Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Milton D. Miller II | 1385 | 35.59% | 11 | 11.70% |
Ryan S. Arnold | 493 | 12.67% | 3 | 3.19% |
Anton Blanchard | 441 | 11.33% | 6 | 6.38% |
Nicholas Piggin | 337 | 8.66% | 8 | 8.51% |
Hendrik Brueckner | 254 | 6.53% | 8 | 8.51% |
Jiri Slaby | 245 | 6.30% | 7 | 7.45% |
Benjamin Herrenschmidt | 197 | 5.06% | 3 | 3.19% |
Christian Bornträger | 95 | 2.44% | 5 | 5.32% |
Greg Kroah-Hartman | 87 | 2.24% | 4 | 4.26% |
Rusty Russell | 83 | 2.13% | 2 | 2.13% |
Stephen Rothwell | 53 | 1.36% | 1 | 1.06% |
Will Schmidt | 49 | 1.26% | 3 | 3.19% |
Amit Shah | 25 | 0.64% | 2 | 2.13% |
Michael Neuling | 22 | 0.57% | 1 | 1.06% |
Al Viro | 21 | 0.54% | 3 | 3.19% |
Andrew Morton | 20 | 0.51% | 3 | 3.19% |
Paul Gortmaker | 20 | 0.51% | 1 | 1.06% |
Michal Ostrowski | 8 | 0.21% | 1 | 1.06% |
Julia Lawall | 7 | 0.18% | 1 | 1.06% |
Alan Cox | 6 | 0.15% | 3 | 3.19% |
Denis Kirjanov | 6 | 0.15% | 1 | 1.06% |
Adrian Bunk | 5 | 0.13% | 2 | 2.13% |
Michael Ellerman | 3 | 0.08% | 1 | 1.06% |
Tejun Heo | 3 | 0.08% | 1 | 1.06% |
Chris Metcalf | 3 | 0.08% | 1 | 1.06% |
Maximilian Attems | 3 | 0.08% | 1 | 1.06% |
Roel Kluin | 3 | 0.08% | 1 | 1.06% |
Nigel Cunningham | 3 | 0.08% | 1 | 1.06% |
Thomas Gleixner | 3 | 0.08% | 1 | 1.06% |
Rafael J. Wysocki | 3 | 0.08% | 1 | 1.06% |
Peter Hurley | 2 | 0.05% | 2 | 2.13% |
Cheng Renquan | 2 | 0.05% | 1 | 1.06% |
Rashika Kheria | 1 | 0.03% | 1 | 1.06% |
Dan Carpenter | 1 | 0.03% | 1 | 1.06% |
Linus Torvalds | 1 | 0.03% | 1 | 1.06% |
Jeff Dike | 1 | 0.03% | 1 | 1.06% |
Total | 3891 | 94 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM * Copyright (C) 2001 Paul Mackerras <paulus@au.ibm.com>, IBM * Copyright (C) 2004 Benjamin Herrenschmidt <benh@kernel.crashing.org>, IBM Corp. * Copyright (C) 2004 IBM Corporation * * Additional Author(s): * Ryan S. Arnold <rsa@us.ibm.com> */ #include <linux/console.h> #include <linux/cpumask.h> #include <linux/init.h> #include <linux/kbd_kern.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/list.h> #include <linux/major.h> #include <linux/atomic.h> #include <linux/sysrq.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/freezer.h> #include <linux/slab.h> #include <linux/serial_core.h> #include <linux/uaccess.h> #include "hvc_console.h" #define HVC_MAJOR 229 #define HVC_MINOR 0 /* * Wait this long per iteration while trying to push buffered data to the * hypervisor before allowing the tty to complete a close operation. */ #define HVC_CLOSE_WAIT (HZ/100) /* 1/10 of a second */ /* * These sizes are most efficient for vio, because they are the * native transfer size. We could make them selectable in the * future to better deal with backends that want other buffer sizes. */ #define N_OUTBUF 16 #define N_INBUF 16 #define __ALIGNED__ __attribute__((__aligned__(sizeof(long)))) static struct tty_driver *hvc_driver; static struct task_struct *hvc_task; /* Picks up late kicks after list walk but before schedule() */ static int hvc_kicked; /* hvc_init is triggered from hvc_alloc, i.e. only when actually used */ static atomic_t hvc_needs_init __read_mostly = ATOMIC_INIT(-1); static int hvc_init(void); #ifdef CONFIG_MAGIC_SYSRQ static int sysrq_pressed; #endif /* dynamic list of hvc_struct instances */ static LIST_HEAD(hvc_structs); /* * Protect the list of hvc_struct instances from inserts and removals during * list traversal. */ static DEFINE_MUTEX(hvc_structs_mutex); /* * This value is used to assign a tty->index value to a hvc_struct based * upon order of exposure via hvc_probe(), when we can not match it to * a console candidate registered with hvc_instantiate(). */ static int last_hvc = -1; /* * Do not call this function with either the hvc_structs_mutex or the hvc_struct * lock held. If successful, this function increments the kref reference * count against the target hvc_struct so it should be released when finished. */ static struct hvc_struct *hvc_get_by_index(int index) { struct hvc_struct *hp; unsigned long flags; mutex_lock(&hvc_structs_mutex); list_for_each_entry(hp, &hvc_structs, next) { spin_lock_irqsave(&hp->lock, flags); if (hp->index == index) { tty_port_get(&hp->port); spin_unlock_irqrestore(&hp->lock, flags); mutex_unlock(&hvc_structs_mutex); return hp; } spin_unlock_irqrestore(&hp->lock, flags); } hp = NULL; mutex_unlock(&hvc_structs_mutex); return hp; } static int __hvc_flush(const struct hv_ops *ops, uint32_t vtermno, bool wait) { if (wait) might_sleep(); if (ops->flush) return ops->flush(vtermno, wait); return 0; } static int hvc_console_flush(const struct hv_ops *ops, uint32_t vtermno) { return __hvc_flush(ops, vtermno, false); } /* * Wait for the console to flush before writing more to it. This sleeps. */ static int hvc_flush(struct hvc_struct *hp) { return __hvc_flush(hp->ops, hp->vtermno, true); } /* * Initial console vtermnos for console API usage prior to full console * initialization. Any vty adapter outside this range will not have usable * console interfaces but can still be used as a tty device. This has to be * static because kmalloc will not work during early console init. */ static const struct hv_ops *cons_ops[MAX_NR_HVC_CONSOLES]; static uint32_t vtermnos[MAX_NR_HVC_CONSOLES] = {[0 ... MAX_NR_HVC_CONSOLES - 1] = -1}; /* * Console APIs, NOT TTY. These APIs are available immediately when * hvc_console_setup() finds adapters. */ static void hvc_console_print(struct console *co, const char *b, unsigned count) { char c[N_OUTBUF] __ALIGNED__; unsigned i = 0, n = 0; int r, donecr = 0, index = co->index; /* Console access attempt outside of acceptable console range. */ if (index >= MAX_NR_HVC_CONSOLES) return; /* This console adapter was removed so it is not usable. */ if (vtermnos[index] == -1) return; while (count > 0 || i > 0) { if (count > 0 && i < sizeof(c)) { if (b[n] == '\n' && !donecr) { c[i++] = '\r'; donecr = 1; } else { c[i++] = b[n++]; donecr = 0; --count; } } else { r = cons_ops[index]->put_chars(vtermnos[index], c, i); if (r <= 0) { /* throw away characters on error * but spin in case of -EAGAIN */ if (r != -EAGAIN) { i = 0; } else { hvc_console_flush(cons_ops[index], vtermnos[index]); } } else if (r > 0) { i -= r; if (i > 0) memmove(c, c+r, i); } } } hvc_console_flush(cons_ops[index], vtermnos[index]); } static struct tty_driver *hvc_console_device(struct console *c, int *index) { if (vtermnos[c->index] == -1) return NULL; *index = c->index; return hvc_driver; } static int hvc_console_setup(struct console *co, char *options) { if (co->index < 0 || co->index >= MAX_NR_HVC_CONSOLES) return -ENODEV; if (vtermnos[co->index] == -1) return -ENODEV; return 0; } static struct console hvc_console = { .name = "hvc", .write = hvc_console_print, .device = hvc_console_device, .setup = hvc_console_setup, .flags = CON_PRINTBUFFER, .index = -1, }; /* * Early console initialization. Precedes driver initialization. * * (1) we are first, and the user specified another driver * -- index will remain -1 * (2) we are first and the user specified no driver * -- index will be set to 0, then we will fail setup. * (3) we are first and the user specified our driver * -- index will be set to user specified driver, and we will fail * (4) we are after driver, and this initcall will register us * -- if the user didn't specify a driver then the console will match * * Note that for cases 2 and 3, we will match later when the io driver * calls hvc_instantiate() and call register again. */ static int __init hvc_console_init(void) { register_console(&hvc_console); return 0; } console_initcall(hvc_console_init); /* callback when the kboject ref count reaches zero. */ static void hvc_port_destruct(struct tty_port *port) { struct hvc_struct *hp = container_of(port, struct hvc_struct, port); unsigned long flags; mutex_lock(&hvc_structs_mutex); spin_lock_irqsave(&hp->lock, flags); list_del(&(hp->next)); spin_unlock_irqrestore(&hp->lock, flags); mutex_unlock(&hvc_structs_mutex); kfree(hp); } static void hvc_check_console(int index) { /* Already enabled, bail out */ if (hvc_console.flags & CON_ENABLED) return; /* If this index is what the user requested, then register * now (setup won't fail at this point). It's ok to just * call register again if previously .setup failed. */ if (index == hvc_console.index) register_console(&hvc_console); } /* * hvc_instantiate() is an early console discovery method which locates * consoles * prior to the vio subsystem discovering them. Hotplugged * vty adapters do NOT get an hvc_instantiate() callback since they * appear after early console init. */ int hvc_instantiate(uint32_t vtermno, int index, const struct hv_ops *ops) { struct hvc_struct *hp; if (index < 0 || index >= MAX_NR_HVC_CONSOLES) return -1; if (vtermnos[index] != -1) return -1; /* make sure no no tty has been registered in this index */ hp = hvc_get_by_index(index); if (hp) { tty_port_put(&hp->port); return -1; } vtermnos[index] = vtermno; cons_ops[index] = ops; /* reserve all indices up to and including this index */ if (last_hvc < index) last_hvc = index; /* check if we need to re-register the kernel console */ hvc_check_console(index); return 0; } EXPORT_SYMBOL_GPL(hvc_instantiate); /* Wake the sleeping khvcd */ void hvc_kick(void) { hvc_kicked = 1; wake_up_process(hvc_task); } EXPORT_SYMBOL_GPL(hvc_kick); static void hvc_unthrottle(struct tty_struct *tty) { hvc_kick(); } static int hvc_install(struct tty_driver *driver, struct tty_struct *tty) { struct hvc_struct *hp; int rc; /* Auto increments kref reference if found. */ hp = hvc_get_by_index(tty->index); if (!hp) return -ENODEV; tty->driver_data = hp; rc = tty_port_install(&hp->port, driver, tty); if (rc) tty_port_put(&hp->port); return rc; } /* * The TTY interface won't be used until after the vio layer has exposed the vty * adapter to the kernel. */ static int hvc_open(struct tty_struct *tty, struct file * filp) { struct hvc_struct *hp = tty->driver_data; unsigned long flags; int rc = 0; spin_lock_irqsave(&hp->port.lock, flags); /* Check and then increment for fast path open. */ if (hp->port.count++ > 0) { spin_unlock_irqrestore(&hp->port.lock, flags); hvc_kick(); return 0; } /* else count == 0 */ spin_unlock_irqrestore(&hp->port.lock, flags); tty_port_tty_set(&hp->port, tty); if (hp->ops->notifier_add) rc = hp->ops->notifier_add(hp, hp->data); /* * If the notifier fails we return an error. The tty layer * will call hvc_close() after a failed open but we don't want to clean * up there so we'll clean up here and clear out the previously set * tty fields and return the kref reference. */ if (rc) { tty_port_tty_set(&hp->port, NULL); tty->driver_data = NULL; tty_port_put(&hp->port); printk(KERN_ERR "hvc_open: request_irq failed with rc %d.