Contributors: 31
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Rebecca Schultz Zavin |
1480 |
45.64% |
17 |
25.37% |
Laura Abbott |
940 |
28.99% |
10 |
14.93% |
Andrew F. Davis |
302 |
9.31% |
2 |
2.99% |
Alexey Skidanov |
194 |
5.98% |
1 |
1.49% |
Colin Cross |
107 |
3.30% |
8 |
11.94% |
Cho KyongHo |
36 |
1.11% |
1 |
1.49% |
Nathan Chancellor |
27 |
0.83% |
1 |
1.49% |
Benjamin Gaignard |
21 |
0.65% |
2 |
2.99% |
Xiongwei Song |
18 |
0.56% |
1 |
1.49% |
Mitchel Humpherys |
16 |
0.49% |
2 |
2.99% |
Gioh Kim |
13 |
0.40% |
1 |
1.49% |
EunTaik Lee |
12 |
0.37% |
1 |
1.49% |
Todd Android Poynor |
12 |
0.37% |
1 |
1.49% |
Rohit kumar |
9 |
0.28% |
1 |
1.49% |
Paul Gortmaker |
9 |
0.28% |
1 |
1.49% |
Liam Mark |
8 |
0.25% |
2 |
2.99% |
Shailendra Verma |
5 |
0.15% |
1 |
1.49% |
Archit Taneja |
5 |
0.15% |
1 |
1.49% |
Ben Marsh |
5 |
0.15% |
1 |
1.49% |
Quytelda Kahja |
3 |
0.09% |
1 |
1.49% |
Neil Zhang |
3 |
0.09% |
1 |
1.49% |
Christian König |
2 |
0.06% |
1 |
1.49% |
Ingo Molnar |
2 |
0.06% |
1 |
1.49% |
Derek Yerger |
2 |
0.06% |
1 |
1.49% |
JP Abgrall |
2 |
0.06% |
1 |
1.49% |
Sachin Kamat |
2 |
0.06% |
1 |
1.49% |
Rom Lemarchand |
2 |
0.06% |
1 |
1.49% |
Linus Torvalds |
2 |
0.06% |
1 |
1.49% |
Sushmita Susheelendra |
2 |
0.06% |
1 |
1.49% |
Greg Kroah-Hartman |
1 |
0.03% |
1 |
1.49% |
Paolo Cretaro |
1 |
0.03% |
1 |
1.49% |
Total |
3243 |
|
67 |
|
// SPDX-License-Identifier: GPL-2.0
/*
* ION Memory Allocator
*
* Copyright (C) 2011 Google, Inc.
*/
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-buf.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/file.h>
#include <linux/freezer.h>
#include <linux/fs.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/rbtree.h>
#include <linux/sched/task.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include "ion.h"
static struct ion_device *internal_dev;
static int heap_id;
/* this function should only be called while dev->lock is held */
static void ion_buffer_add(struct ion_device *dev,
struct ion_buffer *buffer)
{
struct rb_node **p = &dev->buffers.rb_node;
struct rb_node *parent = NULL;
struct ion_buffer *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_buffer, node);
if (buffer < entry) {
p = &(*p)->rb_left;
} else if (buffer > entry) {
p = &(*p)->rb_right;
} else {
pr_err("%s: buffer already found.", __func__);
BUG();
}
}
rb_link_node(&buffer->node, parent, p);
rb_insert_color(&buffer->node, &dev->buffers);
}
/* this function should only be called while dev->lock is held */
static struct ion_buffer *ion_buffer_create(struct ion_heap *heap,
struct ion_device *dev,
unsigned long len,
unsigned long flags)
{
struct ion_buffer *buffer;
int ret;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
buffer->heap = heap;
buffer->flags = flags;
buffer->dev = dev;
buffer->size = len;
ret = heap->ops->allocate(heap, buffer, len, flags);
if (ret) {
if (!(heap->flags & ION_HEAP_FLAG_DEFER_FREE))
goto err2;
ion_heap_freelist_drain(heap, 0);
ret = heap->ops->allocate(heap, buffer, len, flags);
if (ret)
goto err2;
}
if (!buffer->sg_table) {
WARN_ONCE(1, "This heap needs to set the sgtable");
ret = -EINVAL;
goto err1;
}
