Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Fulghum | 23081 | 93.89% | 29 | 29.59% |
Alan Cox | 937 | 3.81% | 19 | 19.39% |
Peter Hurley | 106 | 0.43% | 9 | 9.18% |
Krzysztof Hałasa | 91 | 0.37% | 3 | 3.06% |
Joe Perches | 68 | 0.28% | 3 | 3.06% |
Jiri Slaby | 61 | 0.25% | 5 | 5.10% |
Alexey Dobriyan | 49 | 0.20% | 1 | 1.02% |
Kees Cook | 36 | 0.15% | 1 | 1.02% |
Vasiliy Kulikov | 27 | 0.11% | 2 | 2.04% |
Greg Kroah-Hartman | 23 | 0.09% | 3 | 3.06% |
Al Viro | 23 | 0.09% | 2 | 2.04% |
David Howells | 19 | 0.08% | 2 | 2.04% |
Dan Carpenter | 12 | 0.05% | 1 | 1.02% |
Jeff Garzik | 9 | 0.04% | 1 | 1.02% |
Johan Hovold | 7 | 0.03% | 1 | 1.02% |
Florian Westphal | 6 | 0.02% | 1 | 1.02% |
Arnd Bergmann | 4 | 0.02% | 1 | 1.02% |
Huang Shijie | 4 | 0.02% | 1 | 1.02% |
Stephen Hemminger | 3 | 0.01% | 1 | 1.02% |
Robert P. J. Day | 3 | 0.01% | 1 | 1.02% |
Andrew Morton | 2 | 0.01% | 1 | 1.02% |
Christoph Hellwig | 2 | 0.01% | 1 | 1.02% |
Yoann Padioleau | 1 | 0.00% | 1 | 1.02% |
Linus Torvalds | 1 | 0.00% | 1 | 1.02% |
Masanari Iida | 1 | 0.00% | 1 | 1.02% |
Jeff Dike | 1 | 0.00% | 1 | 1.02% |
Thomas Gleixner | 1 | 0.00% | 1 | 1.02% |
Arvind Yadav | 1 | 0.00% | 1 | 1.02% |
Lucas De Marchi | 1 | 0.00% | 1 | 1.02% |
Ingo Molnar | 1 | 0.00% | 1 | 1.02% |
Johannes Berg | 1 | 0.00% | 1 | 1.02% |
Total | 24582 | 98 |
// SPDX-License-Identifier: GPL-1.0+ /* * Device driver for Microgate SyncLink GT serial adapters. * * written by Paul Fulghum for Microgate Corporation * paulkf@microgate.com * * Microgate and SyncLink are trademarks of Microgate Corporation * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * DEBUG OUTPUT DEFINITIONS * * uncomment lines below to enable specific types of debug output * * DBGINFO information - most verbose output * DBGERR serious errors * DBGBH bottom half service routine debugging * DBGISR interrupt service routine debugging * DBGDATA output receive and transmit data * DBGTBUF output transmit DMA buffers and registers * DBGRBUF output receive DMA buffers and registers */ #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label)) /*#define DBGTBUF(info) dump_tbufs(info)*/ /*#define DBGRBUF(info) dump_rbufs(info)*/ #include <linux/module.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ioctl.h> #include <linux/termios.h> #include <linux/bitops.h> #include <linux/workqueue.h> #include <linux/hdlc.h> #include <linux/synclink.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/dma.h> #include <asm/types.h> #include <linux/uaccess.h> #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE)) #define SYNCLINK_GENERIC_HDLC 1 #else #define SYNCLINK_GENERIC_HDLC 0 #endif /* * module identification */ static char *driver_name = "SyncLink GT"; static char *slgt_driver_name = "synclink_gt"; static char *tty_dev_prefix = "ttySLG"; MODULE_LICENSE("GPL"); #define MGSL_MAGIC 0x5401 #define MAX_DEVICES 32 static const struct pci_device_id pci_table[] = { {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {0,}, /* terminate list */ }; MODULE_DEVICE_TABLE(pci, pci_table); static int init_one(struct pci_dev *dev,const struct pci_device_id *ent); static void remove_one(struct pci_dev *dev); static struct pci_driver pci_driver = { .name = "synclink_gt", .id_table = pci_table, .probe = init_one, .remove = remove_one, }; static bool pci_registered; /* * module configuration and status */ static struct slgt_info *slgt_device_list; static int slgt_device_count; static int ttymajor; static int debug_level; static int maxframe[MAX_DEVICES]; module_param(ttymajor, int, 0); module_param(debug_level, int, 0); module_param_array(maxframe, int, NULL, 0); MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned"); MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail"); MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)"); /* * tty support and callbacks */ static struct tty_driver *serial_driver; static int open(struct tty_struct *tty, struct file * filp); static void close(struct tty_struct *tty, struct file * filp); static void hangup(struct tty_struct *tty); static void set_termios(struct tty_struct *tty, struct ktermios *old_termios); static int write(struct tty_struct *tty, const unsigned char *buf, int count); static int put_char(struct tty_struct *tty, unsigned char ch); static void send_xchar(struct tty_struct *tty, char ch); static void wait_until_sent(struct tty_struct *tty, int timeout); static int write_room(struct tty_struct *tty); static void flush_chars(struct tty_struct *tty); static void flush_buffer(struct tty_struct *tty); static void tx_hold(struct tty_struct *tty); static void tx_release(struct tty_struct *tty); static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); static int chars_in_buffer(struct tty_struct *tty); static void throttle(struct tty_struct * tty); static void unthrottle(struct tty_struct * tty); static int set_break(struct tty_struct *tty, int break_state); /* * generic HDLC support and callbacks */ #if SYNCLINK_GENERIC_HDLC #define dev_to_port(D) (dev_to_hdlc(D)->priv) static void hdlcdev_tx_done(struct slgt_info *info); static void hdlcdev_rx(struct slgt_info *info, char *buf, int size); static int hdlcdev_init(struct slgt_info *info); static void hdlcdev_exit(struct slgt_info *info); #endif /* * device specific structures, macros and functions */ #define SLGT_MAX_PORTS 4 #define SLGT_REG_SIZE 256 /* * conditional wait facility */ struct cond_wait { struct cond_wait *next; wait_queue_head_t q; wait_queue_entry_t wait; unsigned int data; }; static void init_cond_wait(struct cond_wait *w, unsigned int data); static void add_cond_wait(struct cond_wait **head, struct cond_wait *w); static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w); static void flush_cond_wait(struct cond_wait **head); /* * DMA buffer descriptor and access macros */ struct slgt_desc { __le16 count; __le16 status; __le32 pbuf; /* physical address of data buffer */ __le32 next; /* physical address of next descriptor */ /* driver book keeping */ char *buf; /* virtual address of data buffer */ unsigned int pdesc; /* physical address of this descriptor */ dma_addr_t buf_dma_addr; unsigned short buf_count; }; #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b)) #define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b)) #define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b)) #define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0)) #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b)) #define desc_count(a) (le16_to_cpu((a).count)) #define desc_status(a) (le16_to_cpu((a).status)) #define desc_complete(a) (le16_to_cpu((a).status) & BIT15) #define desc_eof(a) (le16_to_cpu((a).status) & BIT2) #define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1) #define desc_abort(a) (le16_to_cpu((a).status) & BIT0) #define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3) struct _input_signal_events { int ri_up; int ri_down; int dsr_up; int dsr_down; int dcd_up; int dcd_down; int cts_up; int cts_down; }; /* * device instance data structure */ struct slgt_info { void *if_ptr; /* General purpose pointer (used by SPPP) */ struct tty_port port; struct slgt_info *next_device; /* device list link */ int magic; char device_name[25]; struct pci_dev *pdev; int port_count; /* count of ports on adapter */ int adapter_num; /* adapter instance number */ int port_num; /* port instance number */ /* array of pointers to port contexts on this adapter */ struct slgt_info *port_array[SLGT_MAX_PORTS]; int line; /* tty line instance number */ struct mgsl_icount icount; int timeout; int x_char; /* xon/xoff character */ unsigned int read_status_mask; unsigned int ignore_status_mask; wait_queue_head_t status_event_wait_q; wait_queue_head_t event_wait_q; struct timer_list tx_timer; struct timer_list rx_timer; unsigned int gpio_present; struct cond_wait *gpio_wait_q; spinlock_t lock; /* spinlock for synchronizing with ISR */ struct work_struct task; u32 pending_bh; bool bh_requested; bool bh_running; int isr_overflow; bool irq_requested; /* true if IRQ requested */ bool irq_occurred; /* for diagnostics use */ /* device configuration */ unsigned int bus_type; unsigned int irq_level; unsigned long irq_flags; unsigned char __iomem * reg_addr; /* memory mapped registers address */ u32 phys_reg_addr; bool reg_addr_requested; MGSL_PARAMS params; /* communications parameters */ u32 idle_mode; u32 max_frame_size; /* as set by device config */ unsigned int rbuf_fill_level; unsigned int rx_pio; unsigned int if_mode; unsigned int base_clock; unsigned int xsync; unsigned