Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Julian Andres Klode | 2047 | 50.21% | 17 | 25.76% |
Marc Dietrich | 1878 | 46.06% | 23 | 34.85% |
Stephen Warren | 40 | 0.98% | 1 | 1.52% |
Tomás Tormo | 35 | 0.86% | 1 | 1.52% |
Thierry Reding | 17 | 0.42% | 3 | 4.55% |
Laura Garcia Liebana | 11 | 0.27% | 2 | 3.03% |
Tejun Heo | 11 | 0.27% | 1 | 1.52% |
Dan Carpenter | 6 | 0.15% | 1 | 1.52% |
Ilya Petrov | 6 | 0.15% | 1 | 1.52% |
Wei Yongjun | 4 | 0.10% | 1 | 1.52% |
Wolfram Sang | 4 | 0.10% | 1 | 1.52% |
Prashant Gaikwad | 3 | 0.07% | 2 | 3.03% |
Linus Torvalds | 2 | 0.05% | 1 | 1.52% |
Mark Brown | 2 | 0.05% | 1 | 1.52% |
Greg Kroah-Hartman | 2 | 0.05% | 2 | 3.03% |
Andy Shevchenko | 2 | 0.05% | 1 | 1.52% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 1.52% |
Simon Guinot | 1 | 0.02% | 1 | 1.52% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 1.52% |
Philipp Zabel | 1 | 0.02% | 1 | 1.52% |
Ebru Akagunduz | 1 | 0.02% | 1 | 1.52% |
Somya Anand | 1 | 0.02% | 1 | 1.52% |
Shailendra Verma | 1 | 0.02% | 1 | 1.52% |
Total | 4077 | 66 |
// SPDX-License-Identifier: GPL-2.0 /* * NVEC: NVIDIA compliant embedded controller interface * * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net> * * Authors: Pierre-Hugues Husson <phhusson@free.fr> * Ilya Petrov <ilya.muromec@gmail.com> * Marc Dietrich <marvin24@gmx.de> * Julian Andres Klode <jak@jak-linux.org> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/atomic.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/list.h> #include <linux/mfd/core.h> #include <linux/mutex.h> #include <linux/notifier.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include "nvec.h" #define I2C_CNFG 0x00 #define I2C_CNFG_PACKET_MODE_EN BIT(10) #define I2C_CNFG_NEW_MASTER_SFM BIT(11) #define I2C_CNFG_DEBOUNCE_CNT_SHIFT 12 #define I2C_SL_CNFG 0x20 #define I2C_SL_NEWSL BIT(2) #define I2C_SL_NACK BIT(1) #define I2C_SL_RESP BIT(0) #define I2C_SL_IRQ BIT(3) #define END_TRANS BIT(4) #define RCVD BIT(2) #define RNW BIT(1) #define I2C_SL_RCVD 0x24 #define I2C_SL_STATUS 0x28 #define I2C_SL_ADDR1 0x2c #define I2C_SL_ADDR2 0x30 #define I2C_SL_DELAY_COUNT 0x3c /** * enum nvec_msg_category - Message categories for nvec_msg_alloc() * @NVEC_MSG_RX: The message is an incoming message (from EC) * @NVEC_MSG_TX: The message is an outgoing message (to EC) */ enum nvec_msg_category { NVEC_MSG_RX, NVEC_MSG_TX, }; enum nvec_sleep_subcmds { GLOBAL_EVENTS, AP_PWR_DOWN, AP_SUSPEND, }; #define CNF_EVENT_REPORTING 0x01 #define GET_FIRMWARE_VERSION 0x15 #define LID_SWITCH BIT(1) #define PWR_BUTTON BIT(15) static struct nvec_chip *nvec_power_handle; static const struct mfd_cell nvec_devices[] = { { .name = "nvec-kbd", }, { .name = "nvec-mouse", }, { .name = "nvec-power", .id = 0, }, { .name = "nvec-power", .id = 1, }, { .name = "nvec-paz00", }, }; /** * nvec_register_notifier - Register a notifier with nvec * @nvec: A &struct nvec_chip * @nb: The notifier block to register * * Registers a notifier with @nvec. The notifier will be added to an atomic * notifier chain that is called for all received messages except those that * correspond to a request initiated by nvec_write_sync(). */ int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb, unsigned int events) { return atomic_notifier_chain_register(&nvec->notifier_list, nb); } EXPORT_SYMBOL_GPL(nvec_register_notifier); /** * nvec_unregister_notifier - Unregister a notifier with nvec * @nvec: A &struct nvec_chip * @nb: The notifier block to unregister * * Unregisters a notifier with @nvec. The notifier will be removed from the * atomic notifier chain. */ int