Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sascha Hauer | 2081 | 54.81% | 1 | 4.55% |
Michael Kao | 823 | 21.68% | 6 | 27.27% |
Dawei Chien | 430 | 11.32% | 2 | 9.09% |
Louis Yu | 241 | 6.35% | 3 | 13.64% |
Sean Wang | 142 | 3.74% | 1 | 4.55% |
Axel Lin | 35 | 0.92% | 1 | 4.55% |
Eduardo Valentin | 18 | 0.47% | 2 | 9.09% |
Peter Shih | 11 | 0.29% | 1 | 4.55% |
Vivek Gautam | 8 | 0.21% | 1 | 4.55% |
Ryder Lee | 4 | 0.11% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.05% | 1 | 4.55% |
Matthias Brugger | 1 | 0.03% | 1 | 4.55% |
Randy Dunlap | 1 | 0.03% | 1 | 4.55% |
Total | 3797 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 MediaTek Inc. * Author: Hanyi Wu <hanyi.wu@mediatek.com> * Sascha Hauer <s.hauer@pengutronix.de> * Dawei Chien <dawei.chien@mediatek.com> * Louis Yu <louis.yu@mediatek.com> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/thermal.h> #include <linux/reset.h> #include <linux/types.h> /* AUXADC Registers */ #define AUXADC_CON1_SET_V 0x008 #define AUXADC_CON1_CLR_V 0x00c #define AUXADC_CON2_V 0x010 #define AUXADC_DATA(channel) (0x14 + (channel) * 4) #define APMIXED_SYS_TS_CON1 0x604 /* Thermal Controller Registers */ #define TEMP_MONCTL0 0x000 #define TEMP_MONCTL1 0x004 #define TEMP_MONCTL2 0x008 #define TEMP_MONIDET0 0x014 #define TEMP_MONIDET1 0x018 #define TEMP_MSRCTL0 0x038 #define TEMP_AHBPOLL 0x040 #define TEMP_AHBTO 0x044 #define TEMP_ADCPNP0 0x048 #define TEMP_ADCPNP1 0x04c #define TEMP_ADCPNP2 0x050 #define TEMP_ADCPNP3 0x0b4 #define TEMP_ADCMUX 0x054 #define TEMP_ADCEN 0x060 #define TEMP_PNPMUXADDR 0x064 #define TEMP_ADCMUXADDR 0x068 #define TEMP_ADCENADDR 0x074 #define TEMP_ADCVALIDADDR 0x078 #define TEMP_ADCVOLTADDR 0x07c #define TEMP_RDCTRL 0x080 #define TEMP_ADCVALIDMASK 0x084 #define TEMP_ADCVOLTAGESHIFT 0x088 #define TEMP_ADCWRITECTRL 0x08c #define TEMP_MSR0 0x090 #define TEMP_MSR1 0x094 #define TEMP_MSR2 0x098 #define TEMP_MSR3 0x0B8 #define TEMP_SPARE0 0x0f0 #define TEMP_ADCPNP0_1 0x148 #define TEMP_ADCPNP1_1 0x14c #define TEMP_ADCPNP2_1 0x150 #define TEMP_MSR0_1 0x190 #define TEMP_MSR1_1 0x194 #define TEMP_MSR2_1 0x198 #define TEMP_ADCPNP3_1 0x1b4 #define TEMP_MSR3_1 0x1B8 #define PTPCORESEL 0x400 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) #define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) #define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) /* MT8173 thermal sensors */ #define MT8173_TS1 0 #define MT8173_TS2 1 #define MT8173_TS3 2 #define MT8173_TS4 3 #define MT8173_TSABB 4 /* AUXADC channel 11 is used for the temperature sensors */ #define MT8173_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT8173 */ #define MT8173_NUM_SENSORS 5 /* The number of banks in the MT8173 */ #define MT8173_NUM_ZONES 4 /* The number of sensing points per bank */ #define MT8173_NUM_SENSORS_PER_ZONE 4 /* The number of controller in the MT8173 */ #define MT8173_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT8173_CALIBRATION 165 /* * Layout of the fuses providing the calibration data * These macros could be used for MT8183, MT8173, MT2701, and MT2712. * MT8183 has 6 sensors and needs 6 VTS calibration data. * MT8173 has 5 sensors and needs 5 VTS calibration data. * MT2701 has 3 sensors and needs 3 VTS calibration data. * MT2712 has 4 sensors and needs 4 VTS calibration data. */ #define CALIB_BUF0_VALID BIT(0) #define CALIB_BUF1_ADC_GE(x) (((x) >> 22) & 0x3ff) #define CALIB_BUF0_VTS_TS1(x) (((x) >> 17) & 0x1ff) #define CALIB_BUF0_VTS_TS2(x) (((x) >> 8) & 0x1ff) #define CALIB_BUF1_VTS_TS3(x) (((x) >> 0) & 0x1ff) #define CALIB_BUF2_VTS_TS4(x) (((x) >> 23) & 0x1ff) #define CALIB_BUF2_VTS_TS5(x) (((x) >> 5) & 0x1ff) #define CALIB_BUF2_VTS_TSABB(x) (((x) >> 14) & 0x1ff) #define CALIB_BUF0_DEGC_CALI(x) (((x) >> 1) & 0x3f) #define CALIB_BUF0_O_SLOPE(x) (((x) >> 26) & 0x3f) #define CALIB_BUF0_O_SLOPE_SIGN(x) (((x) >> 7) & 0x1) #define CALIB_BUF1_ID(x) (((x) >> 