int xctrl; /* device status */ bool rx_enabled; bool rx_restart; bool tx_enabled; bool tx_active; unsigned char signals; /* serial signal states */ int init_error; /* initialization error */ unsigned char *tx_buf; int tx_count; char *flag_buf; bool drop_rts_on_tx_done; struct _input_signal_events input_signal_events; int dcd_chkcount; /* check counts to prevent */ int cts_chkcount; /* too many IRQs if a signal */ int dsr_chkcount; /* is floating */ int ri_chkcount; char *bufs; /* virtual address of DMA buffer lists */ dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */ unsigned int rbuf_count; struct slgt_desc *rbufs; unsigned int rbuf_current; unsigned int rbuf_index; unsigned int rbuf_fill_index; unsigned short rbuf_fill_count; unsigned int tbuf_count; struct slgt_desc *tbufs; unsigned int tbuf_current; unsigned int tbuf_start; unsigned char *tmp_rbuf; unsigned int tmp_rbuf_count; /* SPPP/Cisco HDLC device parts */ int netcount; spinlock_t netlock; #if SYNCLINK_GENERIC_HDLC struct net_device *netdev; #endif }; static MGSL_PARAMS default_params = { .mode = MGSL_MODE_HDLC, .loopback = 0, .flags = HDLC_FLAG_UNDERRUN_ABORT15, .encoding = HDLC_ENCODING_NRZI_SPACE, .clock_speed = 0, .addr_filter = 0xff, .crc_type = HDLC_CRC_16_CCITT, .preamble_length = HDLC_PREAMBLE_LENGTH_8BITS, .preamble = HDLC_PREAMBLE_PATTERN_NONE, .data_rate = 9600, .data_bits = 8, .stop_bits = 1, .parity = ASYNC_PARITY_NONE }; #define BH_RECEIVE 1 #define BH_TRANSMIT 2 #define BH_STATUS 4 #define IO_PIN_SHUTDOWN_LIMIT 100 #define DMABUFSIZE 256 #define DESC_LIST_SIZE 4096 #define MASK_PARITY BIT1 #define MASK_FRAMING BIT0 #define MASK_BREAK BIT14 #define MASK_OVERRUN BIT4 #define GSR 0x00 /* global status */ #define JCR 0x04 /* JTAG control */ #define IODR 0x08 /* GPIO direction */ #define IOER 0x0c /* GPIO interrupt enable */ #define IOVR 0x10 /* GPIO value */ #define IOSR 0x14 /* GPIO interrupt status */ #define TDR 0x80 /* tx data */ #define RDR 0x80 /* rx data */ #define TCR 0x82 /* tx control */ #define TIR 0x84 /* tx idle */ #define TPR 0x85 /* tx preamble */ #define RCR 0x86 /* rx control */ #define VCR 0x88 /* V.24 control */ #define CCR 0x89 /* clock control */ #define BDR 0x8a /* baud divisor */ #define SCR 0x8c /* serial control */ #define SSR 0x8e /* serial status */ #define RDCSR 0x90 /* rx DMA control/status */ #define TDCSR 0x94 /* tx DMA control/status */ #define RDDAR 0x98 /* rx DMA descriptor address */ #define TDDAR 0x9c /* tx DMA descriptor address */ #define XSR 0x40 /* extended sync pattern */ #define XCR 0x44 /* extended control */ #define RXIDLE BIT14 #define RXBREAK BIT14 #define IRQ_TXDATA BIT13 #define IRQ_TXIDLE BIT12 #define IRQ_TXUNDER BIT11 /* HDLC */ #define IRQ_RXDATA BIT10 #define IRQ_RXIDLE BIT9 /* HDLC */ #define IRQ_RXBREAK BIT9 /* async */ #define IRQ_RXOVER BIT8 #define IRQ_DSR BIT7 #define IRQ_CTS BIT6 #define IRQ_DCD BIT5 #define IRQ_RI BIT4 #define IRQ_ALL 0x3ff0 #define IRQ_MASTER BIT0 #define slgt_irq_on(info, mask) \ wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask))) #define slgt_irq_off(info, mask) \ wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask))) static __u8 rd_reg8(struct slgt_info *info, unsigned int addr); static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value); static __u16 rd_reg16(struct slgt_info *info, unsigned int addr); static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value); static __u32 rd_reg32(struct slgt_info *info, unsigned int addr); static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value); static void msc_set_vcr(struct slgt_info *info); static int startup(struct slgt_info *info); static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info); static void shutdown(struct slgt_info *info); static void program_hw(struct slgt_info *info); static void change_params(struct slgt_info *info); static int register_test(struct slgt_info *info); static int irq_test(struct slgt_info *info); static int loopback_test(struct slgt_info *info); static int adapter_test(struct slgt_info *info); static void reset_adapter(struct slgt_info *info); static void reset_port(struct slgt_info *info); static void async_mode(struct slgt_info *info); static void sync_mode(struct slgt_info *info); static void rx_stop(struct slgt_info *info); static void rx_start(struct slgt_info *info); static void reset_rbufs(struct slgt_info *info); static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last); static void rdma_reset(struct slgt_info *info); static bool rx_get_frame(struct slgt_info *info); static bool rx_get_buf(struct slgt_info *info); static void tx_start(struct slgt_info *info); static void tx_stop(struct slgt_info *info); static void tx_set_idle(struct slgt_info *info); static unsigned int free_tbuf_count(struct slgt_info *info); static unsigned int tbuf_bytes(struct slgt_info *info); static void reset_tbufs(struct slgt_info *info); static void tdma_reset(struct slgt_info *info); static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count); static void get_signals(struct slgt_info *info); static void set_signals(struct slgt_info *info); static void enable_loopback(struct slgt_info *info); static void set_rate(struct slgt_info *info, u32 data_rate); static int bh_action(struct slgt_info *info); static void bh_handler(struct work_struct *work); static void bh_transmit(struct slgt_info *info); static void isr_serial(struct slgt_info *info); static void isr_rdma(struct slgt_info *info); static void isr_txeom(struct slgt_info *info, unsigned short status); static void isr_tdma(struct slgt_info *info); static int alloc_dma_bufs(struct slgt_info *info); static void free_dma_bufs(struct slgt_info *info); static int alloc_desc(struct slgt_info *info); static void free_desc(struct slgt_info *info); static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count); static int alloc_tmp_rbuf(struct slgt_info *info); static void free_tmp_rbuf(struct slgt_info *info); static void tx_timeout(struct timer_list *t); static void rx_timeout(struct timer_list *t); /* * ioctl handlers */ static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount); static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params); static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params); static int get_txidle(struct slgt_info *info, int __user *idle_mode); static int set_txidle(struct slgt_info *info, int idle_mode); static int tx_enable(struct slgt_info *info, int enable); static int tx_abort(struct slgt_info *info); static int rx_enable(struct slgt_info *info, int enable); static int modem_input_wait(struct slgt_info *info,int arg); static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr); static int tiocmget(struct tty_struct *tty); static int tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear); static int set_break(struct tty_struct *tty, int break_state); static int get_interface(struct slgt_info *info, int __user *if_mode); static int set_interface(struct slgt_info *info, int if_mode); static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio); static int get_xsync(struct slgt_info *info, int __user *if_mode); static int set_xsync(struct slgt_info *info, int if_mode); static int get_xctrl(struct slgt_info *info, int __user *if_mode); static int set_xctrl(struct slgt_info *info, int if_mode); /* * driver functions */ static void add_device(struct slgt_info *info); static void device_init(int adapter_num, struct pci_dev *pdev); static int claim_resources(struct slgt_info *info); static void release_resources(struct slgt_info *info); /* * DEBUG OUTPUT CODE */ #ifndef DBGINFO #define DBGINFO(fmt) #endif #ifndef DBGERR #define DBGERR(fmt) #endif #ifndef DBGBH #define DBGBH(fmt) #endif #ifndef DBGISR #define DBGISR(fmt) #endif #ifdef DBGDATA static void trace_block(struct slgt_info *info, const char *data, int count, const char *label) { int i; int linecount; printk("%s %s data:\n",info->device_name, label); while(count) { linecount = (count > 16) ? 