spin_lock(&heap->stat_lock);
heap->num_of_buffers++;
heap->num_of_alloc_bytes += len;
if (heap->num_of_alloc_bytes > heap->alloc_bytes_wm)
heap->alloc_bytes_wm = heap->num_of_alloc_bytes;
spin_unlock(&heap->stat_lock);
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
mutex_lock(&dev->buffer_lock);
ion_buffer_add(dev, buffer);
mutex_unlock(&dev->buffer_lock);
return buffer;
err1:
heap->ops->free(buffer);
err2:
kfree(buffer);
return ERR_PTR(ret);
}
void ion_buffer_destroy(struct ion_buffer *buffer)
{
if (buffer->kmap_cnt > 0) {
pr_warn_once("%s: buffer still mapped in the kernel\n",
__func__);
buffer->heap->ops->unmap_kernel(buffer->heap, buffer);
}
buffer->heap->ops->free(buffer);
spin_lock(&buffer->heap->stat_lock);
buffer->heap->num_of_buffers--;
buffer->heap->num_of_alloc_bytes -= buffer->size;
spin_unlock(&buffer->heap->stat_lock);
kfree(buffer);
}
static void _ion_buffer_destroy(struct ion_buffer *buffer)
{
struct ion_heap *heap = buffer->heap;
struct ion_device *dev = buffer->dev;
mutex_lock(&dev->buffer_lock);
rb_erase(&buffer->node, &dev->buffers);
mutex_unlock(&dev->buffer_lock);
if (heap->flags & ION_HEAP_FLAG_DEFER_FREE)
ion_heap_freelist_add(heap, buffer);
else
ion_buffer_destroy(buffer);
}
static void *ion_buffer_kmap_get(struct ion_buffer *buffer)
{
void *vaddr;
if (buffer->kmap_cnt) {
buffer->kmap_cnt++;
return buffer->vaddr;
}
vaddr = buffer->heap->ops->map_kernel(buffer->heap, buffer);
if (WARN_ONCE(!vaddr,
"heap->ops->map_kernel should return ERR_PTR on error"))
return ERR_PTR(-EINVAL);
if (IS_ERR(vaddr))
return vaddr;
buffer->vaddr = vaddr;
buffer->kmap_cnt++;
return vaddr;
}
static void ion_buffer_kmap_put(struct ion_buffer *buffer)
{
buffer->kmap_cnt--;
if (!buffer->kmap_cnt) {
buffer->heap->ops->unmap_kernel(buffer->heap, buffer);
buffer->vaddr = NULL;
}
}
static struct sg_table *dup_sg_table(struct sg_table *table)
{
struct sg_table *new_table;
int ret, i;
struct scatterlist *sg, *new_sg;
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(new_table, table->nents, GFP_KERNEL);
if (ret) {
kfree(new_table);
return ERR_PTR(-ENOMEM);
}
new_sg = new_table->sgl;
for_each_sg(table->sgl, sg, table->nents, i) {
memcpy(new_sg, sg, sizeof(*sg));
new_sg->dma_address = 0;
new_sg = sg_next(new_sg);
}
return new_table;
}
static void free_duped_table(struct sg_table *table)
{
sg_free_table(table);
kfree(table);
}
struct ion_dma_buf_attachment {
struct device *dev;
struct sg_table *table;
struct list_head list;
};
static int ion_dma_buf_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct ion_dma_buf_attachment *a;
struct sg_table *table;
struct ion_buffer *buffer = dmabuf->priv;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
table = dup_sg_table(buffer->sg_table);
if (IS_ERR(table)) {
kfree(a);
return -ENOMEM;
}
a->table = table;
a->dev = attachment->dev;
INIT_LIST_HEAD(&a->list);
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->list, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void ion_dma_buf_detatch(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct ion_dma_buf_attachment *a = attachment->priv;
struct ion_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