9) & 0x1) enum { VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB, MAX_NUM_VTS, }; /* MT2701 thermal sensors */ #define MT2701_TS1 0 #define MT2701_TS2 1 #define MT2701_TSABB 2 /* AUXADC channel 11 is used for the temperature sensors */ #define MT2701_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT2701 */ #define MT2701_NUM_SENSORS 3 /* The number of sensing points per bank */ #define MT2701_NUM_SENSORS_PER_ZONE 3 /* The number of controller in the MT2701 */ #define MT2701_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT2701_CALIBRATION 165 /* MT2712 thermal sensors */ #define MT2712_TS1 0 #define MT2712_TS2 1 #define MT2712_TS3 2 #define MT2712_TS4 3 /* AUXADC channel 11 is used for the temperature sensors */ #define MT2712_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT2712 */ #define MT2712_NUM_SENSORS 4 /* The number of sensing points per bank */ #define MT2712_NUM_SENSORS_PER_ZONE 4 /* The number of controller in the MT2712 */ #define MT2712_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT2712_CALIBRATION 165 #define MT7622_TEMP_AUXADC_CHANNEL 11 #define MT7622_NUM_SENSORS 1 #define MT7622_NUM_ZONES 1 #define MT7622_NUM_SENSORS_PER_ZONE 1 #define MT7622_TS1 0 #define MT7622_NUM_CONTROLLER 1 /* The maximum number of banks */ #define MAX_NUM_ZONES 8 /* The calibration coefficient of sensor */ #define MT7622_CALIBRATION 165 /* MT8183 thermal sensors */ #define MT8183_TS1 0 #define MT8183_TS2 1 #define MT8183_TS3 2 #define MT8183_TS4 3 #define MT8183_TS5 4 #define MT8183_TSABB 5 /* AUXADC channel is used for the temperature sensors */ #define MT8183_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT8183 */ #define MT8183_NUM_SENSORS 6 /* The number of sensing points per bank */ #define MT8183_NUM_SENSORS_PER_ZONE 6 /* The number of controller in the MT8183 */ #define MT8183_NUM_CONTROLLER 2 /* The calibration coefficient of sensor */ #define MT8183_CALIBRATION 153 struct mtk_thermal; struct thermal_bank_cfg { unsigned int num_sensors; const int *sensors; }; struct mtk_thermal_bank { struct mtk_thermal *mt; int id; }; struct mtk_thermal_data { s32 num_banks; s32 num_sensors; s32 auxadc_channel; const int *vts_index; const int *sensor_mux_values; const int *msr; const int *adcpnp; const int cali_val; const int num_controller; const int *controller_offset; bool need_switch_bank; struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; }; struct mtk_thermal { struct device *dev; void __iomem *thermal_base; struct clk *clk_peri_therm; struct clk *clk_auxadc; /* lock: for getting and putting banks */ struct mutex lock; /* Calibration values */ s32 adc_ge; s32 degc_cali; s32 o_slope; s32 vts[MAX_NUM_VTS]; const struct mtk_thermal_data *conf; struct mtk_thermal_bank banks[MAX_NUM_ZONES]; }; /* MT8183 thermal sensor data */ static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB }; static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 }; static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 }; static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB }; /* MT8173 thermal sensor data */ static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { { MT8173_TS2, MT8173_TS3 }, { MT8173_TS2, MT8173_TS4 }, { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, { MT8173_TS2 }, }; static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 }; static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 }; static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4, VTSABB }; /* MT2701 thermal sensor data */ static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { MT2701_TS1, MT2701_TS2, MT2701_TSABB }; static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 }; static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 }; static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { VTS1, VTS2, VTS3 }; /* MT2712 thermal sensor data */ static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 }; static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 }; static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 }; static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4 }; /* MT7622 thermal sensor data */ static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; /** * The MT8173 thermal controller has four banks. Each bank can read up to * four temperature sensors simultaneously. The MT8173 has a total of 5 * temperature sensors. We use each bank to measure a certain area of the * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple * areas, hence is used in different banks. * * The thermal core only gets the maximum temperature of all banks, so * the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data, and this indeed needs the temperatures of the individual banks * for making better decisions. */ static const struct mtk_thermal_data mt8173_thermal_data = { .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, .num_banks = MT8173_NUM_ZONES, .num_sensors = MT8173_NUM_SENSORS, .vts_index = mt8173_vts_index, .cali_val = MT8173_CALIBRATION, .num_controller = MT8173_NUM_CONTROLLER, .controller_offset = mt8173_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 2, .sensors = mt8173_bank_data[0], }, { .num_sensors = 2, .sensors = mt8173_bank_data[1], }, { .num_sensors = 3, .sensors = mt8173_bank_data[2], }, { .num_sensors = 1, .sensors = mt8173_bank_data[3], }, }, .msr = mt8173_msr, .adcpnp = mt8173_adcpnp, .sensor_mux_values = mt8173_mux_values, }; /** * The MT2701 thermal controller has one bank, which can read up to * three temperature sensors simultaneously. The MT2701 has a total of 3 * temperature sensors. * * The thermal core only gets the maximum temperature of this one bank, * so the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data. */ static const struct mtk_thermal_data mt2701_thermal_data = { .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, .num_banks = 1, .num_sensors = MT2701_NUM_SENSORS, .vts_index = mt2701_vts_index, .cali_val = MT2701_CALIBRATION, .num_controller = MT2701_NUM_CONTROLLER, .controller_offset = mt2701_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 3, .sensors = mt2701_bank_data, }, }, .msr = mt2701_msr, .adcpnp = mt2701_adcpnp, .sensor_mux_values = mt2701_mux_values, }; /** * The MT2712 thermal controller has one bank, which can read up to * four temperature sensors simultaneously. The MT2712 has a total of 4 * temperature sensors. * * The thermal core only gets the maximum temperature of this one bank, * so the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data. */ static const struct mtk_thermal_data mt2712_thermal_data = { .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, .num_banks = 1, .num_sensors = MT2712_NUM_SENSORS, .vts_index = mt2712_vts_index, .cali_val = MT2712_CALIBRATION, .num_controller = MT2712_NUM_CONTROLLER, .controller_offset = mt2712_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 4, .sensors = mt2712_bank_data, }, }, .msr = mt2712_msr, .adcpnp = mt2712_adcpnp, .sensor_mux_values = mt2712_mux_values, }; /* * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data * access. */ static const struct mtk_thermal_data mt7622_thermal_data = { .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, .num_banks = MT7622_NUM_ZONES, .num_sensors = MT7622_NUM_SENSORS, .vts_index = mt7622_vts_index, .cali_val = MT7622_CALIBRATION, .num_controller = MT7622_NUM_CONTROLLER, .controller_offset = mt7622_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 1, .sensors = mt7622_bank_data, }, }, .msr = mt7622_msr, .adcpnp = mt7622_adcpnp, .sensor_mux_values = mt7622_mux_values, }; /** * The MT8183 thermal controller has one bank for the current SW framework. * The MT8183 has a total of 6 temperature sensors. * There are two thermal controller to control the six sensor. * The first one bind 2 sensor, and the other bind 4 sensors. * The thermal core only gets the maximum temperature of all sensor, so * the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data, and this indeed needs the temperatures of the individual banks * for making better decisions. */ static const struct mtk_thermal_data mt8183_thermal_data = { .