Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Crispin | 4533 | 98.54% | 1 | 11.11% |
Gustavo A. R. Silva | 35 | 0.76% | 2 | 22.22% |
Lou Knauer | 16 | 0.35% | 1 | 11.11% |
Christian Lütke-Stetzkamp | 7 | 0.15% | 1 | 11.11% |
Daniela Mormocea | 6 | 0.13% | 2 | 22.22% |
Greg Kroah-Hartman | 2 | 0.04% | 1 | 11.11% |
Bharath Vedartham | 1 | 0.02% | 1 | 11.11% |
Total | 4600 | 9 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2013, Lars-Peter Clausen <lars@metafoo.de> * GDMA4740 DMAC support */ #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/init.h> #include <linux/list.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/irq.h> #include <linux/of_dma.h> #include <linux/reset.h> #include <linux/of_device.h> #include "virt-dma.h" #define GDMA_REG_SRC_ADDR(x) (0x00 + (x) * 0x10) #define GDMA_REG_DST_ADDR(x) (0x04 + (x) * 0x10) #define GDMA_REG_CTRL0(x) (0x08 + (x) * 0x10) #define GDMA_REG_CTRL0_TX_MASK 0xffff #define GDMA_REG_CTRL0_TX_SHIFT 16 #define GDMA_REG_CTRL0_CURR_MASK 0xff #define GDMA_REG_CTRL0_CURR_SHIFT 8 #define GDMA_REG_CTRL0_SRC_ADDR_FIXED BIT(7) #define GDMA_REG_CTRL0_DST_ADDR_FIXED BIT(6) #define GDMA_REG_CTRL0_BURST_MASK 0x7 #define GDMA_REG_CTRL0_BURST_SHIFT 3 #define GDMA_REG_CTRL0_DONE_INT BIT(2) #define GDMA_REG_CTRL0_ENABLE BIT(1) #define GDMA_REG_CTRL0_SW_MODE BIT(0) #define GDMA_REG_CTRL1(x) (0x0c + (x) * 0x10) #define GDMA_REG_CTRL1_SEG_MASK 0xf #define GDMA_REG_CTRL1_SEG_SHIFT 22 #define GDMA_REG_CTRL1_REQ_MASK 0x3f #define GDMA_REG_CTRL1_SRC_REQ_SHIFT 16 #define GDMA_REG_CTRL1_DST_REQ_SHIFT 8 #define GDMA_REG_CTRL1_NEXT_MASK 0x1f #define GDMA_REG_CTRL1_NEXT_SHIFT 3 #define GDMA_REG_CTRL1_COHERENT BIT(2) #define GDMA_REG_CTRL1_FAIL BIT(1) #define GDMA_REG_CTRL1_MASK BIT(0) #define GDMA_REG_UNMASK_INT 0x200 #define GDMA_REG_DONE_INT 0x204 #define GDMA_REG_GCT 0x220 #define GDMA_REG_GCT_CHAN_MASK 0x3 #define GDMA_REG_GCT_CHAN_SHIFT 3 #define GDMA_REG_GCT_VER_MASK 0x3 #define GDMA_REG_GCT_VER_SHIFT 1 #define GDMA_REG_GCT_ARBIT_RR BIT(0) #define GDMA_REG_REQSTS 0x2a0 #define GDMA_REG_ACKSTS 0x2a4 #define GDMA_REG_FINSTS 0x2a8 /* for RT305X gdma registers */ #define GDMA_RT305X_CTRL0_REQ_MASK 0xf #define GDMA_RT305X_CTRL0_SRC_REQ_SHIFT 12 #define GDMA_RT305X_CTRL0_DST_REQ_SHIFT 8 #define GDMA_RT305X_CTRL1_FAIL BIT(4) #define GDMA_RT305X_CTRL1_NEXT_MASK 0x7 #define GDMA_RT305X_CTRL1_NEXT_SHIFT 1 #define GDMA_RT305X_STATUS_INT 0x80 #define GDMA_RT305X_STATUS_SIGNAL 0x84 #define GDMA_RT305X_GCT 0x88 /* for MT7621 gdma registers */ #define GDMA_REG_PERF_START(x) (0x230 + (x) * 0x8) #define GDMA_REG_PERF_END(x) (0x234 + (x) * 0x8) enum gdma_dma_transfer_size { GDMA_TRANSFER_SIZE_4BYTE = 0, GDMA_TRANSFER_SIZE_8BYTE = 1, GDMA_TRANSFER_SIZE_16BYTE = 2, GDMA_TRANSFER_SIZE_32BYTE = 3, GDMA_TRANSFER_SIZE_64BYTE = 4, }; struct gdma_dma_sg { dma_addr_t src_addr; dma_addr_t dst_addr; u32 len; }; struct gdma_dma_desc { struct virt_dma_desc vdesc; enum dma_transfer_direction direction; bool cyclic; u32 residue; unsigned int num_sgs; struct gdma_dma_sg sg[]; }; struct gdma_dmaengine_chan { struct virt_dma_chan vchan; unsigned int id; unsigned int slave_id; dma_addr_t fifo_addr; enum gdma_dma_transfer_size burst_size; struct gdma_dma_desc *desc; unsigned int next_sg; }; struct gdma_dma_dev { struct dma_device ddev; struct