list_del(&a->list);
mutex_unlock(&buffer->lock);
free_duped_table(a->table);
kfree(a);
}
static struct sg_table *ion_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct ion_dma_buf_attachment *a = attachment->priv;
struct sg_table *table;
table = a->table;
if (!dma_map_sg(attachment->dev, table->sgl, table->nents,
direction))
return ERR_PTR(-ENOMEM);
return table;
}
static void ion_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
dma_unmap_sg(attachment->dev, table->sgl, table->nents, direction);
}
static int ion_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct ion_buffer *buffer = dmabuf->priv;
int ret = 0;
if (!buffer->heap->ops->map_user) {
pr_err("%s: this heap does not define a method for mapping to userspace\n",
__func__);
return -EINVAL;
}
if (!(buffer->flags & ION_FLAG_CACHED))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
mutex_lock(&buffer->lock);
/* now map it to userspace */
ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma);
mutex_unlock(&buffer->lock);
if (ret)
pr_err("%s: failure mapping buffer to userspace\n",
__func__);
return ret;
}
static void ion_dma_buf_release(struct dma_buf *dmabuf)
{
struct ion_buffer *buffer = dmabuf->priv;
_ion_buffer_destroy(buffer);
}
static void *ion_dma_buf_kmap(struct dma_buf *dmabuf, unsigned long offset)
{
struct ion_buffer *buffer = dmabuf->priv;
return buffer->vaddr + offset * PAGE_SIZE;
}
static void ion_dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long offset,
void *ptr)
{
}
static int ion_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct ion_buffer *buffer = dmabuf->priv;
void *vaddr;
struct ion_dma_buf_attachment *a;
int ret = 0;
/*
* TODO: Move this elsewhere because we don't always need a vaddr
*/
if (buffer->heap->ops->map_kernel) {
mutex_lock(&buffer->lock);
vaddr = ion_buffer_kmap_get(buffer);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unlock;
}
mutex_unlock(&buffer->lock);
}
mutex_lock(&buffer->lock);
list_for_each_entry(a, &buffer->attachments, list) {
dma_sync_sg_for_cpu(a->dev, a->table->sgl, a->table->nents,
direction);
}
unlock:
mutex_unlock(&buffer->lock);
return ret;
}
static int ion_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct ion_buffer *buffer = dmabuf->priv;
struct ion_dma_buf_attachment *a;
if (buffer->heap->ops->map_kernel) {
mutex_lock(&buffer->lock);
ion_buffer_kmap_put(buffer);
mutex_unlock(&buffer->lock);
}
mutex_lock(&buffer->lock);
list_for_each_entry(a, &buffer->attachments, list) {
dma_sync_sg_for_device(a->dev, a->table->sgl, a->table->nents,
direction);
}
mutex_unlock(&buffer->lock);
return 0;
}
static const struct dma_buf_ops dma_buf_ops = {
.map_dma_buf = ion_map_dma_buf,
.unmap_dma_buf = ion_unmap_dma_buf,
.mmap = ion_mmap,
.release = ion_dma_buf_release,
.attach = ion_dma_buf_attach,
.detach = ion_dma_buf_detatch,
.begin_cpu_access = ion_dma_buf_begin_cpu_access,
.end_cpu_access = ion_dma_buf_end_cpu_access,
.map = ion_dma_buf_kmap,
.unmap = ion_dma_buf_kunmap,
};
static int ion_alloc(size_t len, unsigned int heap_id_mask, unsigned int flags)
{
struct ion_device *dev = internal_dev;
struct ion_buffer *buffer = NULL;