16 : count; for(i=0; i < linecount; i++) printk("%02X ",(unsigned char)data[i]); for(;i<17;i++) printk(" "); for(i=0;i<linecount;i++) { if (data[i]>=040 && data[i]<=0176) printk("%c",data[i]); else printk("."); } printk("\n"); data += linecount; count -= linecount; } } #else #define DBGDATA(info, buf, size, label) #endif #ifdef DBGTBUF static void dump_tbufs(struct slgt_info *info) { int i; printk("tbuf_current=%d\n", info->tbuf_current); for (i=0 ; i < info->tbuf_count ; i++) { printk("%d: count=%04X status=%04X\n", i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status)); } } #else #define DBGTBUF(info) #endif #ifdef DBGRBUF static void dump_rbufs(struct slgt_info *info) { int i; printk("rbuf_current=%d\n", info->rbuf_current); for (i=0 ; i < info->rbuf_count ; i++) { printk("%d: count=%04X status=%04X\n", i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status)); } } #else #define DBGRBUF(info) #endif static inline int sanity_check(struct slgt_info *info, char *devname, const char *name) { #ifdef SANITY_CHECK if (!info) { printk("null struct slgt_info for (%s) in %s\n", devname, name); return 1; } if (info->magic != MGSL_MAGIC) { printk("bad magic number struct slgt_info (%s) in %s\n", devname, name); return 1; } #else if (!info) return 1; #endif return 0; } /** * line discipline callback wrappers * * The wrappers maintain line discipline references * while calling into the line discipline. * * ldisc_receive_buf - pass receive data to line discipline */ static void ldisc_receive_buf(struct tty_struct *tty, const __u8 *data, char *flags, int count) { struct tty_ldisc *ld; if (!tty) return; ld = tty_ldisc_ref(tty); if (ld) { if (ld->ops->receive_buf) ld->ops->receive_buf(tty, data, flags, count); tty_ldisc_deref(ld); } } /* tty callbacks */ static int open(struct tty_struct *tty, struct file *filp) { struct slgt_info *info; int retval, line; unsigned long flags; line = tty->index; if (line >= slgt_device_count) { DBGERR(("%s: open with invalid line #%d.\n", driver_name, line)); return -ENODEV; } info = slgt_device_list; while(info && info->line != line) info = info->next_device; if (sanity_check(info, tty->name, "open")) return -ENODEV; if (info->init_error) { DBGERR(("%s init error=%d\n", info->device_name, info->init_error)); return -ENODEV; } tty->driver_data = info; info->port.tty = tty; DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count)); mutex_lock(&info->port.mutex); info->port.low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0; spin_lock_irqsave(&info->netlock, flags); if (info->netcount) { retval = -EBUSY; spin_unlock_irqrestore(&info->netlock, flags); mutex_unlock(&info->port.mutex); goto cleanup; } info->port.count++; spin_unlock_irqrestore(&info->netlock, flags); if (info->port.count == 1) { /* 1st open on this device, init hardware */ retval = startup(info); if (retval < 0) { mutex_unlock(&info->port.mutex); goto cleanup; } } mutex_unlock(&info->port.mutex); retval = block_til_ready(tty, filp, info); if (retval) { DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval)); goto cleanup; } retval = 0; cleanup: if (retval) { if (tty->count == 1) info->port.tty = NULL; /* tty layer will release tty struct */ if(info->port.count) info->port.count--; } DBGINFO(("%s open rc=%d\n", info->device_name, retval)); return retval; } static void close(struct tty_struct *tty, struct file *filp) { struct slgt_info *info = tty->driver_data; if (sanity_check(info, tty->name, "close")) return; DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count)); if (tty_port_close_start(&info->port, tty, filp) == 0) goto cleanup; mutex_lock(&info->port.mutex); if (tty_port_initialized(&info->port)) wait_until_sent(tty, info->timeout); flush_buffer(tty); tty_ldisc_flush(tty); shutdown(info); mutex_unlock(&info->port.mutex); tty_port_close_end(&info->port, tty); info->port.tty = NULL; cleanup: DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count)); } static void hangup(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "hangup")) return; DBGINFO(("%s hangup\n", info->device_name)); flush_buffer(tty); mutex_lock(&info->port.mutex); shutdown(info); spin_lock_irqsave(&info->port.lock, flags); info->port.count = 0; info->port.tty = NULL; spin_unlock_irqrestore(&info->port.lock, flags); tty_port_set_active(&info->port, 0); mutex_unlock(&info->port.mutex); wake_up_interruptible(&info->port.open_wait); } static void set_termios(struct tty_struct *tty, struct ktermios *old_termios) { struct slgt_info *info = tty->driver_data; unsigned long flags; DBGINFO(("%s set_termios\n", tty->driver->name)); change_params(info); /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { info->signals |= SerialSignal_DTR; if (!C_CRTSCTS(tty) || !tty_throttled(tty)) info->signals |= SerialSignal_RTS; spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) { tty->hw_stopped = 0; tx_release(tty); } } static void update_tx_timer(struct slgt_info *info) { /* * use worst case speed of 1200bps to calculate transmit timeout * based on data in buffers (tbuf_bytes) and FIFO (128 bytes) */ if (info->params.mode == MGSL_MODE_HDLC) { int timeout = (tbuf_bytes(info) * 7) + 1000; mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout)); } } static int write(struct tty_struct *tty, const unsigned char *buf, int count) { int ret = 0; struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "write")) return -EIO; DBGINFO(("%s write count=%d\n", info->device_name, count)); if (!info->tx_buf || (count > info->max_frame_size)) return -EIO; if (!count || tty->stopped || tty->hw_stopped) return 0; spin_lock_irqsave(&info->lock, flags); if (info->tx_count) { /* send accumulated data from send_char() */ if (!tx_load(info, info->tx_buf, info->tx_count)) goto cleanup; info->tx_count = 0; } if (tx_load(info, buf, count)) ret = count; cleanup: spin_unlock_irqrestore(&info->lock, flags); DBGINFO(("%s write rc=%d\n", info->device_name, ret)); return ret; } static int put_char(struct tty_struct *tty, unsigned char ch) { struct slgt_info *info = tty->driver_data; unsigned long flags; int ret = 0; if (sanity_check(info, tty->name, "put_char")) return 0; DBGINFO(("%s put_char(%d)\n", info->device_name, ch)); if (!info->tx_buf) return 0; spin_lock_irqsave(&info->lock,flags); if (info->tx_count < info->max_frame_size) { info->tx_buf[info->tx_count++] = ch; ret = 1; } spin_unlock_irqrestore(&info->lock,flags); return ret; } static void send_xchar(struct tty_struct *tty, char ch) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "send_xchar")) return; DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch)); info->x_char = ch; if (ch) { spin_lock_irqsave(&info->lock,flags); if (!info->tx_enabled) tx_start(info); spin_unlock_irqrestore(&info->lock,flags); } } static void wait_until_sent(struct tty_struct *tty, int timeout) { struct slgt_info *info = tty->driver_data; unsigned long orig_jiffies, char_time; if (!info ) return; if (sanity_check(info, tty->name, "wait_until_sent")) return; DBGINFO(("%s wait_until_sent entry\n", info->device_name)); if (!tty_port_initialized(&info->port)) goto exit; orig_jiffies = jiffies; /* Set check interval to 1/5 of estimated time to * send a character, and make it at least 1. The check * interval should also be less than the timeout. * Note: use tight timings here to satisfy the NIST-PCTS. */ if (info->params.data_rate) { char_time = info->timeout/(32 * 5); if (!char_time) char_time++; } else char_time = 1; if (timeout) char_time = min_t(unsigned long, char_time, timeout); while (info->tx_active) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } exit: DBGINFO(("%s wait_until_sent exit\n", info->device_name)); } static int write_room(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; int ret; if (sanity_check(info, tty->name, "write_room")) return 0; ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE; DBGINFO(("%s write_room=%d\n", info->device_name, ret)); return ret; } static void flush_chars(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "flush_chars")) return; DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count)); if (info->tx_count <= 0 || tty->stopped || tty->hw_stopped || !info->tx_buf) return; DBGINFO(("%s flush_chars start transmit\n", info->device_name)); spin_lock_irqsave(&info->lock,flags); if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) info->tx_count = 0; spin_unlock_irqrestore(&info->lock,flags); } static void flush_buffer(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "flush_buffer")) return; DBGINFO(("%s flush_buffer\n", info->device_name)); spin_lock_irqsave(&info->lock, flags); info->tx_count = 0; spin_unlock_irqrestore(&info->lock, flags); tty_wakeup(tty); } /* * throttle (stop) transmitter */ static void tx_hold(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "tx_hold")) return; DBGINFO(("%s tx_hold\n", info->device_name)); spin_lock_irqsave(&info->lock,flags); if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC) tx_stop(info); spin_unlock_irqrestore(&info->lock,flags); } /* * release (start) transmitter */ static void tx_release(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "tx_release")) return; DBGINFO(("%s