\n", rc); } else /* We are ready... raise DTR/RTS */ if (C_BAUD(tty)) if (hp->ops->dtr_rts) hp->ops->dtr_rts(hp, 1); /* Force wakeup of the polling thread */ hvc_kick(); return rc; } static void hvc_close(struct tty_struct *tty, struct file * filp) { struct hvc_struct *hp; unsigned long flags; if (tty_hung_up_p(filp)) return; /* * No driver_data means that this close was issued after a failed * hvc_open by the tty layer's release_dev() function and we can just * exit cleanly because the kref reference wasn't made. */ if (!tty->driver_data) return; hp = tty->driver_data; spin_lock_irqsave(&hp->port.lock, flags); if (--hp->port.count == 0) { spin_unlock_irqrestore(&hp->port.lock, flags); /* We are done with the tty pointer now. */ tty_port_tty_set(&hp->port, NULL); if (C_HUPCL(tty)) if (hp->ops->dtr_rts) hp->ops->dtr_rts(hp, 0); if (hp->ops->notifier_del) hp->ops->notifier_del(hp, hp->data); /* cancel pending tty resize work */ cancel_work_sync(&hp->tty_resize); /* * Chain calls chars_in_buffer() and returns immediately if * there is no buffered data otherwise sleeps on a wait queue * waking periodically to check chars_in_buffer(). */ tty_wait_until_sent(tty, HVC_CLOSE_WAIT); } else { if (hp->port.count < 0) printk(KERN_ERR "hvc_close %X: oops, count is %d\n", hp->vtermno, hp->port.count); spin_unlock_irqrestore(&hp->port.lock, flags); } } static void hvc_cleanup(struct tty_struct *tty) { struct hvc_struct *hp = tty->driver_data; tty_port_put(&hp->port); } static void hvc_hangup(struct tty_struct *tty) { struct hvc_struct *hp = tty->driver_data; unsigned long flags; if (!hp) return; /* cancel pending tty resize work */ cancel_work_sync(&hp->tty_resize); spin_lock_irqsave(&hp->port.lock, flags); /* * The N_TTY line discipline has problems such that in a close vs * open->hangup case this can be called after the final close so prevent * that from happening for now. */ if (hp->port.count <= 0) { spin_unlock_irqrestore(&hp->port.lock, flags); return; } hp->port.count = 0; spin_unlock_irqrestore(&hp->port.lock, flags); tty_port_tty_set(&hp->port, NULL); hp->n_outbuf = 0; if (hp->ops->notifier_hangup) hp->ops->notifier_hangup(hp, hp->data); } /* * Push buffered characters whether they were just recently buffered or waiting * on a blocked hypervisor. Call this function with hp->lock held. */ static int hvc_push(struct hvc_struct *hp) { int n; n = hp->ops->put_chars(hp->vtermno, hp->outbuf, hp->n_outbuf); if (n <= 0) { if (n == 0 || n == -EAGAIN) { hp->do_wakeup = 1; return 0; } /* throw away output on error; this happens when there is no session connected to the vterm. */ hp->n_outbuf = 0; } else hp->n_outbuf -= n; if (hp->n_outbuf > 0) memmove(hp->outbuf, hp->outbuf + n, hp->n_outbuf); else hp->do_wakeup = 1; return n; } static int hvc_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct hvc_struct *hp = tty->driver_data; unsigned long flags; int rsize, written = 0; /* This write was probably executed during a tty close. */ if (!hp) return -EPIPE; /* FIXME what's this (unprotected) check for? */ if (hp->port.count <= 0) return -EIO; while (count > 0) { int ret = 0; spin_lock_irqsave(&hp->lock, flags); rsize = hp->outbuf_size - hp->n_outbuf; if (rsize) { if (rsize > count) rsize = count; memcpy(hp->outbuf + hp->n_outbuf, buf, rsize); count -= rsize; buf += rsize; hp->n_outbuf += rsize; written += rsize; } if (hp->n_outbuf > 0) ret = hvc_push(hp); spin_unlock_irqrestore(&hp->lock, flags); if (!ret) break; if (count) { if (hp->n_outbuf > 0) hvc_flush(hp); cond_resched(); } } /* * Racy, but harmless, kick thread if there is still pending data. */ if (hp->n_outbuf) hvc_kick(); return written; } /** * hvc_set_winsz() - Resize the hvc tty terminal window. * @work: work structure. * * The routine shall not be called within an atomic context because it * might sleep. * * Locking: hp->lock */ static void hvc_set_winsz(struct work_struct *work) { struct hvc_struct *hp; unsigned