device_dma_parameters dma_parms; struct gdma_data *data; void __iomem *base; struct tasklet_struct task; volatile unsigned long chan_issued; atomic_t cnt; struct gdma_dmaengine_chan chan[]; }; struct gdma_data { int chancnt; u32 done_int_reg; void (*init)(struct gdma_dma_dev *dma_dev); int (*start_transfer)(struct gdma_dmaengine_chan *chan); }; static struct gdma_dma_dev *gdma_dma_chan_get_dev( struct gdma_dmaengine_chan *chan) { return container_of(chan->vchan.chan.device, struct gdma_dma_dev, ddev); } static struct gdma_dmaengine_chan *to_gdma_dma_chan(struct dma_chan *c) { return container_of(c, struct gdma_dmaengine_chan, vchan.chan); } static struct gdma_dma_desc *to_gdma_dma_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct gdma_dma_desc, vdesc); } static inline uint32_t gdma_dma_read(struct gdma_dma_dev *dma_dev, unsigned int reg) { return readl(dma_dev->base + reg); } static inline void gdma_dma_write(struct gdma_dma_dev *dma_dev, unsigned int reg, uint32_t val) { writel(val, dma_dev->base + reg); } static enum gdma_dma_transfer_size gdma_dma_maxburst(u32 maxburst) { if (maxburst < 2) return GDMA_TRANSFER_SIZE_4BYTE; else if (maxburst < 4) return GDMA_TRANSFER_SIZE_8BYTE; else if (maxburst < 8) return GDMA_TRANSFER_SIZE_16BYTE; else if (maxburst < 16) return GDMA_TRANSFER_SIZE_32BYTE; else return GDMA_TRANSFER_SIZE_64BYTE; } static int gdma_dma_config(struct dma_chan *c, struct dma_slave_config *config) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan); if (config->device_fc) { dev_err(dma_dev->ddev.dev, "not support flow controller\n"); return -EINVAL; } switch (config->direction) { case DMA_MEM_TO_DEV: if (config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) { dev_err(dma_dev->ddev.dev, "only support 4 byte buswidth\n"); return -EINVAL; } chan->slave_id = config->slave_id; chan->fifo_addr = config->dst_addr; chan->burst_size = gdma_dma_maxburst(config->dst_maxburst); break; case DMA_DEV_TO_MEM: if (config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) { dev_err(dma_dev->ddev.dev, "only support 4 byte buswidth\n"); return -EINVAL; } chan->slave_id = config->slave_id; chan->fifo_addr = config->src_addr; chan->burst_size = gdma_dma_maxburst(config->src_maxburst); break; default: dev_err(dma_dev->ddev.dev, "direction type %d error\n", config->direction); return -EINVAL; } return 0; } static int gdma_dma_terminate_all(struct dma_chan *c) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan); unsigned long flags, timeout; LIST_HEAD(head); int i = 0; spin_lock_irqsave(&chan->vchan.lock, flags); chan->desc = NULL; clear_bit(chan->id, &dma_dev->chan_issued); vchan_get_all_descriptors(&chan->vchan, &head); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &head); /* wait dma transfer complete */ timeout = jiffies + msecs_to_jiffies(5000); while (gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id)) & GDMA_REG_CTRL0_ENABLE) { if (time_after_eq(jiffies, timeout)) { dev_err(dma_dev->ddev.dev, "chan %d wait timeout\n", chan->id); /* restore to init value */ gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), 0); break; } cpu_relax(); i++; } if (i) dev_dbg(dma_dev->ddev.dev, "terminate chan %d loops %d\n", chan->id, i); return 0; } static void rt305x_dump_reg(struct gdma_dma_dev *dma_dev, int