tx_release\n", info->device_name)); spin_lock_irqsave(&info->lock, flags); if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count)) info->tx_count = 0; spin_unlock_irqrestore(&info->lock, flags); } /* * Service an IOCTL request * * Arguments * * tty pointer to tty instance data * cmd IOCTL command code * arg command argument/context * * Return 0 if success, otherwise error code */ static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct slgt_info *info = tty->driver_data; void __user *argp = (void __user *)arg; int ret; if (sanity_check(info, tty->name, "ioctl")) return -ENODEV; DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd)); if (cmd != TIOCMIWAIT) { if (tty_io_error(tty)) return -EIO; } switch (cmd) { case MGSL_IOCWAITEVENT: return wait_mgsl_event(info, argp); case TIOCMIWAIT: return modem_input_wait(info,(int)arg); case MGSL_IOCSGPIO: return set_gpio(info, argp); case MGSL_IOCGGPIO: return get_gpio(info, argp); case MGSL_IOCWAITGPIO: return wait_gpio(info, argp); case MGSL_IOCGXSYNC: return get_xsync(info, argp); case MGSL_IOCSXSYNC: return set_xsync(info, (int)arg); case MGSL_IOCGXCTRL: return get_xctrl(info, argp); case MGSL_IOCSXCTRL: return set_xctrl(info, (int)arg); } mutex_lock(&info->port.mutex); switch (cmd) { case MGSL_IOCGPARAMS: ret = get_params(info, argp); break; case MGSL_IOCSPARAMS: ret = set_params(info, argp); break; case MGSL_IOCGTXIDLE: ret = get_txidle(info, argp); break; case MGSL_IOCSTXIDLE: ret = set_txidle(info, (int)arg); break; case MGSL_IOCTXENABLE: ret = tx_enable(info, (int)arg); break; case MGSL_IOCRXENABLE: ret = rx_enable(info, (int)arg); break; case MGSL_IOCTXABORT: ret = tx_abort(info); break; case MGSL_IOCGSTATS: ret = get_stats(info, argp); break; case MGSL_IOCGIF: ret = get_interface(info, argp); break; case MGSL_IOCSIF: ret = set_interface(info,(int)arg); break; default: ret = -ENOIOCTLCMD; } mutex_unlock(&info->port.mutex); return ret; } static int get_icount(struct tty_struct *tty, struct serial_icounter_struct *icount) { struct slgt_info *info = tty->driver_data; struct mgsl_icount cnow; /* kernel counter temps */ unsigned long flags; spin_lock_irqsave(&info->lock,flags); cnow = info->icount; spin_unlock_irqrestore(&info->lock,flags); icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } /* * support for 32 bit ioctl calls on 64 bit systems */ #ifdef CONFIG_COMPAT static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params) { struct MGSL_PARAMS32 tmp_params; DBGINFO(("%s get_params32\n", info->device_name)); memset(&tmp_params, 0, sizeof(tmp_params)); tmp_params.mode = (compat_ulong_t)info->params.mode; tmp_params.loopback = info->params.loopback; tmp_params.flags = info->params.flags; tmp_params.encoding = info->params.encoding; tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed; tmp_params.addr_filter = info->params.addr_filter; tmp_params.crc_type = info->params.crc_type; tmp_params.preamble_length = info->params.preamble_length; tmp_params.preamble = info->params.preamble; tmp_params.data_rate = (compat_ulong_t)info->params.data_rate; tmp_params.data_bits = info->params.data_bits; tmp_params.stop_bits = info->params.stop_bits; tmp_params.parity = info->params.parity; if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32))) return -EFAULT; return 0; } static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params) { struct MGSL_PARAMS32 tmp_params; DBGINFO(("%s set_params32\n", info->device_name)); if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32))) return -EFAULT; spin_lock(&info->lock); if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) { info->base_clock = tmp_params.clock_speed; } else { info->params.mode = tmp_params.mode; info->params.loopback = tmp_params.loopback; info->params.flags = tmp_params.flags; info->params.encoding = tmp_params.encoding; info->params.clock_speed = tmp_params.clock_speed; info->params.addr_filter = tmp_params.addr_filter; info->params.crc_type = tmp_params.crc_type; info->params.preamble_length = tmp_params.preamble_length; info->params.preamble = tmp_params.preamble; info->params.data_rate = tmp_params.data_rate; info->params.data_bits = tmp_params.data_bits; info->params.stop_bits = tmp_params.stop_bits; info->params.parity = tmp_params.parity; } spin_unlock(&info->lock); program_hw(info); return 0; } static long slgt_compat_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct slgt_info *info = tty->driver_data; int rc; if (sanity_check(info, tty->name, "compat_ioctl")) return -ENODEV; DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd)); switch (cmd) { case MGSL_IOCSPARAMS32: rc = set_params32(info, compat_ptr(arg)); break; case MGSL_IOCGPARAMS32: rc = get_params32(info, compat_ptr(arg)); break; case MGSL_IOCGPARAMS: case MGSL_IOCSPARAMS: case MGSL_IOCGTXIDLE: case MGSL_IOCGSTATS: case MGSL_IOCWAITEVENT: case MGSL_IOCGIF: case MGSL_IOCSGPIO: case MGSL_IOCGGPIO: case MGSL_IOCWAITGPIO: case MGSL_IOCGXSYNC: case MGSL_IOCGXCTRL: rc = ioctl(tty, cmd, (unsigned long)compat_ptr(arg)); break; default: rc = ioctl(tty, cmd, arg); } DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc)); return rc; } #else #define slgt_compat_ioctl NULL #endif /* ifdef CONFIG_COMPAT */ /* * proc fs support */ static inline void line_info(struct seq_file *m, struct slgt_info *info) { char stat_buf[30]; unsigned long flags; seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n", info->device_name, info->phys_reg_addr, info->irq_level, info->max_frame_size); /* output current serial signal states */ spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); stat_buf[0] = 0; stat_buf[1] = 0; if (info->signals & SerialSignal_RTS) strcat(stat_buf, "|RTS"); if (info->signals & SerialSignal_CTS) strcat(stat_buf, "|CTS"); if (info->signals & SerialSignal_DTR) strcat(stat_buf, "|DTR"); if (info->signals & SerialSignal_DSR) strcat(stat_buf, "|DSR"); if (info->signals & SerialSignal_DCD) strcat(stat_buf, "|CD"); if (info->signals & SerialSignal_RI) strcat(stat_buf, "|RI"); if (info->params.mode != MGSL_MODE_ASYNC) { seq_printf(m, "\tHDLC txok:%d rxok:%d", info->icount.txok, info->icount.rxok); if (info->icount.txunder) seq_printf(m, " txunder:%d", info->icount.txunder); if (info->icount.txabort) seq_printf(m, " txabort:%d", info->icount.txabort); if (info->icount.rxshort) seq_printf(m, " rxshort:%d", info->icount.rxshort); if (info->icount.rxlong) seq_printf(m, " rxlong:%d", info->icount.rxlong); if (info->icount.rxover) seq_printf(m, " rxover:%d", info->icount.rxover); if (info->icount.rxcrc) seq_printf(m, " rxcrc:%d", info->icount.rxcrc); } else { seq_printf(m, "\tASYNC tx:%d rx:%d", info->icount.tx, info->icount.rx); if (info->icount.frame) seq_printf(m, " fe:%d", info->icount.frame); if (info->icount.parity) seq_printf(m, " pe:%d", info->icount.parity); if (info->icount.brk) seq_printf(m, " brk:%d", info->icount.brk); if (info->icount.overrun) seq_printf(m, " oe:%d", info->icount.overrun); } /* Append serial signal status to end */ seq_printf(m, " %s\n", stat_buf+1); seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n", info->tx_active,info->bh_requested,info->bh_running, info->pending_bh); } /* Called to print information about devices */ static int synclink_gt_proc_show(struct seq_file *m, void *v) { struct slgt_info *info; seq_puts(m, "synclink_gt driver\n"); info = slgt_device_list; while( info ) { line_info(m, info); info = info->next_device; } return 0; } /* * return count of bytes in transmit buffer */ static int chars_in_buffer(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; int count; if (sanity_check(info, tty->name, "chars_in_buffer")) return 0; count = tbuf_bytes(info); DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count)); return count; } /* * signal remote device to throttle send data (our receive data) */ static void throttle(struct tty_struct * tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "throttle")) return; DBGINFO(("%s throttle\n", info->device_name)); if (I_IXOFF(tty)) send_xchar(tty, STOP_CHAR(tty)); if (C_CRTSCTS(tty)) { spin_lock_irqsave(&info->lock,flags); info->signals &= ~SerialSignal_RTS; set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } } /* * signal remote device to stop throttling send data (our receive data) */ static void unthrottle(struct tty_struct * tty) { struct slgt_info *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "unthrottle")) return; DBGINFO(("%s unthrottle\n", info->device_name)); if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else