nvec_unregister_notifier(struct nvec_chip *nvec, struct notifier_block *nb) { return atomic_notifier_chain_unregister(&nvec->notifier_list, nb); } EXPORT_SYMBOL_GPL(nvec_unregister_notifier); /** * nvec_status_notifier - The final notifier * * Prints a message about control events not handled in the notifier * chain. */ static int nvec_status_notifier(struct notifier_block *nb, unsigned long event_type, void *data) { struct nvec_chip *nvec = container_of(nb, struct nvec_chip, nvec_status_notifier); unsigned char *msg = data; if (event_type != NVEC_CNTL) return NOTIFY_DONE; dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type); print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1, msg, msg[1] + 2, true); return NOTIFY_OK; } /** * nvec_msg_alloc: * @nvec: A &struct nvec_chip * @category: Pool category, see &enum nvec_msg_category * * Allocate a single &struct nvec_msg object from the message pool of * @nvec. The result shall be passed to nvec_msg_free() if no longer * used. * * Outgoing messages are placed in the upper 75% of the pool, keeping the * lower 25% available for RX buffers only. The reason is to prevent a * situation where all buffers are full and a message is thus endlessly * retried because the response could never be processed. */ static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec, enum nvec_msg_category category) { int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0; for (; i < NVEC_POOL_SIZE; i++) { if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) { dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i); return &nvec->msg_pool[i]; } } dev_err(nvec->dev, "could not allocate %s buffer\n", (category == NVEC_MSG_TX) ? "TX" : "RX"); return NULL; } /** * nvec_msg_free: * @nvec: A &struct nvec_chip * @msg: A message (must be allocated by nvec_msg_alloc() and belong to @nvec) * * Free the given message */ void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg) { if (msg != &nvec->tx_scratch) dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool); atomic_set(&msg->used, 0); } EXPORT_SYMBOL_GPL(nvec_msg_free); /** * nvec_msg_is_event - Return %true if @msg is an event * @msg: A message */ static bool nvec_msg_is_event(struct nvec_msg *msg) { return msg->data[0] >> 7; } /** * nvec_msg_size - Get the size of a message * @msg: The message to get the size for * * This only works for received messages, not for outgoing messages. */ static size_t nvec_msg_size(struct nvec_msg *msg) { bool is_event = nvec_msg_is_event(msg); int event_length = (msg->data[0] & 0x60) >> 5; /* for variable size, payload size in byte 1 + count (1) + cmd (1) */ if (!is_event || event_length == NVEC_VAR_SIZE) return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0; else if (event_length == NVEC_2BYTES) return 2; else if (event_length == NVEC_3BYTES) return 3; return 0; } /** * nvec_gpio_set_value - Set the GPIO value * @nvec: A &struct nvec_chip * @value: The value to write (0 or 1) * * Like gpio_set_value(), but generating debugging information */ static void nvec_gpio_set_value(struct nvec_chip *nvec, int value) { dev_dbg(nvec->dev, "GPIO changed from %u to %u\n", gpiod_get_value(nvec->gpiod), value); gpiod_set_value(nvec->gpiod, value); } /** * nvec_write_async - Asynchronously write a message to NVEC * @nvec: An nvec_chip instance * @data: The message data, starting with the request type * @size: The size of @data * * Queue a single message to be transferred to the embedded controller * and return immediately. * * Returns: 0 on success, a negative error code on failure. If a failure * occurred, the