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, .num_banks = MT8183_NUM_SENSORS_PER_ZONE, .num_sensors = MT8183_NUM_SENSORS, .vts_index = mt8183_vts_index, .cali_val = MT8183_CALIBRATION, .num_controller = MT8183_NUM_CONTROLLER, .controller_offset = mt8183_tc_offset, .need_switch_bank = false, .bank_data = { { .num_sensors = 6, .sensors = mt8183_bank_data, }, }, .msr = mt8183_msr, .adcpnp = mt8183_adcpnp, .sensor_mux_values = mt8183_mux_values, }; /** * raw_to_mcelsius - convert a raw ADC value to mcelsius * @mt: The thermal controller * @raw: raw ADC value * * This converts the raw ADC value to mcelsius using the SoC specific * calibration constants */ static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw) { s32 tmp; raw &= 0xfff; tmp = 203450520 << 3; tmp /= mt->conf->cali_val + mt->o_slope; tmp /= 10000 + mt->adc_ge; tmp *= raw - mt->vts[sensno] - 3350; tmp >>= 3; return mt->degc_cali * 500 - tmp; } /** * mtk_thermal_get_bank - get bank * @bank: The bank * * The bank registers are banked, we have to select a bank in the * PTPCORESEL register to access it. */ static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; u32 val; if (mt->conf->need_switch_bank) { mutex_lock(&mt->lock); val = readl(mt->thermal_base + PTPCORESEL); val &= ~0xf; val |= bank->id; writel(val, mt->thermal_base + PTPCORESEL); } } /** * mtk_thermal_put_bank - release bank * @bank: The bank * * release a bank previously taken with mtk_thermal_get_bank, */ static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; if (mt->conf->need_switch_bank) mutex_unlock(&mt->lock); } /** * mtk_thermal_bank_temperature - get the temperature of a bank * @bank: The bank * * The temperature of a bank is considered the maximum temperature of * the sensors associated to the bank. */ static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; const struct mtk_thermal_data *conf = mt->conf; int i, temp = INT_MIN, max = INT_MIN; u32 raw; for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { raw = readl(mt->thermal_base + conf->msr[conf->bank_data[bank->id].sensors[i]]); temp = raw_to_mcelsius(mt, conf->bank_data[bank->id].sensors[i], raw); /* * The first read of a sensor often contains very high bogus * temperature value. Filter these out so that the system does * not immediately shut down. */ if (temp > 200000) temp = 0; if (temp > max) max = temp; } return max; } static int mtk_read_temp(void *data, int *temperature) { struct mtk_thermal *mt = data; int i; int tempmax = INT_MIN; for (i = 0; i < mt->conf->num_banks; i++) { struct mtk_thermal_bank *bank = &mt->banks[i]; mtk_thermal_get_bank(bank); tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); mtk_thermal_put_bank(bank); } *temperature = tempmax; return 0; } static const struct thermal_zone_of_device_ops mtk_thermal_ops = { .get_temp = mtk_read_temp, }; static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, u32 apmixed_phys_base, u32 auxadc_phys_base, int ctrl_id) { struct mtk_thermal_bank *bank = &mt->banks[num]; const struct mtk_thermal_data *conf = mt->conf; int i; int offset = mt->conf->controller_offset[ctrl_id]; void __iomem *controller_base = mt->thermal_base + offset; bank->id = num; bank->mt = mt; mtk_thermal_get_bank(bank); /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); /* * filt interval is 1 * 46.540us = 46.54us, * sen interval is 429 * 46.540us = 19.96ms */ writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | TEMP_MONCTL2_SENSOR_INTERVAL(429), controller_base + TEMP_MONCTL2); /* poll is set to 10u */ writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), controller_base + TEMP_AHBPOLL); /* temperature sampling control, 1 sample */ writel(0x0, controller_base + TEMP_MSRCTL0); /* exceed this polling time, IRQ would be inserted */ writel(0xffffffff, controller_base + TEMP_AHBTO); /* number of interrupts per event, 1 is enough */ writel(0x0, controller_base + TEMP_MONIDET0); writel(0x0, controller_base + TEMP_MONIDET1); /* * The MT8173 thermal controller does not have its own ADC. Instead it * uses AHB bus accesses to control the AUXADC. To do this the thermal * controller has to be programmed with the physical addresses of the * AUXADC registers and with the various bit positions in the AUXADC. * Also the thermal controller controls a mux in the APMIXEDSYS register * space. */ /* * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) * automatically by hw */ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); /* AHB address for auxadc mux selection */ writel(auxadc_phys_base + AUXADC_CON1_CLR_V, controller_base + TEMP_ADCMUXADDR); /* AHB address for pnp sensor mux selection */ writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, controller_base + TEMP_PNPMUXADDR); /* AHB value for auxadc enable */ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); /* AHB address for auxadc enable (channel 0 immediate mode selected) */ writel(auxadc_phys_base + AUXADC_CON1_SET_V, controller_base + TEMP_ADCENADDR); /* AHB address for auxadc valid bit */ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), controller_base + TEMP_ADCVALIDADDR); /* AHB address for auxadc voltage output */ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), controller_base + TEMP_ADCVOLTADDR); /* read valid & voltage are at the same register */ writel(0x0, controller_base + TEMP_RDCTRL); /* indicate where the valid bit is */ writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), controller_base + TEMP_ADCVALIDMASK); /* no shift */ writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); /* enable auxadc mux write transaction */ writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, controller_base + TEMP_ADCWRITECTRL); for (i = 0; i < conf->bank_data[num].num_sensors; i++) writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], mt->thermal_base + conf->adcpnp[conf->bank_data[num].sensors[i]]); writel((1 << conf->bank_data[num].num_sensors) - 1, controller_base + TEMP_MONCTL0); writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | TEMP_ADCWRITECTRL_ADC_MUX_WRITE, controller_base + TEMP_ADCWRITECTRL); mtk_thermal_put_bank(bank); } static u64 of_get_phys_base(struct device_node *np) { u64 size64; const __be32 *regaddr_p; regaddr_p = of_get_address(np, 0, &size64, NULL); if (!regaddr_p) return OF_BAD_ADDR; return of_translate_address(np, regaddr_p); } static int mtk_thermal_get_calibration_data(struct device *dev, struct mtk_thermal *mt) { struct nvmem_cell *cell; u32 *buf; size_t len; int i, ret = 0; /* Start with default values */ mt->adc_ge = 512; for (i = 0; i < mt->conf->num_sensors; i++) mt->vts[i] = 260; mt->degc_cali = 40; mt->o_slope = 0; cell = nvmem_cell_get(dev, "calibration-data"); if (IS_ERR(cell)) { if (PTR_ERR(cell) == -EPROBE_DEFER) return PTR_ERR(cell); return 0; } buf = (u32 *)nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); if (len < 3 * sizeof(u32)) { dev_warn(dev, "invalid calibration data\n"); ret = -EINVAL; goto out; } if (buf[0] & CALIB_BUF0_VALID) { mt->adc_ge = CALIB_BUF1_ADC_GE(buf[1]); for (i = 0; i < mt->conf->num_sensors; i++) { switch (mt->conf->vts_index[i]) { case VTS1: mt->vts[VTS1] = CALIB_BUF0_VTS_TS1(buf[0]); break; case VTS2: mt->vts[VTS2] = CALIB_BUF0_VTS_TS2(buf[0]); break; case VTS3: mt->vts[VTS3] = CALIB_BUF1_VTS_TS3(buf[1]); break; case VTS4: mt->vts[VTS4] = CALIB_BUF2_VTS_TS4(buf[2]); break; case VTS5: mt->vts[VTS5] = CALIB_BUF2_VTS_TS5(buf[2]); break; case VTSABB: mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB(buf[2]); break; default: break; } } mt->degc_cali = CALIB_BUF0_DEGC_CALI(buf[0]); if (CALIB_BUF1_ID(buf[1]) & CALIB_BUF0_O_SLOPE_SIGN(buf[0])) mt->o_slope = -CALIB_BUF0_O_SLOPE(buf[0]); else mt->o_slope = CALIB_BUF0_O_SLOPE(buf[0]); } else { dev_info(dev, "Device not calibrated, using default calibration values\n"); } out: kfree(buf); return ret; } static const struct of_device_id mtk_thermal_of_match[] = { { .compatible = "mediatek,mt8173-thermal", .data = (void *)&mt8173_thermal_data, }, { .compatible = "mediatek,mt2701-thermal", .data = (void *)&mt2701_thermal_data, }, { .compatible = "mediatek,mt2712-thermal", .data = (void *)&mt2712_thermal_data, }, { .compatible = "mediatek,mt7622-thermal", .data = (void *)&mt7622_thermal_data, }, { .compatible = "mediatek,mt8183-thermal", .data = (void *)&mt8183_thermal_data, }, { }, }; MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); static int mtk_thermal_probe(struct platform_device *pdev) { int ret, i, ctrl_id; struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; struct mtk_thermal *mt; struct resource *res; u64 auxadc_phys_base, apmixed_phys_base; struct thermal_zone_device *tzdev; mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); if (!mt) return -ENOMEM; mt->conf = of_device_get_match_data(&pdev->dev); mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm"); if (IS_ERR(mt->clk_peri_therm)) return PTR_ERR(mt->clk_peri_therm); mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc"); if (IS_ERR(mt->clk_auxadc)) return PTR_ERR(mt->clk_auxadc); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mt->thermal_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mt->thermal_base)) return PTR_ERR(mt->thermal_base); ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); if (ret) return ret; mutex_init(&mt->lock); mt->dev = &pdev->dev; auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); if (!auxadc) { dev_err(&pdev->dev, "missing auxadc node\n"); return -ENODEV; } auxadc_phys_base = of_get_phys_base(auxadc); of_node_put(auxadc); if (auxadc_phys_base == OF_BAD_ADDR) { dev_err(&pdev->dev, "Can't get auxadc phys address\n"); return -EINVAL; } apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); if (!apmixedsys) { dev_err(&pdev->dev, "missing apmixedsys node\n"); return -ENODEV; } apmixed_phys_base = of_get_phys_base(apmixedsys); of_node_put(apmixedsys); if (apmixed_phys_base == OF_BAD_ADDR) { dev_err(&pdev->dev, "Can't get auxadc phys address\n"); return -EINVAL; } ret = device_reset(&pdev->dev); if (ret) return ret; ret = clk_prepare_enable(mt->clk_auxadc); if (ret) { dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); return ret; } ret = clk_prepare_enable(mt->clk_peri_therm); if (ret) { dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); goto err_disable_clk_auxadc; } for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) for (i = 0; i < mt->conf->num_banks; i++) mtk_thermal_init_bank(mt, i, apmixed_phys_base, auxadc_phys_base, ctrl_id); platform_set_drvdata(pdev, mt); tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt, &mtk_thermal_ops); if (IS_ERR(tzdev)) { ret = PTR_ERR(tzdev); goto err_disable_clk_peri_therm; } return 0; err_disable_clk_peri_therm: clk_disable_unprepare(mt->clk_peri_therm); err_disable_clk_auxadc: clk_disable_unprepare(mt->clk_auxadc); return ret; } static int mtk_thermal_remove(struct platform_device *pdev) { struct mtk_thermal *mt = platform_get_drvdata(pdev); clk_disable_unprepare(mt->clk_peri_therm); clk_disable_unprepare(mt->clk_auxadc); return 0; } static struct platform_driver mtk_thermal_driver = { .probe = mtk_thermal_probe, .remove = mtk_thermal_remove, .driver = { .name = "mtk-thermal", .of_match_table = mtk_thermal_of_match, }, }; module_platform_driver(mtk_thermal_driver); MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); MODULE_DESCRIPTION("Mediatek thermal driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1