send_xchar(tty, START_CHAR(tty)); } if (C_CRTSCTS(tty)) { spin_lock_irqsave(&info->lock,flags); info->signals |= SerialSignal_RTS; set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } } /* * set or clear transmit break condition * break_state -1=set break condition, 0=clear */ static int set_break(struct tty_struct *tty, int break_state) { struct slgt_info *info = tty->driver_data; unsigned short value; unsigned long flags; if (sanity_check(info, tty->name, "set_break")) return -EINVAL; DBGINFO(("%s set_break(%d)\n", info->device_name, break_state)); spin_lock_irqsave(&info->lock,flags); value = rd_reg16(info, TCR); if (break_state == -1) value |= BIT6; else value &= ~BIT6; wr_reg16(info, TCR, value); spin_unlock_irqrestore(&info->lock,flags); return 0; } #if SYNCLINK_GENERIC_HDLC /** * called by generic HDLC layer when protocol selected (PPP, frame relay, etc.) * set encoding and frame check sequence (FCS) options * * dev pointer to network device structure * encoding serial encoding setting * parity FCS setting * * returns 0 if success, otherwise error code */ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { struct slgt_info *info = dev_to_port(dev); unsigned char new_encoding; unsigned short new_crctype; /* return error if TTY interface open */ if (info->port.count) return -EBUSY; DBGINFO(("%s hdlcdev_attach\n", info->device_name)); switch (encoding) { case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break; case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break; case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break; case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break; case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break; default: return -EINVAL; } switch (parity) { case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break; case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break; case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break; default: return -EINVAL; } info->params.encoding = new_encoding; info->params.crc_type = new_crctype; /* if network interface up, reprogram hardware */ if (info->netcount) program_hw(info); return 0; } /** * called by generic HDLC layer to send frame * * skb socket buffer containing HDLC frame * dev pointer to network device structure */ static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev) { struct slgt_info *info = dev_to_port(dev); unsigned long flags; DBGINFO(("%s hdlc_xmit\n", dev->name)); if (!skb->len) return NETDEV_TX_OK; /* stop sending until this frame completes */ netif_stop_queue(dev); /* update network statistics */ dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; /* save start time for transmit timeout detection */ netif_trans_update(dev); spin_lock_irqsave(&info->lock, flags); tx_load(info, skb->data, skb->len); spin_unlock_irqrestore(&info->lock, flags); /* done with socket buffer, so free it */ dev_kfree_skb(skb); return NETDEV_TX_OK; } /** * called by network layer when interface enabled * claim resources and initialize hardware * * dev pointer to network device structure * * returns 0 if success, otherwise error code */ static int hdlcdev_open(struct net_device *dev) { struct slgt_info *info = dev_to_port(dev); int rc; unsigned long flags; if (!try_module_get(THIS_MODULE)) return -EBUSY; DBGINFO(("%s hdlcdev_open\n", dev->name)); /* generic HDLC layer open processing */ rc = hdlc_open(dev); if (rc) return rc; /* arbitrate between network and tty opens */ spin_lock_irqsave(&info->netlock, flags); if (info->port.count != 0 || info->netcount != 0) { DBGINFO(("%s hdlc_open busy\n", dev->name)); spin_unlock_irqrestore(&info->netlock, flags); return -EBUSY; } info->netcount=1; spin_unlock_irqrestore(&info->netlock, flags); /* claim resources and init adapter */ if ((rc = startup(info)) != 0) { spin_lock_irqsave(&info->netlock, flags); info->netcount=0; spin_unlock_irqrestore(&info->netlock, flags); return rc; } /* assert RTS and DTR, apply hardware settings */ info->signals |= SerialSignal_RTS | SerialSignal_DTR; program_hw(info); /* enable network layer transmit */ netif_trans_update(dev); netif_start_queue(dev); /* inform generic HDLC layer of current DCD status */ spin_lock_irqsave(&info->lock, flags); get_signals(info); spin_unlock_irqrestore(&info->lock, flags); if (info->signals & SerialSignal_DCD) netif_carrier_on(dev); else netif_carrier_off(dev); return 0; } /** * called by network layer when interface is disabled * shutdown hardware and release resources * * dev pointer to network device structure * * returns 0 if success, otherwise error code */ static int hdlcdev_close(struct net_device *dev) { struct slgt_info *info = dev_to_port(dev); unsigned long flags; DBGINFO(("%s hdlcdev_close\n", dev->name)); netif_stop_queue(dev); /* shutdown adapter and release resources */ shutdown(info); hdlc_close(dev); spin_lock_irqsave(&info->netlock, flags); info->netcount=0; spin_unlock_irqrestore(&info->netlock, flags); module_put(THIS_MODULE); return 0; } /** * called by network layer to process IOCTL call to network device * * dev pointer to network device structure * ifr pointer to network interface request structure * cmd IOCTL command code * * returns 0 if success, otherwise error code */ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { const size_t size = sizeof(sync_serial_settings); sync_serial_settings new_line; sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; struct slgt_info *info = dev_to_port(dev); unsigned int flags; DBGINFO(("%s hdlcdev_ioctl\n", dev->name)); /* return error if TTY interface open */ if (info->port.count) return -EBUSY; if (cmd != SIOCWANDEV) return hdlc_ioctl(dev, ifr, cmd); memset(&new_line, 0, sizeof(new_line)); switch(ifr->ifr_settings.type) { case IF_GET_IFACE: /* return current sync_serial_settings */ ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); switch (flags){ case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break; case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break; case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break; case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break; default: new_line.clock_type = CLOCK_DEFAULT; } new_line.clock_rate = info->params.clock_speed; new_line.loopback = info->params.loopback ? 1:0; if (copy_to_user(line, &new_line, size)) return -EFAULT; return 0; case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */ if(!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&new_line, line, size)) return -EFAULT; switch (new_line.clock_type) { case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break; case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break; case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break; case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break; case CLOCK_DEFAULT: flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break; default: return -EINVAL; } if (new_line.loopback != 0 && new_line.loopback != 1) return -EINVAL; info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); info->params.flags |= flags; info->params.loopback = new_line.loopback; if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG)) info->params.clock_speed = new_line.clock_rate; else info->params.clock_speed = 0; /* if network interface up, reprogram hardware */ if (info->netcount) program_hw(info); return 0; default: return hdlc_ioctl(dev, ifr, cmd); } } /** * called by network layer when transmit timeout is detected * * dev pointer to network device structure */ static void hdlcdev_tx_timeout(struct net_device *dev) { struct slgt_info *info = dev_to_port(dev); unsigned long flags; DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name)); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; spin_lock_irqsave(&info->lock,flags); tx_stop(info); spin_unlock_irqrestore(&info->lock,flags); netif_wake_queue(dev); } /** * called by device driver when transmit completes * reenable network layer transmit if stopped * * info pointer to device instance information */ static void hdlcdev_tx_done(struct slgt_info *info) { if (netif_queue_stopped(info->netdev)) netif_wake_queue(info->netdev); } /** * called by device driver when frame received * pass frame to network layer * * info pointer to device instance information * buf pointer to buffer contianing frame data * size count of data bytes in buf */ static void hdlcdev_rx(struct slgt_info *info, char *buf, int size) { struct sk_buff *skb = dev_alloc_skb(size); struct net_device *dev = info->netdev; DBGINFO(("%s hdlcdev_rx\n", dev->name)); if (skb == NULL) { DBGERR(("%s: can't alloc skb, drop packet\n", dev->name)); dev->stats.rx_dropped++; return; } skb_put_data(skb, buf, size); skb->protocol = hdlc_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += size; netif_rx(skb); } static const struct net_device_ops hdlcdev_ops = { .ndo_open = hdlcdev_open, .ndo_stop = hdlcdev_close, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = hdlcdev_ioctl, .ndo_tx_timeout = hdlcdev_tx_timeout, }; /** * called by device driver when adding device instance * do generic HDLC initialization * * info pointer to device instance information * * returns 0 if success, otherwise error code */ static int hdlcdev_init(struct slgt_info *info) { int rc; struct net_device *dev; hdlc_device *hdlc; /* allocate and initialize network and HDLC layer objects */ dev = alloc_hdlcdev(info); if (!dev) { printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name); return -ENOMEM; } /* for network layer reporting purposes only */ dev->mem_start = info->phys_reg_addr; dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1; dev->irq = info->irq_level; /* network layer callbacks and settings */ dev->netdev_ops = &hdlcdev_ops; dev->watchdog_timeo = 10 * HZ; dev->tx_queue_len = 50; /* generic HDLC layer callbacks and settings */ hdlc = dev_to_hdlc(dev); hdlc->attach = hdlcdev_attach; hdlc->xmit = hdlcdev_xmit; /* register objects with HDLC layer */ rc = register_hdlc_device(dev); if (rc) { printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__); free_netdev(dev); return rc; } info->netdev = dev; return 0; } /** * called by device driver when removing device instance * do generic HDLC cleanup * * info pointer to device instance information */ static void hdlcdev_exit(struct slgt_info *info) { unregister_hdlc_device(info->netdev); free_netdev(info->netdev); info->netdev = NULL; } #endif /* ifdef CONFIG_HDLC */ /* * get async data from rx DMA buffers */ static void rx_async(struct slgt_info *info) { struct mgsl_icount *icount = &info->icount; unsigned int start, end; unsigned char *p; unsigned char status; struct slgt_desc *bufs = info->rbufs; int i, count; int chars = 0; int stat; unsigned char ch; start = end = info->rbuf_current; while(desc_complete(bufs[end])) { count = desc_count(bufs[end]) - info->rbuf_index; p = bufs[end].buf + info->rbuf_index; DBGISR(("%s rx_async count=%d\n", info->device_name, count)); DBGDATA(info, p, count, "rx"); for(i=0 ; i < count; i+=2, p+=2) { ch = *p; icount->rx++; stat = 0; status = *(p + 1) & (BIT1 + BIT0); if (status) { if (status & BIT1) icount->parity++; else if (status & BIT0) icount->frame++; /* discard char if tty control flags say so */ if (status & info->ignore_status_mask) continue; if (status & BIT1) stat = TTY_PARITY; else if (status & BIT0) stat = TTY_FRAME; } tty_insert_flip_char(&info->port, ch, stat); chars++; } if (i < count) { /* receive buffer not completed */ info->rbuf_index += i; mod_timer(&info->rx_timer, jiffies + 1); break; } info->rbuf_index = 0; free_rbufs(info, end, end); if (++end == info->rbuf_count) end = 0; /* if entire list searched then no frame available */ if (end == start) break; } if (chars) tty_flip_buffer_push(&info->port); } /* * return next bottom half action to perform */ static int bh_action(struct slgt_info *info) { unsigned long flags; int rc; spin_lock_irqsave(&info->lock,flags); if (info->pending_bh & BH_RECEIVE) { info->pending_bh &= ~BH_RECEIVE; rc = BH_RECEIVE; } else if (info->pending_bh & BH_TRANSMIT) { info->pending_bh &= ~BH_TRANSMIT; rc = BH_TRANSMIT; } else if (info->pending_bh & BH_STATUS) { info->pending_bh &= ~BH_STATUS; rc = BH_STATUS; } else { /* Mark BH routine as complete */ info->bh_running = false; info->bh_requested = false; rc = 0; } spin_unlock_irqrestore(&info->lock,flags); return rc; } /* * perform bottom half processing */ static void bh_handler(struct work_struct *work) { struct slgt_info *info = container_of(work, struct slgt_info, task); int action; info->bh_running = true; while((action = bh_action(info))) { switch (action) { case BH_RECEIVE: DBGBH(("%s bh receive\n", info->device_name)); switch(info->params.mode) { case MGSL_MODE_ASYNC: rx_async(info); break; case MGSL_MODE_HDLC: while(rx_get_frame(info)); break; case MGSL_MODE_RAW: case MGSL_MODE_MONOSYNC: case MGSL_MODE_BISYNC: case MGSL_MODE_XSYNC: while(rx_get_buf(info)); break; } /* restart receiver if rx DMA buffers exhausted */ if (info->rx_restart) rx_start(info); break; case BH_TRANSMIT: bh_transmit(info); break; case BH_STATUS: DBGBH(("%s bh status\n", info->device_name)); info->ri_chkcount = 0; info->dsr_chkcount = 0; info->dcd_chkcount = 0; info->cts_chkcount = 0; break; default: DBGBH(("%s unknown action\n", info->device_name)); break; } } DBGBH(("%s bh_handler exit\n", info->device_name)); } static void bh_transmit(struct slgt_info *info) { struct tty_struct *tty = info->port.tty; DBGBH(("%s bh_transmit\n", info->device_name)); if (tty) tty_wakeup(tty); } static void dsr_change(struct slgt_info *info, unsigned short status) { if (status & BIT3) { info->signals |= SerialSignal_DSR; info->input_signal_events.dsr_up++; } else { info->signals &= ~SerialSignal_DSR; info->input_signal_events.dsr_down++; } DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals)); if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { slgt_irq_off(info, IRQ_DSR); return; } info->icount.dsr++; wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); info->pending_bh |= BH_STATUS; } static void cts_change(struct slgt_info *info, unsigned short status) { if (status & BIT2) { info->signals |= SerialSignal_CTS; info->input_signal_events.cts_up++; } else { info->signals &= ~SerialSignal_CTS; info->input_signal_events.cts_down++; } DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals)); if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { slgt_irq_off(info, IRQ_CTS); return; } info->icount.cts++; wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); info->pending_bh |= BH_STATUS; if (tty_port_cts_enabled(&info->port)) { if (info->port.tty) { if (info->port.tty->hw_stopped) { if (info->signals & SerialSignal_CTS) { info->port.tty->hw_stopped = 0; info->pending_bh |= BH_TRANSMIT; return; } } else { if (!(info->signals & SerialSignal_CTS)) info->port.tty->hw_stopped = 1; } } } } static void dcd_change(struct slgt_info *info, unsigned short status) { if (status & BIT1) { info->signals |= SerialSignal_DCD; info->input_signal_events.dcd_up++; } else { info->signals &= ~SerialSignal_DCD; info->input_signal_events.dcd_down++; } DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals)); if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { slgt_irq_off(info, IRQ_DCD); return; } info->icount.dcd++; #if SYNCLINK_GENERIC_HDLC if (info->netcount) { if (info->signals & SerialSignal_DCD) netif_carrier_on(info->netdev); else netif_carrier_off(info->netdev); } #endif wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); info->pending_bh |= BH_STATUS; if (tty_port_check_carrier(&info->port)) { if (info->signals & SerialSignal_DCD) wake_up_interruptible(&info->port.open_wait); else { if (info->port.tty) tty_hangup(info->port.tty); } } } static void ri_change(struct slgt_info *info, unsigned short status) { if (status & BIT0) { info->signals |= SerialSignal_RI; info->input_signal_events.ri_up++; } else { info->signals &= ~SerialSignal_RI; info->input_signal_events.ri_down++; } DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals)); if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) { slgt_irq_off(info, IRQ_RI); return; } info->icount.rng++; wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); info->pending_bh |= BH_STATUS; } static void isr_rxdata(struct slgt_info *info) { unsigned int count = info->rbuf_fill_count; unsigned int i = info->rbuf_fill_index; unsigned short reg; while (rd_reg16(info, SSR) & IRQ_RXDATA) { reg = rd_reg16(info, RDR); DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg)); if (desc_complete(info->rbufs[i])) { /* all buffers full */ rx_stop(info); info->rx_restart = 1; continue; } info->rbufs[i].buf[count++] = (unsigned char)reg; /* async mode saves status byte to buffer for each data byte */ if (info->params.mode == MGSL_MODE_ASYNC) info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8); if (count == info->rbuf_fill_level || (reg & BIT10)) { /* buffer full or end of frame */ set_desc_count(info->rbufs[i], count); set_desc_status(info->rbufs[i], BIT15 | (reg >> 8)); info->rbuf_fill_count = count = 0; if (++i == info->rbuf_count) i = 0; info->pending_bh |= BH_RECEIVE; } } info->rbuf_fill_index = i; info->rbuf_fill_count = count; } static void isr_serial(struct slgt_info *info) { unsigned short status = rd_reg16(info, SSR); DBGISR(("%s isr_serial status=%04X\n", info->device_name, status)); wr_reg16(info, SSR, status); /* clear pending */ info->irq_occurred = true; if (info->params.mode == MGSL_MODE_ASYNC) { if (status & IRQ_TXIDLE) { if (info->tx_active) isr_txeom(info, status); } if (info->rx_pio && (status & IRQ_RXDATA)) isr_rxdata(info); if ((status & IRQ_RXBREAK) && (status & RXBREAK)) { info->icount.brk++; /* process break detection if tty control allows */ if (info->port.tty) { if (!