id) { dev_dbg(dma_dev->ddev.dev, "chan %d, src %08x, dst %08x, ctr0 %08x, ctr1 %08x, intr %08x, signal %08x\n", id, gdma_dma_read(dma_dev, GDMA_REG_SRC_ADDR(id)), gdma_dma_read(dma_dev, GDMA_REG_DST_ADDR(id)), gdma_dma_read(dma_dev, GDMA_REG_CTRL0(id)), gdma_dma_read(dma_dev, GDMA_REG_CTRL1(id)), gdma_dma_read(dma_dev, GDMA_RT305X_STATUS_INT), gdma_dma_read(dma_dev, GDMA_RT305X_STATUS_SIGNAL)); } static int rt305x_gdma_start_transfer(struct gdma_dmaengine_chan *chan) { struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan); dma_addr_t src_addr, dst_addr; struct gdma_dma_sg *sg; u32 ctrl0, ctrl1; /* verify chan is already stopped */ ctrl0 = gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id)); if (unlikely(ctrl0 & GDMA_REG_CTRL0_ENABLE)) { dev_err(dma_dev->ddev.dev, "chan %d is start(%08x).\n", chan->id, ctrl0); rt305x_dump_reg(dma_dev, chan->id); return -EINVAL; } sg = &chan->desc->sg[chan->next_sg]; if (chan->desc->direction == DMA_MEM_TO_DEV) { src_addr = sg->src_addr; dst_addr = chan->fifo_addr; ctrl0 = GDMA_REG_CTRL0_DST_ADDR_FIXED | (8 << GDMA_RT305X_CTRL0_SRC_REQ_SHIFT) | (chan->slave_id << GDMA_RT305X_CTRL0_DST_REQ_SHIFT); } else if (chan->desc->direction == DMA_DEV_TO_MEM) { src_addr = chan->fifo_addr; dst_addr = sg->dst_addr; ctrl0 = GDMA_REG_CTRL0_SRC_ADDR_FIXED | (chan->slave_id << GDMA_RT305X_CTRL0_SRC_REQ_SHIFT) | (8 << GDMA_RT305X_CTRL0_DST_REQ_SHIFT); } else if (chan->desc->direction == DMA_MEM_TO_MEM) { /* * TODO: memcpy function have bugs. sometime it will copy * more 8 bytes data when using dmatest verify. */ src_addr = sg->src_addr; dst_addr = sg->dst_addr; ctrl0 = GDMA_REG_CTRL0_SW_MODE | (8 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) | (8 << GDMA_REG_CTRL1_DST_REQ_SHIFT); } else { dev_err(dma_dev->ddev.dev, "direction type %d error\n", chan->desc->direction); return -EINVAL; } ctrl0 |= (sg->len << GDMA_REG_CTRL0_TX_SHIFT) | (chan->burst_size << GDMA_REG_CTRL0_BURST_SHIFT) | GDMA_REG_CTRL0_DONE_INT | GDMA_REG_CTRL0_ENABLE; ctrl1 = chan->id << GDMA_REG_CTRL1_NEXT_SHIFT; chan->next_sg++; gdma_dma_write(dma_dev, GDMA_REG_SRC_ADDR(chan->id), src_addr); gdma_dma_write(dma_dev, GDMA_REG_DST_ADDR(chan->id), dst_addr); gdma_dma_write(dma_dev, GDMA_REG_CTRL1(chan->id), ctrl1); /* make sure next_sg is update */ wmb(); gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), ctrl0); return 0; } static void rt3883_dump_reg(struct gdma_dma_dev *dma_dev, int id) { dev_dbg(dma_dev->ddev.dev, "chan %d, src %08x, dst %08x, ctr0 %08x, ctr1 %08x, unmask %08x, done %08x, req %08x, ack %08x, fin %08x\n", id, gdma_dma_read(dma_dev, GDMA_REG_SRC_ADDR(id)), gdma_dma_read(dma_dev, GDMA_REG_DST_ADDR(id)), gdma_dma_read(dma_dev, GDMA_REG_CTRL0(id)), gdma_dma_read(dma_dev, GDMA_REG_CTRL1(id)), gdma_dma_read(dma_dev, GDMA_REG_UNMASK_INT), gdma_dma_read(dma_dev, GDMA_REG_DONE_INT), gdma_dma_read(dma_dev, GDMA_REG_REQSTS), gdma_dma_read(dma_dev, GDMA_REG_ACKSTS), gdma_dma_read(dma_dev, GDMA_REG_FINSTS)); } static int rt3883_gdma_start_transfer(struct gdma_dmaengine_chan *chan) { struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan); dma_addr_t src_addr, dst_addr; struct gdma_dma_sg *sg; u32 ctrl0, ctrl1; /* verify chan is already stopped */ ctrl0 = gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id)); if (unlikely(ctrl0 & GDMA_REG_CTRL0_ENABLE)) { dev_err(dma_dev->ddev.dev, "chan %d is start(%08x).