nvec driver may print an error. */ int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data, short size) { struct nvec_msg *msg; unsigned long flags; msg = nvec_msg_alloc(nvec, NVEC_MSG_TX); if (!msg) return -ENOMEM; msg->data[0] = size; memcpy(msg->data + 1, data, size); msg->size = size + 1; spin_lock_irqsave(&nvec->tx_lock, flags); list_add_tail(&msg->node, &nvec->tx_data); spin_unlock_irqrestore(&nvec->tx_lock, flags); schedule_work(&nvec->tx_work); return 0; } EXPORT_SYMBOL(nvec_write_async); /** * nvec_write_sync - Write a message to nvec and read the response * @nvec: An &struct nvec_chip * @data: The data to write * @size: The size of @data * @msg: The response message received * * This is similar to nvec_write_async(), but waits for the * request to be answered before returning. This function * uses a mutex and can thus not be called from e.g. * interrupt handlers. * * Returns: 0 on success, a negative error code on failure. * The response message is returned in @msg. Shall be freed with * with nvec_msg_free() once no longer used. * */ int nvec_write_sync(struct nvec_chip *nvec, const unsigned char *data, short size, struct nvec_msg **msg) { mutex_lock(&nvec->sync_write_mutex); *msg = NULL; nvec->sync_write_pending = (data[1] << 8) + data[0]; if (nvec_write_async(nvec, data, size) < 0) { mutex_unlock(&nvec->sync_write_mutex); return -ENOMEM; } dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n", nvec->sync_write_pending); if (!(wait_for_completion_timeout(&nvec->sync_write, msecs_to_jiffies(2000)))) { dev_warn(nvec->dev, "timeout waiting for sync write to complete\n"); mutex_unlock(&nvec->sync_write_mutex); return -ETIMEDOUT; } dev_dbg(nvec->dev, "nvec_sync_write: pong!\n"); *msg = nvec->last_sync_msg; mutex_unlock(&nvec->sync_write_mutex); return 0; } EXPORT_SYMBOL(nvec_write_sync); /** * nvec_toggle_global_events - enables or disables global event reporting * @nvec: nvec handle * @state: true for enable, false for disable * * This switches on/off global event reports by the embedded controller. */ static void nvec_toggle_global_events(struct nvec_chip *nvec, bool state) { unsigned char global_events[] = { NVEC_SLEEP, GLOBAL_EVENTS, state }; nvec_write_async(nvec, global_events, 3); } /** * nvec_event_mask - fill the command string with event bitfield * ev: points to event command string * mask: bit to insert into the event mask * * Configure event command expects a 32 bit bitfield which describes * which events to enable. The bitfield has the following structure * (from highest byte to lowest): * system state bits 7-0 * system state bits 15-8 * oem system state bits 7-0 * oem system state bits 15-8 */ static void nvec_event_mask(char *ev, u32 mask) { ev[3] = mask >> 16 & 0xff; ev[4] = mask >> 24 & 0xff; ev[5] = mask >> 0 & 0xff; ev[6] = mask >> 8 & 0xff; } /** * nvec_request_master - Process outgoing messages * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) * * Processes all outgoing requests by sending the request and awaiting the * response, then continuing with the next request. Once a request has a * matching response, it will be freed and removed from the list. */ static void nvec_request_master(struct work_struct *work) { struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work); unsigned long flags; long err; struct nvec_msg *msg; spin_lock_irqsave(&nvec->tx_lock, flags); while (!list_empty(&nvec->tx_data)) { msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node); spin_unlock_irqrestore(&nvec->tx_lock, flags); nvec_gpio_set_value(nvec, 0); err = wait_for_completion_interruptible_timeout( &nvec->ec_transfer, msecs_to_jiffies(5000)); if (err == 0) { dev_warn(nvec->dev, "timeout waiting for ec transfer\n"); nvec_gpio_set_value(nvec, 1); msg->pos = 0; } spin_lock_irqsave(&nvec->tx_lock, flags); if (err > 0) { list_del_init(&msg->node); nvec_msg_free(nvec, msg); } } spin_unlock_irqrestore(&nvec->tx_lock, flags); } /** * parse_msg - Print some information and call the notifiers on an RX message * @nvec: A &struct nvec_chip * @msg: A message received by @nvec * * Paarse some pieces of the message and then call the chain of notifiers * registered via nvec_register_notifier. */ static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg) { if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) { dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data); return -EINVAL; } if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5) print_hex_dump(KERN_WARNING, "ec system event ", DUMP_PREFIX_NONE, 16, 1, msg->data, msg->data[1] + 2, true); atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f, msg->data); return 0; } /** * nvec_dispatch - Process messages received from the EC * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip) * * Process messages previously received from the EC and put into the RX * queue of the &struct nvec_chip instance associated with @work. */ static void nvec_dispatch(struct work_struct *work) { struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work); unsigned long flags; struct nvec_msg *msg; spin_lock_irqsave(&nvec->rx_lock, flags); while (!list_empty(&nvec->rx_data)) { msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node); list_del_init(&msg->node); spin_unlock_irqrestore(&nvec->rx_lock, flags); if (nvec->sync_write_pending == (msg->data[2] << 8) + msg->data[0]) { dev_dbg(nvec->dev, "sync write completed!\n"); nvec->sync_write_pending = 0; nvec->last_sync_msg = msg; complete(&nvec->sync_write); } else { parse_msg(nvec, msg); nvec_msg_free(nvec, msg); } spin_lock_irqsave(&nvec->rx_lock, flags); } spin_unlock_irqrestore(&nvec->rx_lock, flags); } /** * nvec_tx_completed - Complete the current transfer * @nvec: A &struct nvec_chip * * This is called when we have received an END_TRANS on a TX transfer. */ static void nvec_tx_completed(struct nvec_chip *nvec) { /* We got an END_TRANS, let's skip this, maybe there's an event */ if (nvec->tx->pos != nvec->tx->size) { dev_err(nvec->dev, "premature END_TRANS, resending\n"); nvec->tx->pos = 0; nvec_gpio_set_value(nvec, 0); } else { nvec->state = 0; } } /** * nvec_rx_completed - Complete the current transfer * @nvec: A &struct nvec_chip * * This is called when we have received an END_TRANS on a RX transfer. */ static void nvec_rx_completed(struct nvec_chip *nvec) { if (nvec->rx->pos != nvec_msg_size(nvec->rx)) { dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n", (uint)nvec_msg_size(nvec->rx), (uint)nvec->rx->pos); nvec_msg_free(nvec, nvec->rx); nvec->state = 0; /* Battery quirk - Often incomplete, and likes to crash */ if (nvec->rx->data[0] == NVEC_BAT) complete(&nvec->ec_transfer); return; } spin_lock(&nvec->rx_lock); /* * Add the received data to the work list and move the ring buffer * pointer to the next entry. */ list_add_tail(&nvec->rx->node, &nvec->rx_data); spin_unlock(&nvec->rx_lock); nvec->state = 0; if (!nvec_msg_is_event(nvec->rx)) complete(&nvec->ec_transfer); schedule_work(&nvec->rx_work); } /** * nvec_invalid_flags - Send an error message about invalid flags and jump * @nvec: The nvec device * @status: The status flags * @reset: Whether we shall jump to state 0. */ static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status, bool