struct ion_heap *heap;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
int fd;
struct dma_buf *dmabuf;
pr_debug("%s: len %zu heap_id_mask %u flags %x\n", __func__,
len, heap_id_mask, flags);
/*
* traverse the list of heaps available in this system in priority
* order. If the heap type is supported by the client, and matches the
* request of the caller allocate from it. Repeat until allocate has
* succeeded or all heaps have been tried
*/
len = PAGE_ALIGN(len);
if (!len)
return -EINVAL;
down_read(&dev->lock);
plist_for_each_entry(heap, &dev->heaps, node) {
/* if the caller didn't specify this heap id */
if (!((1 << heap->id) & heap_id_mask))
continue;
buffer = ion_buffer_create(heap, dev, len, flags);
if (!IS_ERR(buffer))
break;
}
up_read(&dev->lock);
if (!buffer)
return -ENODEV;
if (IS_ERR(buffer))
return PTR_ERR(buffer);
exp_info.ops = &dma_buf_ops;
exp_info.size = buffer->size;
exp_info.flags = O_RDWR;
exp_info.priv = buffer;
dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(dmabuf)) {
_ion_buffer_destroy(buffer);
return PTR_ERR(dmabuf);
}
fd = dma_buf_fd(dmabuf, O_CLOEXEC);
if (fd < 0)
dma_buf_put(dmabuf);
return fd;
}
static int ion_query_heaps(struct ion_heap_query *query)
{
struct ion_device *dev = internal_dev;
struct ion_heap_data __user *buffer = u64_to_user_ptr(query->heaps);
int ret = -EINVAL, cnt = 0, max_cnt;
struct ion_heap *heap;
struct ion_heap_data hdata;
memset(&hdata, 0, sizeof(hdata));
down_read(&dev->lock);
if (!buffer) {
query->cnt = dev->heap_cnt;
ret = 0;
goto out;
}
if (query->cnt <= 0)
goto out;
max_cnt = query->cnt;
plist_for_each_entry(heap, &dev->heaps, node) {
strncpy(hdata.name, heap->name, MAX_HEAP_NAME);
hdata.name[sizeof(hdata.name) - 1] = '\0';
hdata.type = heap->type;
hdata.heap_id = heap->id;
if (copy_to_user(&buffer[cnt], &hdata, sizeof(hdata))) {
ret = -EFAULT;
goto out;
}
cnt++;
if (cnt >= max_cnt)
break;
}
query->cnt = cnt;
ret = 0;
out:
up_read(&dev->lock);
return ret;
}
union ion_ioctl_arg {
struct ion_allocation_data allocation;
struct ion_heap_query query;
};
static int validate_ioctl_arg(unsigned int cmd, union ion_ioctl_arg *arg)
{
switch (cmd) {
case ION_IOC_HEAP_QUERY:
if (arg->query.reserved0 ||
arg->query.reserved1 ||
arg->query.reserved2)
return -EINVAL;
break;
default:
break;
}
return 0;
}
static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret = 0;
union ion_ioctl_arg data;
if (_IOC_SIZE(cmd) > sizeof(data))
return -EINVAL;
/*
* The copy_from_user is unconditional here for both read and write
* to do the validate. If there is no write for the ioctl, the
* buffer is cleared
*/
if (copy_from_user(&data, (void __user *)arg, _IOC_SIZE(cmd)))
return -EFAULT;
ret = validate_ioctl_arg(cmd, &data);
if (ret) {
pr_warn_once("%s: ioctl validate failed\n", __func__);
return ret;
}
if (!(_IOC_DIR(cmd) & _IOC_WRITE))
memset(&data, 0, sizeof(data));
switch (cmd) {
case ION_IOC_ALLOC:
{
int fd;
fd = ion_alloc(data.allocation.len,
data.allocation.heap_id_mask,
data.allocation.flags);
if (fd < 0)
return fd;
data.allocation.fd = fd;
break;
}
case ION_IOC_HEAP_QUERY:
ret = ion_query_heaps(&data.query);
break;