\n", chan->id, ctrl0); rt3883_dump_reg(dma_dev, chan->id); return -EINVAL; } sg = &chan->desc->sg[chan->next_sg]; if (chan->desc->direction == DMA_MEM_TO_DEV) { src_addr = sg->src_addr; dst_addr = chan->fifo_addr; ctrl0 = GDMA_REG_CTRL0_DST_ADDR_FIXED; ctrl1 = (32 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) | (chan->slave_id << GDMA_REG_CTRL1_DST_REQ_SHIFT); } else if (chan->desc->direction == DMA_DEV_TO_MEM) { src_addr = chan->fifo_addr; dst_addr = sg->dst_addr; ctrl0 = GDMA_REG_CTRL0_SRC_ADDR_FIXED; ctrl1 = (chan->slave_id << GDMA_REG_CTRL1_SRC_REQ_SHIFT) | (32 << GDMA_REG_CTRL1_DST_REQ_SHIFT) | GDMA_REG_CTRL1_COHERENT; } else if (chan->desc->direction == DMA_MEM_TO_MEM) { src_addr = sg->src_addr; dst_addr = sg->dst_addr; ctrl0 = GDMA_REG_CTRL0_SW_MODE; ctrl1 = (32 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) | (32 << GDMA_REG_CTRL1_DST_REQ_SHIFT) | GDMA_REG_CTRL1_COHERENT; } else { dev_err(dma_dev->ddev.dev, "direction type %d error\n", chan->desc->direction); return -EINVAL; } ctrl0 |= (sg->len << GDMA_REG_CTRL0_TX_SHIFT) | (chan->burst_size << GDMA_REG_CTRL0_BURST_SHIFT) | GDMA_REG_CTRL0_DONE_INT | GDMA_REG_CTRL0_ENABLE; ctrl1 |= chan->id << GDMA_REG_CTRL1_NEXT_SHIFT; chan->next_sg++; gdma_dma_write(dma_dev, GDMA_REG_SRC_ADDR(chan->id), src_addr); gdma_dma_write(dma_dev, GDMA_REG_DST_ADDR(chan->id), dst_addr); gdma_dma_write(dma_dev, GDMA_REG_CTRL1(chan->id), ctrl1); /* make sure next_sg is update */ wmb(); gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), ctrl0); return 0; } static inline int gdma_start_transfer(struct gdma_dma_dev *dma_dev, struct gdma_dmaengine_chan *chan) { return dma_dev->data->start_transfer(chan); } static int gdma_next_desc(struct gdma_dmaengine_chan *chan) { struct virt_dma_desc *vdesc; vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) { chan->desc = NULL; return 0; } chan->desc = to_gdma_dma_desc(vdesc); chan->next_sg = 0; return 1; } static void gdma_dma_chan_irq(struct gdma_dma_dev *dma_dev, struct gdma_dmaengine_chan *chan) { struct gdma_dma_desc *desc; unsigned long flags; int chan_issued; chan_issued = 0; spin_lock_irqsave(&chan->vchan.lock, flags); desc = chan->desc; if (desc) { if (desc->cyclic) { vchan_cyclic_callback(&desc->vdesc); if (chan->next_sg == desc->num_sgs) chan->next_sg = 0; chan_issued = 1; } else { desc->residue -= desc->sg[chan->next_sg - 1].len; if (chan->next_sg == desc->num_sgs) { list_del(&desc->vdesc.node); vchan_cookie_complete(&desc->vdesc); chan_issued = gdma_next_desc(chan); } else { chan_issued = 1; } } } else { dev_dbg(dma_dev->ddev.dev, "chan %d no desc to complete\n", chan->id); } if (chan_issued) set_bit(chan->id, &dma_dev->chan_issued); spin_unlock_irqrestore(&chan->vchan.lock, flags); } static irqreturn_t gdma_dma_irq(int irq, void *devid) { struct gdma_dma_dev *dma_dev = devid; u32 done, done_reg; unsigned int i; done_reg = dma_dev->data->done_int_reg; done = gdma_dma_read(dma_dev, done_reg); if (unlikely(!done)) return IRQ_NONE; /* clean done bits */ gdma_dma_write(dma_dev, done_reg, done); i = 0; while (done) { if (done & 0x1) { gdma_dma_chan_irq(dma_dev, &dma_dev->chan[i]); atomic_dec(&dma_dev->cnt); } done >>= 1; i++; } /* start only have work