reset) { dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n", status, nvec->state); if (reset) nvec->state = 0; } /** * nvec_tx_set - Set the message to transfer (nvec->tx) * @nvec: A &struct nvec_chip * * Gets the first entry from the tx_data list of @nvec and sets the * tx member to it. If the tx_data list is empty, this uses the * tx_scratch message to send a no operation message. */ static void nvec_tx_set(struct nvec_chip *nvec) { spin_lock(&nvec->tx_lock); if (list_empty(&nvec->tx_data)) { dev_err(nvec->dev, "empty tx - sending no-op\n"); memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3); nvec->tx_scratch.size = 3; nvec->tx_scratch.pos = 0; nvec->tx = &nvec->tx_scratch; list_add_tail(&nvec->tx->node, &nvec->tx_data); } else { nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg, node); nvec->tx->pos = 0; } spin_unlock(&nvec->tx_lock); dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n", (uint)nvec->tx->size, nvec->tx->data[1]); } /** * nvec_interrupt - Interrupt handler * @irq: The IRQ * @dev: The nvec device * * Interrupt handler that fills our RX buffers and empties our TX * buffers. This uses a finite state machine with ridiculous amounts * of error checking, in order to be fairly reliable. */ static irqreturn_t nvec_interrupt(int irq, void *dev) { unsigned long status; unsigned int received = 0; unsigned char to_send = 0xff; const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW; struct nvec_chip *nvec = dev; unsigned int state = nvec->state; status = readl(nvec->base + I2C_SL_STATUS); /* Filter out some errors */ if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) { dev_err(nvec->dev, "unexpected irq mask %lx\n", status); return IRQ_HANDLED; } if ((status & I2C_SL_IRQ) == 0) { dev_err(nvec->dev, "Spurious IRQ\n"); return IRQ_HANDLED; } /* The EC did not request a read, so it send us something, read it */ if ((status & RNW) == 0) { received = readl(nvec->base + I2C_SL_RCVD); if (status & RCVD) writel(0, nvec->base + I2C_SL_RCVD); } if (status == (I2C_SL_IRQ | RCVD)) nvec->state = 0; switch (nvec->state) { case 0: /* Verify that its a transfer start, the rest later */ if (status != (I2C_SL_IRQ | RCVD)) nvec_invalid_flags(nvec, status, false); break; case 1: /* command byte */ if (status != I2C_SL_IRQ) { nvec_invalid_flags(nvec, status, true); } else { nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX); /* Should not happen in a normal world */ if (unlikely(!nvec->rx)) { nvec->state = 0; break; } nvec->rx->data[0] = received; nvec->rx->pos = 1; nvec->state = 2; } break; case 2: /* first byte after command */ if (status == (I2C_SL_IRQ | RNW | RCVD)) { udelay(33); if (nvec->rx->data[0] != 0x01) { dev_err(nvec->dev, "Read without prior read command\n"); nvec->state = 0; break; } nvec_msg_free(nvec, nvec->rx); nvec->state = 3; nvec_tx_set(nvec); to_send = nvec->tx->data[0]; nvec->tx->pos = 1; } else if (status == (I2C_SL_IRQ)) { nvec->rx->data[1] = received; nvec->rx->pos = 2; nvec->state = 4; } else { nvec_invalid_flags(nvec, status, true); } break; case 3: /* EC does a block read, we transmit data */ if (status & END_TRANS) { nvec_tx_completed(nvec); } else if ((status & RNW) == 0 || (status & RCVD)) { nvec_invalid_flags(nvec, status, true); } else if (nvec->tx && nvec->tx->pos < nvec->tx->size) { to_send = nvec->tx->data[nvec->tx->pos++]; } else { dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n", nvec->tx, (uint)(nvec->tx ? nvec->tx->pos : 0), (uint)(nvec->tx ? nvec->tx->size : 0)); nvec->state = 0; } break; case 4: /* EC does some write, we