static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi, const struct spi_mem_op *op) { u32 cr, sr; int err = 0; if (!op->data.nbytes) return stm32_qspi_wait_nobusy(qspi); if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) goto out; reinit_completion(&qspi->data_completion); cr = readl_relaxed(qspi->io_base + QSPI_CR); writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR); if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) { err = -ETIMEDOUT; } else { sr = readl_relaxed(qspi->io_base + QSPI_SR); if (sr & SR_TEF) err = -EIO; } out: /* clear flags */ writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR); return err; } static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth) { if (buswidth == 4) return CCR_BUSWIDTH_4; return buswidth; } static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op) { struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select]; u32 ccr, cr, addr_max; int timeout, err = 0; dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n", op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth, op->addr.val, op->data.nbytes); err = stm32_qspi_wait_nobusy(qspi); if (err) goto abort; addr_max = op->addr.val + op->data.nbytes + 1; if (op->data.dir == SPI_MEM_DATA_IN) { if (addr_max < qspi->mm_size && op->addr.buswidth) qspi->fmode = CCR_FMODE_MM; else qspi->fmode = CCR_FMODE_INDR; } else { qspi->fmode = CCR_FMODE_INDW; } cr = readl_relaxed(qspi->io_base + QSPI_CR); cr &= ~CR_PRESC_MASK & ~CR_FSEL; cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc); cr |= FIELD_PREP(CR_FSEL, flash->cs); writel_relaxed(cr, qspi->io_base + QSPI_CR); if (op->data.nbytes) writel_relaxed(op->data.nbytes - 1, qspi->io_base + QSPI_DLR); else qspi->fmode = CCR_FMODE_INDW; ccr = qspi->fmode; ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode); ccr |= FIELD_PREP(CCR_IMODE_MASK, stm32_qspi_get_mode(qspi, op->cmd.buswidth)); if (op->addr.nbytes) { ccr |= FIELD_PREP(CCR_ADMODE_MASK, stm32_qspi_get_mode(qspi, op->addr.buswidth)); ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1); } if (op->dummy.buswidth && op->dummy.nbytes) ccr |= FIELD_PREP(CCR_DCYC_MASK, op->dummy.nbytes * 8 / op->dummy.buswidth); if (op->data.nbytes) { ccr |= FIELD_PREP(CCR_DMODE_MASK, stm32_qspi_get_mode(qspi, op->data.buswidth)); } writel_relaxed(ccr, qspi->io_base + QSPI_CCR); if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM) writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR); err = stm32_qspi_tx(qspi, op); /* * Abort in: * -error case * -read memory map: prefetching must be stopped if we read the last * byte of device (device size - fifo size). like device size is not * knows, the prefetching is always stop. */ if (err || qspi->fmode == CCR_FMODE_MM) goto abort; /* wait end of tx in indirect mode */ err = stm32_qspi_wait_cmd(qspi, op); if (err) goto abort; return 0; abort: cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT; writel_relaxed(cr, qspi->io_base + QSPI_CR); /* wait clear of abort bit by hw */ timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR, cr, !(cr & CR_ABORT), 1, STM32_ABT_TIMEOUT_US); writel_relaxed(FCR_CTCF, qspi->io_base + QSPI_FCR); if (err || timeout) dev_err(qspi->dev, "%s err:%d abort timeout:%d\n", __func__, err, timeout); return err; } static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); int ret; mutex_lock(&qspi->lock); ret = stm32_qspi_send(mem, op); mutex_unlock(&qspi->lock); return ret; } static int stm32_qspi_setup(struct spi_device *spi) { struct spi_controller *ctrl = spi->master; struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); struct stm32_qspi_flash *flash; u32 presc; if (ctrl->busy) return -EBUSY; if (!spi->max_speed_hz) return -EINVAL; presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; flash = &qspi->flash[spi->chip_select]; flash->qspi = qspi; flash->cs = spi->chip_select; flash->presc = presc; mutex_lock(&qspi->lock); qspi->cr_reg = 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN; writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); /* set dcr fsize to max address */ qspi->dcr_reg = DCR_FSIZE_MASK; writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); mutex_unlock(&qspi->lock); return 0; } static void stm32_qspi_dma_setup(struct stm32_qspi *qspi) { struct dma_slave_config dma_cfg; struct device *dev = qspi->dev; memset(&dma_cfg, 0, sizeof(dma_cfg)); dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_cfg.src_addr = qspi->phys_base + QSPI_DR; dma_cfg.dst_addr = qspi->phys_base + QSPI_DR; dma_cfg.src_maxburst = 4; dma_cfg.dst_maxburst = 4; qspi->dma_chrx = dma_request_slave_channel(dev, "rx"); if (qspi->dma_chrx) { if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) { dev_err(dev, "dma rx config failed\n"); dma_release_channel(qspi->dma_chrx); qspi->dma_chrx = NULL; } } qspi->dma_chtx = dma_request_slave_channel(dev, "tx"); if (qspi->dma_chtx) { if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) { dev_err(dev, "dma tx config failed\n"); dma_release_channel(qspi->dma_chtx); qspi->dma_chtx = NULL; } } init_completion(&qspi->dma_completion); } static void stm32_qspi_dma_free(struct stm32_qspi *qspi) { if (qspi->dma_chtx) dma_release_channel(qspi->dma_chtx); if (qspi->dma_chrx) dma_release_channel(qspi->dma_chrx); } /* * no special host constraint, so use default spi_mem_default_supports_op * to check supported mode. */ static const struct spi_controller_mem_ops stm32_qspi_mem_ops = { .exec_op = stm32_qspi_exec_op, }; static void stm32_qspi_release(struct stm32_qspi *qspi) { /* disable qspi */ writel_relaxed(0, qspi->io_base + QSPI_CR); stm32_qspi_dma_free(qspi); mutex_destroy(&qspi->lock); clk_disable_unprepare(qspi->clk); spi_master_put(qspi->ctrl); } static int stm32_qspi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *ctrl; struct reset_control *rstc; struct stm32_qspi *qspi; struct resource *res; int ret, irq; ctrl = spi_alloc_master(dev, sizeof(*qspi)); if (!ctrl) return -ENOMEM; qspi = spi_controller_get_devdata(ctrl); qspi->ctrl = ctrl; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi"); qspi->io_base = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->io_base)) { ret = PTR_ERR(qspi->io_base); goto err; } qspi->phys_base = res->start; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm"); qspi->mm_base = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->mm_base)) { ret = PTR_ERR(qspi->mm_base); goto err; } qspi->mm_size = resource_size(res); if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ) { ret = -EINVAL; goto err; } irq = platform_get_irq(pdev, 0); if (irq < 0) { if (irq != -EPROBE_DEFER) dev_err(dev, "IRQ error missing or invalid\n"); return irq; } ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0, dev_name(dev), qspi); if (ret) { dev_err(dev, "failed to request irq\n"); goto err; } init_completion(&qspi->data_completion); qspi->clk = devm_clk_get(dev, NULL); if (IS_ERR(qspi->clk)) { ret = PTR_ERR(qspi->clk); goto err; } qspi->clk_rate = clk_get_rate(qspi->clk); if (!qspi->clk_rate) { ret = -EINVAL; goto err; } ret = clk_prepare_enable(qspi->clk); if (ret) { dev_err(dev, "can not enable the clock\n"); goto err; } rstc = devm_reset_control_get_exclusive(dev, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); udelay(2); reset_control_deassert(rstc); } qspi->dev = dev; platform_set_drvdata(pdev, qspi); stm32_qspi_dma_setup(qspi); mutex_init(&qspi->lock); ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctrl->setup = stm32_qspi_setup; ctrl->bus_num = -1; ctrl->mem_ops = &stm32_qspi_mem_ops; ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; ctrl->dev.of_node = dev->of_node; ret = devm_spi_register_master(dev, ctrl); if (!ret) return 0; err: stm32_qspi_release(qspi); return ret; } static int stm32_qspi_remove(struct platform_device *pdev) { struct stm32_qspi *qspi = platform_get_drvdata(pdev); stm32_qspi_release(qspi); return 0; } static int __maybe_unused stm32_qspi_suspend(struct device *dev) { struct stm32_qspi *qspi = dev_get_drvdata(dev); clk_disable_unprepare(qspi->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused stm32_qspi_resume(struct device *dev) { struct stm32_qspi *qspi = dev_get_drvdata(dev); pinctrl_pm_select_default_state(dev); clk_prepare_enable(qspi->clk); writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); return 0; } static SIMPLE_DEV_PM_OPS(stm32_qspi_pm_ops, stm32_qspi_suspend, stm32_qspi_resume); static const struct of_device_id stm32_qspi_match[] = { {.compatible = "st,stm32f469-qspi"}, {} }; MODULE_DEVICE_TABLE(of, stm32_qspi_match); static struct platform_driver stm32_qspi_driver = { .probe = stm32_qspi_probe, .remove = stm32_qspi_remove, .driver = { .name = "stm32-qspi", .of_match_table = stm32_qspi_match, .pm = &stm32_qspi_pm_ops, }, }; module_platform_driver(stm32_qspi_driver); MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1