to do */ if (dma_dev->chan_issued) tasklet_schedule(&dma_dev->task); return IRQ_HANDLED; } static void gdma_dma_issue_pending(struct dma_chan *c) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan); unsigned long flags; spin_lock_irqsave(&chan->vchan.lock, flags); if (vchan_issue_pending(&chan->vchan) && !chan->desc) { if (gdma_next_desc(chan)) { set_bit(chan->id, &dma_dev->chan_issued); tasklet_schedule(&dma_dev->task); } else { dev_dbg(dma_dev->ddev.dev, "chan %d no desc to issue\n", chan->id); } } spin_unlock_irqrestore(&chan->vchan.lock, flags); } static struct dma_async_tx_descriptor *gdma_dma_prep_slave_sg( struct dma_chan *c, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_desc *desc; struct scatterlist *sg; unsigned int i; desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC); if (!desc) { dev_err(c->device->dev, "alloc sg decs error\n"); return NULL; } desc->residue = 0; for_each_sg(sgl, sg, sg_len, i) { if (direction == DMA_MEM_TO_DEV) { desc->sg[i].src_addr = sg_dma_address(sg); } else if (direction == DMA_DEV_TO_MEM) { desc->sg[i].dst_addr = sg_dma_address(sg); } else { dev_err(c->device->dev, "direction type %d error\n", direction); goto free_desc; } if (unlikely(sg_dma_len(sg) > GDMA_REG_CTRL0_TX_MASK)) { dev_err(c->device->dev, "sg len too large %d\n", sg_dma_len(sg)); goto free_desc; } desc->sg[i].len = sg_dma_len(sg); desc->residue += sg_dma_len(sg); } desc->num_sgs = sg_len; desc->direction = direction; desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); free_desc: kfree(desc); return NULL; } static struct dma_async_tx_descriptor *gdma_dma_prep_dma_memcpy( struct dma_chan *c, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_desc *desc; unsigned int num_periods, i; size_t xfer_count; if (len <= 0) return NULL; chan->burst_size = gdma_dma_maxburst(len >> 2); xfer_count = GDMA_REG_CTRL0_TX_MASK; num_periods = DIV_ROUND_UP(len, xfer_count); desc = kzalloc(struct_size(desc, sg, num_periods), GFP_ATOMIC); if (!desc) { dev_err(c->device->dev, "alloc memcpy decs error\n"); return NULL; } desc->residue = len; for (i = 0; i < num_periods; i++) { desc->sg[i].src_addr = src; desc->sg[i].dst_addr = dest; if (len > xfer_count) desc->sg[i].len = xfer_count; else desc->sg[i].len = len; src += desc->sg[i].len; dest += desc->sg[i].len; len -= desc->sg[i].len; } desc->num_sgs = num_periods; desc->direction = DMA_MEM_TO_MEM; desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static struct dma_async_tx_descriptor *gdma_dma_prep_dma_cyclic( struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct gdma_dma_desc *desc; unsigned int num_periods, i; if (buf_len % period_len) return NULL; if (period_len > GDMA_REG_CTRL0_TX_MASK) { dev_err(c->device->dev, "cyclic len too large %d\n", period_len); return NULL; } num_periods = buf_len / period_len; desc = kzalloc(struct_size(desc, sg, num_periods), GFP_ATOMIC); if (!desc) { dev_err(c->device->dev, "alloc cyclic decs error\n"); return NULL; } desc->residue = buf_len; for (i = 0; i < num_periods; i++) { if (direction == DMA_MEM_TO_DEV) { desc->sg[i].src_addr = buf_addr; } else if (direction == DMA_DEV_TO_MEM) { desc->sg[i].dst_addr = buf_addr; } else { dev_err(c->device->dev, "direction type %d error\n", direction); goto free_desc; } desc->sg[i].len = period_len; buf_addr += period_len; } desc->num_sgs = num_periods; desc->direction = direction; desc->cyclic = true; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); free_desc: kfree(desc); return NULL; } static enum dma_status gdma_dma_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *state) { struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c); struct virt_dma_desc *vdesc; enum dma_status status; unsigned long flags; struct gdma_dma_desc *desc; status = dma_cookie_status(c, cookie, state); if (status == DMA_COMPLETE || !state) return status; spin_lock_irqsave(&chan->vchan.lock, flags); desc = chan->desc; if (desc && (cookie == desc->vdesc.tx.cookie)) { /* * We never update edesc->residue in the cyclic case, so we * can tell the remaining room to the end of the circular * buffer. */ if (desc->cyclic) state->residue = desc->residue - ((chan->next_sg - 1) * desc->sg[0].len); else state->residue = desc->residue; } else { vdesc = vchan_find_desc(&chan->vchan, cookie); if (vdesc) state->residue = to_gdma_dma_desc(vdesc)->residue; } spin_unlock_irqrestore(&chan->vchan.lock, flags); dev_dbg(c->device->dev, "tx residue %d bytes\n", state->residue); return status; } static void gdma_dma_free_chan_resources(struct dma_chan *c) { vchan_free_chan_resources(to_virt_chan(c)); } static void gdma_dma_desc_free(struct virt_dma_desc *vdesc) { kfree(container_of(vdesc, struct gdma_dma_desc, vdesc)); } static void gdma_dma_tasklet(unsigned long arg) { struct gdma_dma_dev *dma_dev = (struct gdma_dma_dev *)arg; struct gdma_dmaengine_chan *chan; static unsigned int last_chan; unsigned int i, chan_mask; /* record last chan to round robin all chans */ i = last_chan; chan_mask = dma_dev->data->chancnt - 1; do { /* * on mt7621. when verify with dmatest with all * channel is enable. we need to limit only two * channel is working at the same time. otherwise the * data will have problem. */ if (atomic_read(&dma_dev->cnt) >= 2) { last_chan = i; break; } if (test_and_clear_bit(i, &dma_dev->chan_issued)) { chan = &dma_dev->chan[i]; if (chan->desc) { atomic_inc(&dma_dev->cnt); gdma_start_transfer(dma_dev, chan); } else { dev_dbg(dma_dev->ddev.dev, "chan %d no desc to issue\n", chan->id); } if (!dma_dev->chan_issued) break; } i = (i + 1) & chan_mask; } while (i != last_chan); } static void rt305x_gdma_init(struct gdma_dma_dev *dma_dev) { u32 gct; /* all chans round robin */ gdma_dma_write(dma_dev, GDMA_RT305X_GCT, GDMA_REG_GCT_ARBIT_RR); gct = gdma_dma_read(dma_dev, GDMA_RT305X_GCT); dev_info(dma_dev->ddev.dev, "revision: %d, channels: %d\n", (gct >> GDMA_REG_GCT_VER_SHIFT) & GDMA_REG_GCT_VER_MASK, 8 << ((gct >> GDMA_REG_GCT_CHAN_SHIFT) & GDMA_REG_GCT_CHAN_MASK)); } static void rt3883_gdma_init(struct gdma_dma_dev *dma_dev) { u32 gct; /* all chans round robin */ gdma_dma_write(dma_dev, GDMA_REG_GCT, GDMA_REG_GCT_ARBIT_RR); gct = gdma_dma_read(dma_dev, GDMA_REG_GCT); dev_info(dma_dev->ddev.dev, "revision: %d, channels: %d\n", (gct >> GDMA_REG_GCT_VER_SHIFT) & GDMA_REG_GCT_VER_MASK, 8 << ((gct >> GDMA_REG_GCT_CHAN_SHIFT) & GDMA_REG_GCT_CHAN_MASK)); } static struct gdma_data rt305x_gdma_data = { .chancnt = 8, .done_int_reg = GDMA_RT305X_STATUS_INT, .init = rt305x_gdma_init, .start_transfer = rt305x_gdma_start_transfer, }; static struct gdma_data rt3883_gdma_data = { .chancnt = 16, .done_int_reg = GDMA_REG_DONE_INT, .init = rt3883_gdma_init, .start_transfer = rt3883_gdma_start_transfer, }; static const struct of_device_id gdma_of_match_table[] = { { .compatible = "ralink,rt305x-gdma", .data = &rt305x_gdma_data }, { .compatible = "ralink,rt3883-gdma", .data = &rt3883_gdma_data }, { }, }; static int gdma_dma_probe(struct platform_device *pdev) { const struct of_device_id *match; struct gdma_dmaengine_chan *chan; struct gdma_dma_dev *dma_dev; struct dma_device *dd; unsigned int i; struct resource *res; int ret; int irq; void __iomem *base; struct gdma_data *data; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; match = of_match_device(gdma_of_match_table, &pdev->dev); if (!match) return -EINVAL; data = (struct gdma_data *)match->data; dma_dev = devm_kzalloc(&pdev->dev, struct_size(dma_dev, chan, data->chancnt), GFP_KERNEL); if (!dma_dev) return -EINVAL; dma_dev->data = data; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); dma_dev->base = base; tasklet_init(&dma_dev->task, gdma_dma_tasklet, (unsigned long)dma_dev); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "failed to get irq\n"); return -EINVAL; } ret = devm_request_irq(&pdev->dev, irq, gdma_dma_irq, 0, dev_name(&pdev->dev), dma_dev); if (ret) { dev_err(&pdev->dev, "failed to request irq\n"); return ret; } device_reset(&pdev->dev); dd = &dma_dev->ddev; dma_cap_set(DMA_MEMCPY, dd->cap_mask); dma_cap_set(DMA_SLAVE, dd->cap_mask); dma_cap_set(DMA_CYCLIC, dd->cap_mask); dd->device_free_chan_resources = gdma_dma_free_chan_resources; dd->device_prep_dma_memcpy = gdma_dma_prep_dma_memcpy; dd->device_prep_slave_sg = gdma_dma_prep_slave_sg; dd->device_prep_dma_cyclic = gdma_dma_prep_dma_cyclic; dd->device_config = gdma_dma_config; dd->device_terminate_all = gdma_dma_terminate_all; dd->device_tx_status = gdma_dma_tx_status; dd->device_issue_pending = gdma_dma_issue_pending; dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; dd->dev = &pdev->dev; dd->dev->dma_parms = &dma_dev->dma_parms; dma_set_max_seg_size(dd->dev, GDMA_REG_CTRL0_TX_MASK); INIT_LIST_HEAD(&dd->channels); for (i = 0; i < data->chancnt; i++) { chan = &dma_dev->chan[i]; chan->id = i; chan->vchan.desc_free = gdma_dma_desc_free; vchan_init(&chan->vchan, dd); } /* init hardware */ data->init(dma_dev); ret = dma_async_device_register(dd); if (ret) { dev_err(&pdev->dev, "failed to register dma device\n"); return ret; } ret = of_dma_controller_register(pdev->dev.of_node, of_dma_xlate_by_chan_id, dma_dev); if (ret) { dev_err(&pdev->dev, "failed to register of dma controller\n"); goto err_unregister; } platform_set_drvdata(pdev, dma_dev); return 0; err_unregister: dma_async_device_unregister(dd); return ret; } static int gdma_dma_remove(struct platform_device *pdev) { struct gdma_dma_dev *dma_dev = platform_get_drvdata(pdev); tasklet_kill(&dma_dev->task); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&dma_dev->ddev); return 0; } static struct platform_driver gdma_dma_driver = { .probe = gdma_dma_probe, .remove = gdma_dma_remove, .driver = { .name = "gdma-rt2880", .of_match_table = gdma_of_match_table, }, }; module_platform_driver(gdma_dma_driver); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("Ralink/MTK DMA driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1