read the data */ if ((status & (END_TRANS | RNW)) == END_TRANS) nvec_rx_completed(nvec); else if (status & (RNW | RCVD)) nvec_invalid_flags(nvec, status, true); else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE) nvec->rx->data[nvec->rx->pos++] = received; else dev_err(nvec->dev, "RX buffer overflow on %p: Trying to write byte %u of %u\n", nvec->rx, nvec->rx ? nvec->rx->pos : 0, NVEC_MSG_SIZE); break; default: nvec->state = 0; } /* If we are told that a new transfer starts, verify it */ if ((status & (RCVD | RNW)) == RCVD) { if (received != nvec->i2c_addr) dev_err(nvec->dev, "received address 0x%02x, expected 0x%02x\n", received, nvec->i2c_addr); nvec->state = 1; } /* Send data if requested, but not on end of transmission */ if ((status & (RNW | END_TRANS)) == RNW) writel(to_send, nvec->base + I2C_SL_RCVD); /* If we have send the first byte */ if (status == (I2C_SL_IRQ | RNW | RCVD)) nvec_gpio_set_value(nvec, 1); dev_dbg(nvec->dev, "Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n", (status & RNW) == 0 ? "received" : "R=", received, (status & (RNW | END_TRANS)) ? "sent" : "S=", to_send, state, status & END_TRANS ? " END_TRANS" : "", status & RCVD ? " RCVD" : "", status & RNW ? " RNW" : ""); /* * TODO: A correct fix needs to be found for this. * * We experience less incomplete messages with this delay than without * it, but we don't know why. Help is appreciated. */ udelay(100); return IRQ_HANDLED; } static void tegra_init_i2c_slave(struct nvec_chip *nvec) { u32 val; clk_prepare_enable(nvec->i2c_clk); reset_control_assert(nvec->rst); udelay(2); reset_control_deassert(nvec->rst); val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN | (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT); writel(val, nvec->base + I2C_CNFG); clk_set_rate(nvec->i2c_clk, 8 * 80000); writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG); writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT); writel(nvec->i2c_addr >> 1, nvec->base + I2C_SL_ADDR1); writel(0, nvec->base + I2C_SL_ADDR2); enable_irq(nvec->irq); } #ifdef CONFIG_PM_SLEEP static void nvec_disable_i2c_slave(struct nvec_chip *nvec) { disable_irq(nvec->irq); writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG); clk_disable_unprepare(nvec->i2c_clk); } #endif static void nvec_power_off(void) { char ap_pwr_down[] = { NVEC_SLEEP, AP_PWR_DOWN }; nvec_toggle_global_events(nvec_power_handle, false); nvec_write_async(nvec_power_handle, ap_pwr_down, 2); } static int tegra_nvec_probe(struct platform_device *pdev) { int err, ret; struct clk *i2c_clk; struct device *dev = &pdev->dev; struct nvec_chip *nvec; struct nvec_msg *msg; struct resource *res; void __iomem *base; char get_firmware_version[] = { NVEC_CNTL, GET_FIRMWARE_VERSION }, unmute_speakers[] = { NVEC_OEM0, 0x10, 0x59, 0x95 }, enable_event[7] = { NVEC_SYS, CNF_EVENT_REPORTING, true }; if (!dev->of_node) { dev_err(dev, "must be instantiated using device tree\n"); return -ENODEV; } nvec = devm_kzalloc(dev, sizeof(struct nvec_chip), GFP_KERNEL); if (!nvec) return -ENOMEM; platform_set_drvdata(pdev, nvec); nvec->dev = dev; if (of_property_read_u32(dev->of_node, "slave-addr", &nvec->i2c_addr)) { dev_err(dev, "no i2c address specified"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); nvec->irq = platform_get_irq(pdev, 0); if (nvec->irq < 0) { dev_err(dev, "no irq resource?