default:
return -ENOTTY;
}
if (_IOC_DIR(cmd) & _IOC_READ) {
if (copy_to_user((void __user *)arg, &data, _IOC_SIZE(cmd)))
return -EFAULT;
}
return ret;
}
static const struct file_operations ion_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = ion_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ion_ioctl,
#endif
};
static int debug_shrink_set(void *data, u64 val)
{
struct ion_heap *heap = data;
struct shrink_control sc;
int objs;
sc.gfp_mask = GFP_HIGHUSER;
sc.nr_to_scan = val;
if (!val) {
objs = heap->shrinker.count_objects(&heap->shrinker, &sc);
sc.nr_to_scan = objs;
}
heap->shrinker.scan_objects(&heap->shrinker, &sc);
return 0;
}
static int debug_shrink_get(void *data, u64 *val)
{
struct ion_heap *heap = data;
struct shrink_control sc;
int objs;
sc.gfp_mask = GFP_HIGHUSER;
sc.nr_to_scan = 0;
objs = heap->shrinker.count_objects(&heap->shrinker, &sc);
*val = objs;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_shrink_fops, debug_shrink_get,
debug_shrink_set, "%llu\n");
void ion_device_add_heap(struct ion_heap *heap)
{
struct ion_device *dev = internal_dev;
int ret;
struct dentry *heap_root;
char debug_name[64];
if (!heap->ops->allocate || !heap->ops->free)
pr_err("%s: can not add heap with invalid ops struct.\n",
__func__);
spin_lock_init(&heap->free_lock);
spin_lock_init(&heap->stat_lock);
heap->free_list_size = 0;
if (heap->flags & ION_HEAP_FLAG_DEFER_FREE)
ion_heap_init_deferred_free(heap);
if ((heap->flags & ION_HEAP_FLAG_DEFER_FREE) || heap->ops->shrink) {
ret = ion_heap_init_shrinker(heap);
if (ret)
pr_err("%s: Failed to register shrinker\n", __func__);
}
heap->dev = dev;
heap->num_of_buffers = 0;
heap->num_of_alloc_bytes = 0;
heap->alloc_bytes_wm = 0;
heap_root = debugfs_create_dir(heap->name, dev->debug_root);
debugfs_create_u64("num_of_buffers",
0444, heap_root,
&heap->num_of_buffers);
debugfs_create_u64("num_of_alloc_bytes",
0444,
heap_root,
&heap->num_of_alloc_bytes);
debugfs_create_u64("alloc_bytes_wm",
0444,
heap_root,
&heap->alloc_bytes_wm);
if (heap->shrinker.count_objects &&
heap->shrinker.scan_objects) {
snprintf(debug_name, 64, "%s_shrink", heap->name);
debugfs_create_file(debug_name,
0644,
heap_root,
heap,
&debug_shrink_fops);
}
down_write(&dev->lock);
heap->id = heap_id++;
/*
* use negative heap->id to reverse the priority -- when traversing
* the list later attempt higher id numbers first
*/
plist_node_init(&heap->node, -heap->id);
plist_add(&heap->node, &dev->heaps);
dev->heap_cnt++;
up_write(&dev->lock);
}
EXPORT_SYMBOL(ion_device_add_heap);
static int ion_device_create(void)
{
struct ion_device *idev;
int ret;
idev = kzalloc(sizeof(*idev), GFP_KERNEL);
if (!idev)
return -ENOMEM;
idev->dev.minor = MISC_DYNAMIC_MINOR;
idev->dev.name = "ion";
idev->dev.fops = &ion_fops;
idev->dev.parent = NULL;
ret = misc_register(&idev->dev);
if (ret) {
pr_err("ion: failed to register misc device.\n");
kfree(idev);
return ret;
}
idev->debug_root = debugfs_create_dir("ion", NULL);
idev->buffers = RB_ROOT;
mutex_init(&idev->buffer_lock);
init_rwsem(&idev->lock);
plist_head_init(&idev->heaps);
internal_dev = idev;
return 0;
}
subsys_initcall(ion_device_create);