long hvc_flags; struct tty_struct *tty; struct winsize ws; hp = container_of(work, struct hvc_struct, tty_resize); tty = tty_port_tty_get(&hp->port); if (!tty) return; spin_lock_irqsave(&hp->lock, hvc_flags); ws = hp->ws; spin_unlock_irqrestore(&hp->lock, hvc_flags); tty_do_resize(tty, &ws); tty_kref_put(tty); } /* * This is actually a contract between the driver and the tty layer outlining * how much write room the driver can guarantee will be sent OR BUFFERED. This * driver MUST honor the return value. */ static int hvc_write_room(struct tty_struct *tty) { struct hvc_struct *hp = tty->driver_data; if (!hp) return 0; return hp->outbuf_size - hp->n_outbuf; } static int hvc_chars_in_buffer(struct tty_struct *tty) { struct hvc_struct *hp = tty->driver_data; if (!hp) return 0; return hp->n_outbuf; } /* * timeout will vary between the MIN and MAX values defined here. By default * and during console activity we will use a default MIN_TIMEOUT of 10. When * the console is idle, we increase the timeout value on each pass through * msleep until we reach the max. This may be noticeable as a brief (average * one second) delay on the console before the console responds to input when * there has been no input for some time. */ #define MIN_TIMEOUT (10) #define MAX_TIMEOUT (2000) static u32 timeout = MIN_TIMEOUT; /* * Maximum number of bytes to get from the console driver if hvc_poll is * called from driver (and can't sleep). Any more than this and we break * and start polling with khvcd. This value was derived from from an OpenBMC * console with the OPAL driver that results in about 0.25ms interrupts off * latency. */ #define HVC_ATOMIC_READ_MAX 128 #define HVC_POLL_READ 0x00000001 #define HVC_POLL_WRITE 0x00000002 static int __hvc_poll(struct hvc_struct *hp, bool may_sleep) { struct tty_struct *tty; int i, n, count, poll_mask = 0; char buf[N_INBUF] __ALIGNED__; unsigned long flags; int read_total = 0; int written_total = 0; spin_lock_irqsave(&hp->lock, flags); /* Push pending writes */ if (hp->n_outbuf > 0) written_total = hvc_push(hp); /* Reschedule us if still some write pending */ if (hp->n_outbuf > 0) { poll_mask |= HVC_POLL_WRITE; /* If hvc_push() was not able to write, sleep a few msecs */ timeout = (written_total) ? 0 : MIN_TIMEOUT; } if (may_sleep) { spin_unlock_irqrestore(&hp->lock, flags); cond_resched(); spin_lock_irqsave(&hp->lock, flags); } /* No tty attached, just skip */ tty = tty_port_tty_get(&hp->port); if (tty == NULL) goto bail; /* Now check if we can get data (are we throttled ?) */ if (tty_throttled(tty)) goto out; /* If we aren't notifier driven and aren't throttled, we always * request a reschedule */ if (!hp->irq_requested) poll_mask |= HVC_POLL_READ; read_again: /* Read data if any */ count = tty_buffer_request_room(&hp->port, N_INBUF); /* If flip is full, just reschedule a later read */ if (count == 0) { poll_mask |= HVC_POLL_READ; goto out; } n = hp->ops->get_chars(hp->vtermno, buf, count); if (n <= 0) { /* Hangup the tty when disconnected from host */ if (n == -EPIPE) { spin_unlock_irqrestore(&hp->lock, flags); tty_hangup(tty); spin_lock_irqsave(&hp->lock, flags); } else if ( n == -EAGAIN ) { /* * Some back-ends can only ensure a certain min * num of bytes read, which may be > 'count'. * Let the tty clear the flip buff to make room. */ poll_mask |= HVC_POLL_READ; } goto out; } for (i = 0; i < n; ++i) { #ifdef CONFIG_MAGIC_SYSRQ if (hp->index == hvc_console.index) { /* Handle the SysRq Hack */ /* XXX should support a sequence */ if (buf[i] == '\x0f') { /* ^O */ /* if ^O is pressed again, reset * sysrq_pressed and flip ^O char */ sysrq_pressed = !sysrq_pressed; if (sysrq_pressed) continue; } else if (sysrq_pressed) { handle_sysrq(buf[i]); sysrq_pressed = 0; continue; } } #endif /* CONFIG_MAGIC_SYSRQ */ tty_insert_flip_char(&hp->port, buf[i], 0); } read_total += n; if (may_sleep) { /* Keep going until the flip is full */ spin_unlock_irqrestore(&hp->lock, flags); cond_resched(); spin_lock_irqsave(&hp->lock, flags); goto read_again; } else if (read_total < HVC_ATOMIC_READ_MAX) { /* Break and defer if it's a large read in atomic */ goto read_again; } /* * Latency break, schedule another poll immediately. */ poll_mask |= HVC_POLL_READ; out: /* Wakeup write queue if necessary */ if (hp->do_wakeup) { hp->do_wakeup = 0; tty_wakeup(tty); } bail: spin_unlock_irqrestore(&hp->lock, flags); if (read_total) { /* Activity is occurring, so reset the polling backoff value to a minimum for performance. */ timeout = MIN_TIMEOUT; tty_flip_buffer_push(&hp->port); } tty_kref_put(tty); return poll_mask; } int hvc_poll(struct hvc_struct *hp) { return __hvc_poll(hp, false); } EXPORT_SYMBOL_GPL(hvc_poll); /** * __hvc_resize() - Update terminal window size information. * @hp: HVC console pointer * @ws: Terminal window size structure * * Stores the specified window size information in the hvc structure of @hp. * The function schedule the tty resize update. * * Locking: Locking free; the function MUST be called holding hp->lock */ void __hvc_resize(struct hvc_struct *hp, struct winsize ws) { hp->ws = ws; schedule_work(&hp->tty_resize); } EXPORT_SYMBOL_GPL(__hvc_resize); /* * This kthread is either polling or interrupt driven. This is determined by * calling hvc_poll() who determines whether a console adapter support * interrupts. */ static int khvcd(void *unused) { int poll_mask; struct hvc_struct *hp; set_freezable(); do { poll_mask = 0; hvc_kicked = 0; try_to_freeze(); wmb(); if (!cpus_are_in_xmon()) { mutex_lock(&hvc_structs_mutex); list_for_each_entry(hp, &hvc_structs, next) { poll_mask |= __hvc_poll(hp, true); cond_resched(); } mutex_unlock(&hvc_structs_mutex); } else poll_mask |= HVC_POLL_READ; if (hvc_kicked) continue; set_current_state(TASK_INTERRUPTIBLE); if (!hvc_kicked) { if (poll_mask == 0) schedule(); else { unsigned long j_timeout; if (timeout < MAX_TIMEOUT) timeout += (timeout >> 6) + 1; /* * We don't use msleep_interruptible otherwise * "kick" will fail to wake us up */ j_timeout = msecs_to_jiffies(timeout) + 1; schedule_timeout_interruptible(j_timeout); } } __set_current_state(TASK_RUNNING); } while (!kthread_should_stop()); return 0; } static int hvc_tiocmget(struct tty_struct *tty) { struct hvc_struct *hp = tty->driver_data; if (!hp || !hp->ops->tiocmget) return -EINVAL; return hp->ops->tiocmget(hp); } static int hvc_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct hvc_struct *hp = tty->driver_data; if (!hp || !hp->ops->tiocmset) return -EINVAL; return hp->ops->tiocmset(hp, set, clear); } #ifdef CONFIG_CONSOLE_POLL static int hvc_poll_init(struct tty_driver *driver, int line, char *options) { return 0; } static int hvc_poll_get_char(struct tty_driver *driver, int line) { struct tty_struct *tty = driver->ttys[0]; struct hvc_struct *hp = tty->driver_data; int n; char ch; n = hp->ops->get_chars(hp->vtermno, &ch, 1); if (n <= 0) return NO_POLL_CHAR; return ch; } static void hvc_poll_put_char(struct tty_driver *driver, int line, char ch) { struct tty_struct *tty = driver->ttys[0]; struct hvc_struct *hp = tty->driver_data; int n; do { n = hp->ops->put_chars(hp->vtermno, &ch, 1); } while (n <= 0); } #endif static const struct tty_operations hvc_ops = { .install = hvc_install, .open = hvc_open, .close = hvc_close, .cleanup = hvc_cleanup, .write = hvc_write, .hangup = hvc_hangup, .unthrottle = hvc_unthrottle, .write_room = hvc_write_room, .chars_in_buffer = hvc_chars_in_buffer, .tiocmget = hvc_tiocmget, .tiocmset = hvc_tiocmset, #ifdef CONFIG_CONSOLE_POLL .poll_init = hvc_poll_init, .poll_get_char = hvc_poll_get_char, .poll_put_char = hvc_poll_put_char, #endif }; static const struct tty_port_operations hvc_port_ops = { .destruct = hvc_port_destruct, }; struct hvc_struct *hvc_alloc(uint32_t vtermno, int data, const struct hv_ops *ops, int outbuf_size) { struct hvc_struct *hp; int i; /* We wait until a driver actually comes along */ if (atomic_inc_not_zero(&hvc_needs_init)) { int err = hvc_init(); if (err) return ERR_PTR(err); } hp = kzalloc(ALIGN(sizeof(*hp), sizeof(long)) + outbuf_size, GFP_KERNEL); if (!hp) return ERR_PTR(-ENOMEM); hp->vtermno = vtermno; hp->data = data; hp->ops = ops; hp->outbuf_size = outbuf_size; hp->outbuf = &((char *)hp)[ALIGN(sizeof(*hp), sizeof(long))]; tty_port_init(&hp->port); hp->port.ops = &hvc_port_ops; INIT_WORK(&hp->tty_resize, hvc_set_winsz); spin_lock_init(&hp->lock); mutex_lock(&hvc_structs_mutex); /* * find index to use: * see if this vterm id matches one registered for console. */ for (i=0; i < MAX_NR_HVC_CONSOLES; i++) if (vtermnos[i] == hp->vtermno && cons_ops[i] == hp->ops) break; /* no matching slot, just use a counter */ if (i >= MAX_NR_HVC_CONSOLES) i = ++last_hvc; hp->index = i; cons_ops[i] = ops; vtermnos[i] = vtermno; list_add_tail(&(hp->next), &hvc_structs); mutex_unlock(&hvc_structs_mutex); /* check if we need to re-register the kernel console */ hvc_check_console(i); return hp; } EXPORT_SYMBOL_GPL(hvc_alloc); int hvc_remove(struct hvc_struct *hp) { unsigned long flags; struct tty_struct *tty; tty = tty_port_tty_get(&hp->port); console_lock(); spin_lock_irqsave(&hp->lock, flags); if (hp->index < MAX_NR_HVC_CONSOLES) { vtermnos[hp->index] = -1; cons_ops[hp->index] = NULL; } /* Don't whack hp->irq because tty_hangup() will need to free the irq. */ spin_unlock_irqrestore(&hp->lock, flags); console_unlock(); /* * We 'put' the instance that was grabbed when the kref instance * was initialized using kref_init(). Let the last holder of this * kref cause it to be removed, which will probably be the tty_vhangup * below. */ tty_port_put(&hp->port); /* * This function call will auto chain call hvc_hangup. */ if (tty) { tty_vhangup(tty); tty_kref_put(tty); } return 0; } EXPORT_SYMBOL_GPL(hvc_remove); /* Driver initialization: called as soon as someone uses hvc_alloc(). */ static int hvc_init(void) { struct tty_driver *drv; int err; /* We need more than hvc_count adapters due to hotplug additions. */ drv = alloc_tty_driver(HVC_ALLOC_TTY_ADAPTERS); if (!drv) { err = -ENOMEM; goto out; } drv->driver_name = "hvc"; drv->name = "hvc"; drv->major = HVC_MAJOR; drv->minor_start = HVC_MINOR; drv->type = TTY_DRIVER_TYPE_SYSTEM; drv->init_termios = tty_std_termios; drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_RESET_TERMIOS; tty_set_operations(drv, &hvc_ops); /* Always start the kthread because there can be hotplug vty adapters * added later. */ hvc_task = kthread_run(khvcd, NULL, "khvcd"); if (IS_ERR(hvc_task)) { printk(KERN_ERR "Couldn't create kthread for console.\n"); err = PTR_ERR(hvc_task); goto put_tty; } err = tty_register_driver(drv); if (err) { printk(KERN_ERR "Couldn't register hvc console driver\n"); goto stop_thread; } /* * Make sure tty is fully registered before allowing it to be * found by hvc_console_device. */ smp_mb(); hvc_driver = drv; return 0; stop_thread: kthread_stop(hvc_task); hvc_task = NULL; put_tty: put_tty_driver(drv); out: return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1