\n"); return -ENODEV; } i2c_clk = devm_clk_get(dev, "div-clk"); if (IS_ERR(i2c_clk)) { dev_err(dev, "failed to get controller clock\n"); return -ENODEV; } nvec->rst = devm_reset_control_get_exclusive(dev, "i2c"); if (IS_ERR(nvec->rst)) { dev_err(dev, "failed to get controller reset\n"); return PTR_ERR(nvec->rst); } nvec->base = base; nvec->i2c_clk = i2c_clk; nvec->rx = &nvec->msg_pool[0]; ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list); init_completion(&nvec->sync_write); init_completion(&nvec->ec_transfer); mutex_init(&nvec->sync_write_mutex); spin_lock_init(&nvec->tx_lock); spin_lock_init(&nvec->rx_lock); INIT_LIST_HEAD(&nvec->rx_data); INIT_LIST_HEAD(&nvec->tx_data); INIT_WORK(&nvec->rx_work, nvec_dispatch); INIT_WORK(&nvec->tx_work, nvec_request_master); nvec->gpiod = devm_gpiod_get(dev, "request", GPIOD_OUT_HIGH); if (IS_ERR(nvec->gpiod)) { dev_err(dev, "couldn't request gpio\n"); return PTR_ERR(nvec->gpiod); } err = devm_request_irq(dev, nvec->irq, nvec_interrupt, 0, "nvec", nvec); if (err) { dev_err(dev, "couldn't request irq\n"); return -ENODEV; } disable_irq(nvec->irq); tegra_init_i2c_slave(nvec); /* enable event reporting */ nvec_toggle_global_events(nvec, true); nvec->nvec_status_notifier.notifier_call = nvec_status_notifier; nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0); nvec_power_handle = nvec; pm_power_off = nvec_power_off; /* Get Firmware Version */ err = nvec_write_sync(nvec, get_firmware_version, 2, &msg); if (!err) { dev_warn(dev, "ec firmware version %02x.%02x.%02x / %02x\n", msg->data[4], msg->data[5], msg->data[6], msg->data[7]); nvec_msg_free(nvec, msg); } ret = mfd_add_devices(dev, 0, nvec_devices, ARRAY_SIZE(nvec_devices), NULL, 0, NULL); if (ret) dev_err(dev, "error adding subdevices\n"); /* unmute speakers? */ nvec_write_async(nvec, unmute_speakers, 4); /* enable lid switch event */ nvec_event_mask(enable_event, LID_SWITCH); nvec_write_async(nvec, enable_event, 7); /* enable power button event */ nvec_event_mask(enable_event, PWR_BUTTON); nvec_write_async(nvec, enable_event, 7); return 0; } static int tegra_nvec_remove(struct platform_device *pdev) { struct nvec_chip *nvec = platform_get_drvdata(pdev); nvec_toggle_global_events(nvec, false); mfd_remove_devices(nvec->dev); nvec_unregister_notifier(nvec, &nvec->nvec_status_notifier); cancel_work_sync(&nvec->rx_work); cancel_work_sync(&nvec->tx_work); /* FIXME: needs check whether nvec is responsible for power off */ pm_power_off = NULL; return 0; } #ifdef CONFIG_PM_SLEEP static int nvec_suspend(struct device *dev) { int err; struct nvec_chip *nvec = dev_get_drvdata(dev); struct nvec_msg *msg; char ap_suspend[] = { NVEC_SLEEP, AP_SUSPEND }; dev_dbg(nvec->dev, "suspending\n"); /* keep these sync or you'll break suspend */ nvec_toggle_global_events(nvec, false); err = nvec_write_sync(nvec, ap_suspend, sizeof(ap_suspend), &msg); if (!err) nvec_msg_free(nvec, msg); nvec_disable_i2c_slave(nvec); return 0; } static int nvec_resume(struct device *dev) { struct nvec_chip *nvec = dev_get_drvdata(dev); dev_dbg(nvec->dev, "resuming\n"); tegra_init_i2c_slave(nvec); nvec_toggle_global_events(nvec, true); return 0; } #endif static SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume); /* Match table for of_platform binding */ static const struct of_device_id nvidia_nvec_of_match[] = { { .compatible = "nvidia,nvec", }, {}, }; MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match); static struct platform_driver nvec_device_driver = { .probe = tegra_nvec_probe, .remove = tegra_nvec_remove, .driver = { .name = "nvec", .pm = &nvec_pm_ops, .of_match_table = nvidia_nvec_of_match, } }; module_platform_driver(nvec_device_driver); MODULE_ALIAS("platform:nvec"); MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface"); MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1