(status & info->ignore_status_mask)) { if (info->read_status_mask & MASK_BREAK) { tty_insert_flip_char(&info->port, 0, TTY_BREAK); if (info->port.flags & ASYNC_SAK) do_SAK(info->port.tty); } } } } } else { if (status & (IRQ_TXIDLE + IRQ_TXUNDER)) isr_txeom(info, status); if (info->rx_pio && (status & IRQ_RXDATA)) isr_rxdata(info); if (status & IRQ_RXIDLE) { if (status & RXIDLE) info->icount.rxidle++; else info->icount.exithunt++; wake_up_interruptible(&info->event_wait_q); } if (status & IRQ_RXOVER) rx_start(info); } if (status & IRQ_DSR) dsr_change(info, status); if (status & IRQ_CTS) cts_change(info, status); if (status & IRQ_DCD) dcd_change(info, status); if (status & IRQ_RI) ri_change(info, status); } static void isr_rdma(struct slgt_info *info) { unsigned int status = rd_reg32(info, RDCSR); DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status)); /* RDCSR (rx DMA control/status) * * 31..07 reserved * 06 save status byte to DMA buffer * 05 error * 04 eol (end of list) * 03 eob (end of buffer) * 02 IRQ enable * 01 reset * 00 enable */ wr_reg32(info, RDCSR, status); /* clear pending */ if (status & (BIT5 + BIT4)) { DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name)); info->rx_restart = true; } info->pending_bh |= BH_RECEIVE; } static void isr_tdma(struct slgt_info *info) { unsigned int status = rd_reg32(info, TDCSR); DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status)); /* TDCSR (tx DMA control/status) * * 31..06 reserved * 05 error * 04 eol (end of list) * 03 eob (end of buffer) * 02 IRQ enable * 01 reset * 00 enable */ wr_reg32(info, TDCSR, status); /* clear pending */ if (status & (BIT5 + BIT4 + BIT3)) { // another transmit buffer has completed // run bottom half to get more send data from user info->pending_bh |= BH_TRANSMIT; } } /* * return true if there are unsent tx DMA buffers, otherwise false * * if there are unsent buffers then info->tbuf_start * is set to index of first unsent buffer */ static bool unsent_tbufs(struct slgt_info *info) { unsigned int i = info->tbuf_current; bool rc = false; /* * search backwards from last loaded buffer (precedes tbuf_current) * for first unsent buffer (desc_count > 0) */ do { if (i) i--; else i = info->tbuf_count - 1; if (!desc_count(info->tbufs[i])) break; info->tbuf_start = i; rc = true; } while (i != info->tbuf_current); return rc; } static void isr_txeom(struct slgt_info *info, unsigned short status) { DBGISR(("%s txeom status=%04x\n", info->device_name, status)); slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); tdma_reset(info); if (status & IRQ_TXUNDER) { unsigned short val = rd_reg16(info, TCR); wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ wr_reg16(info, TCR, val); /* clear reset bit */ } if (info->tx_active) { if (info->params.mode != MGSL_MODE_ASYNC) { if (status & IRQ_TXUNDER) info->icount.txunder++; else if (status & IRQ_TXIDLE) info->icount.txok++; } if (unsent_tbufs(info)) { tx_start(info); update_tx_timer(info); return; } info->tx_active = false; del_timer(&info->tx_timer); if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) { info->signals &= ~SerialSignal_RTS; info->drop_rts_on_tx_done = false; set_signals(info); } #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_tx_done(info); else #endif { if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { tx_stop(info); return; } info->pending_bh |= BH_TRANSMIT; } } } static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state) { struct cond_wait *w, *prev; /* wake processes waiting for specific transitions */ for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) { if (w->data & changed) { w->data = state; wake_up_interruptible(&w->q); if (prev != NULL) prev->next = w->next; else info->gpio_wait_q = w->next; } else prev = w; } } /* interrupt service routine * * irq interrupt number * dev_id device ID supplied during interrupt registration */ static irqreturn_t slgt_interrupt(int dummy, void *dev_id) { struct slgt_info *info = dev_id; unsigned int gsr; unsigned int i; DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level)); while((gsr = rd_reg32(info, GSR) & 0xffffff00)) { DBGISR(("%s gsr=%08x\n", info->device_name, gsr)); info->irq_occurred = true; for(i=0; i < info->port_count ; i++) { if (info->port_array[i] == NULL) continue; spin_lock(&info->port_array[i]->lock); if (gsr & (BIT8 << i)) isr_serial(info->port_array[i]); if (gsr & (BIT16 << (i*2))) isr_rdma(info->port_array[i]); if (gsr & (BIT17 << (i*2))) isr_tdma(info->port_array[i]); spin_unlock(&info->port_array[i]->lock); } } if (info->gpio_present) { unsigned int state; unsigned int changed; spin_lock(&info->lock); while ((changed = rd_reg32(info, IOSR)) != 0) { DBGISR(("%s iosr=%08x\n", info->device_name, changed)); /* read latched state of GPIO signals */ state = rd_reg32(info, IOVR); /* clear pending GPIO interrupt bits */ wr_reg32(info, IOSR, changed); for (i=0 ; i < info->port_count ; i++) { if (info->port_array[i] != NULL) isr_gpio(info->port_array[i], changed, state); } } spin_unlock(&info->lock); } for(i=0; i < info->port_count ; i++) { struct slgt_info *port = info->port_array[i]; if (port == NULL) continue; spin_lock(&port->lock); if ((port->port.count || port->netcount) && port->pending_bh && !port->bh_running && !port->bh_requested) { DBGISR(("%s bh queued\n", port->device_name)); schedule_work(&port->task); port->bh_requested = true; } spin_unlock(&port->lock); } DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level)); return IRQ_HANDLED; } static int startup(struct slgt_info *info) { DBGINFO(("%s startup\n", info->device_name)); if (tty_port_initialized(&info->port)) return 0; if (!info->tx_buf) { info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); if (!info->tx_buf) { DBGERR(("%s can't allocate tx buffer\n", info->device_name)); return -ENOMEM; } } info->pending_bh = 0; memset(&info->icount, 0, sizeof(info->icount)); /* program hardware for current parameters */ change_params(info); if (info->port.tty) clear_bit(TTY_IO_ERROR, &info->port.tty->flags); tty_port_set_initialized(&info->port, 1); return 0; } /* * called by close() and hangup() to shutdown hardware */ static void shutdown(struct slgt_info *info) { unsigned long flags; if (!tty_port_initialized(&info->port)) return; DBGINFO(("%s shutdown\n", info->device_name)); /* clear status wait queue because status changes */ /* can't happen after shutting down the hardware */ wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); del_timer_sync(&info->tx_timer); del_timer_sync(&info->rx_timer); kfree(info->tx_buf); info->tx_buf = NULL; spin_lock_irqsave(&info->lock,flags); tx_stop(info); rx_stop(info); slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) { info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); set_signals(info); } flush_cond_wait(&info->gpio_wait_q); spin_unlock_irqrestore(&info->lock,flags); if (info->port.tty) set_bit(TTY_IO_ERROR, &info->port.tty->flags); tty_port_set_initialized(&info->port, 0); } static void program_hw(struct slgt_info *info) { unsigned long flags; spin_lock_irqsave(&info->lock,flags); rx_stop(info); tx_stop(info); if (info->params.mode != MGSL_MODE_ASYNC || info->netcount) sync_mode(info); else async_mode(info); set_signals(info); info->dcd_chkcount = 0; info->cts_chkcount = 0; info->ri_chkcount = 0; info->dsr_chkcount = 0; slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI); get_signals(info); if (info->netcount || (info->port.tty && info->port.tty->termios.c_cflag & CREAD)) rx_start(info); spin_unlock_irqrestore(&info->lock,flags); } /* * reconfigure adapter based on new parameters */ static void change_params(struct slgt_info *info) { unsigned cflag; int bits_per_char; if (!info->port.tty) return; DBGINFO(("%s change_params\n", info->device_name)); cflag = info->port.tty->termios.c_cflag; /* if B0 rate (hangup) specified then negate RTS and DTR */ /* otherwise assert RTS and DTR */ if (cflag & CBAUD) info->signals |= SerialSignal_RTS | SerialSignal_DTR; else info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); /* byte size and parity */ switch (cflag & CSIZE) { case CS5: info->params.data_bits = 5; break; case CS6: info->params.data_bits = 6; break; case CS7: info->params.data_bits = 7; break; case CS8: info->params.data_bits = 8; break; default: info->params.data_bits = 7; break; } info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1; if (cflag & PARENB) info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN; else info->params.parity = ASYNC_PARITY_NONE; /* calculate number of jiffies to transmit a full * FIFO (32 bytes) at specified data rate */ bits_per_char = info->params.data_bits + info->params.stop_bits + 1; info->params.data_rate = tty_get_baud_rate(info->port.tty); if (info->params.data_rate) { info->timeout = (32*HZ*bits_per_char) / info->params.data_rate; } info->timeout += HZ/50; /* Add .02 seconds of slop */ tty_port_set_cts_flow(&info->port, cflag & CRTSCTS); tty_port_set_check_carrier(&info->port, ~cflag & CLOCAL); /* process tty input control flags */ info->read_status_mask = IRQ_RXOVER; if (I_INPCK(info->port.tty)) info->read_status_mask |= MASK_PARITY | MASK_FRAMING; if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) info->read_status_mask |= MASK_BREAK; if (I_IGNPAR(info->port.tty)) info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING; if (I_IGNBRK(info->port.tty)) { info->ignore_status_mask |= MASK_BREAK; /* If ignoring parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->port.tty)) info->ignore_status_mask |= MASK_OVERRUN; } program_hw(info); } static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount) { DBGINFO(("%s get_stats\n", info->device_name)); if (!user_icount) { memset(&info->icount, 0, sizeof(info->icount)); } else { if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount))) return -EFAULT; } return 0; } static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params) { DBGINFO(("%s get_params\n", info->device_name)); if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS))) return -EFAULT; return 0; } static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params) { unsigned long flags; MGSL_PARAMS tmp_params; DBGINFO(("%s set_params\n", info->device_name)); if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS))) return -EFAULT; spin_lock_irqsave(&info->lock, flags); if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) info->base_clock = tmp_params.clock_speed; else memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS)); spin_unlock_irqrestore(&info->lock, flags); program_hw(info); return 0; } static int get_txidle(struct slgt_info *info, int __user *idle_mode) { DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode)); if (put_user(info->idle_mode, idle_mode)) return -EFAULT; return 0; } static int set_txidle(struct slgt_info *info, int idle_mode) { unsigned long flags; DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode)); spin_lock_irqsave(&info->lock,flags); info->idle_mode = idle_mode; if (info->params.mode != MGSL_MODE_ASYNC) tx_set_idle(info); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int tx_enable(struct slgt_info *info, int enable) { unsigned long flags; DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable)); spin_lock_irqsave(&info->lock,flags); if (enable) { if (!info->tx_enabled) tx_start(info); } else { if (info->tx_enabled) tx_stop(info); } spin_unlock_irqrestore(&info->lock,flags); return 0; } /* * abort transmit HDLC frame */ static int tx_abort(struct slgt_info *info) { unsigned long flags; DBGINFO(("%s tx_abort\n", info->device_name)); spin_lock_irqsave(&info->lock,flags); tdma_reset(info); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int rx_enable(struct slgt_info *info, int enable) { unsigned long flags; unsigned int rbuf_fill_level; DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable)); spin_lock_irqsave(&info->lock,flags); /* * enable[31..16] = receive DMA buffer fill level * 0 = noop (leave fill level unchanged) * fill level must be multiple of 4 and <= buffer size */ rbuf_fill_level = ((unsigned int)enable) >> 16; if (rbuf_fill_level) { if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) { spin_unlock_irqrestore(&info->lock, flags); return -EINVAL; } info->rbuf_fill_level = rbuf_fill_level; if (rbuf_fill_level < 128) info->rx_pio = 1; /* PIO mode */ else info->rx_pio = 0; /* DMA mode */ rx_stop(info); /* restart receiver to use new fill level */ } /* * enable[1..0] = receiver enable command * 0 = disable * 1 = enable * 2 = enable or force hunt mode if already enabled */ enable &= 3; if (enable) { if (!info->rx_enabled) rx_start(info); else if (enable == 2) { /* force hunt mode (write 1 to RCR[3]) */ wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3); } } else { if (info->rx_enabled) rx_stop(info); } spin_unlock_irqrestore(&info->lock,flags); return 0; } /* * wait for specified event to occur */ static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr) { unsigned long flags; int s; int rc=0; struct mgsl_icount cprev, cnow; int events; int mask; struct _input_signal_events oldsigs, newsigs; DECLARE_WAITQUEUE(wait, current); if (get_user(mask, mask_ptr)) return -EFAULT; DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask)); spin_lock_irqsave(&info->lock,flags); /* return immediately if state matches requested events */ get_signals(info); s = info->signals; events = mask & ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) + ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) + ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) + ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) ); if (events) { spin_unlock_irqrestore(&info->lock,flags); goto exit; } /* save current irq counts */ cprev = info->icount; oldsigs = info->input_signal_events; /* enable hunt and idle irqs if needed */ if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) { unsigned short val = rd_reg16(info, SCR); if (!(val & IRQ_RXIDLE)) wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE)); } set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&info->event_wait_q, &wait); spin_unlock_irqrestore(&info->lock,flags); for(;;) { schedule(); if (signal_pending(current)) { rc = -ERESTARTSYS; break; } /* get current irq counts */ spin_lock_irqsave(&info->lock,flags); cnow = info->icount; newsigs = info->input_signal_events; set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); /* if no change, wait aborted for some reason */ if (newsigs.dsr_up == oldsigs.dsr_up && newsigs.dsr_down == oldsigs.dsr_down && newsigs.dcd_up == oldsigs.dcd_up && newsigs.dcd_down == oldsigs.dcd_down && newsigs.cts_up == oldsigs.cts_up && newsigs.cts_down == oldsigs.cts_down && newsigs.ri_up == oldsigs.ri_up && newsigs.ri_down == oldsigs.ri_down && cnow.exithunt == cprev.exithunt && cnow.rxidle == cprev.rxidle) { rc = -EIO; break; } events = mask & ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) + (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) + (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) + (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) + (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) + (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) + (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) + (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) + (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) + (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) ); if (events) break; cprev = cnow; oldsigs = newsigs; } remove_wait_queue(&info->event_wait_q, &wait); set_current_state(TASK_RUNNING); if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) { spin_lock_irqsave(&info->lock,flags); if (!waitqueue_active(&info->event_wait_q)) { /* disable enable exit hunt mode/idle rcvd IRQs */ wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE)); } spin_unlock_irqrestore(&info->lock,flags); } exit: if (rc == 0) rc = put_user(events, mask_ptr); return rc; } static int get_interface(struct slgt_info *info, int __user *if_mode) { DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode)); if (put_user(info->if_mode, if_mode)) return -EFAULT; return 0; } static int set_interface(struct slgt_info *info, int if_mode) { unsigned long flags; unsigned short val; DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode)); spin_lock_irqsave(&info->lock,flags); info->if_mode = if_mode; msc_set_vcr(info); /* TCR (tx control) 07 1=RTS driver control */ val = rd_reg16(info, TCR); if (info->if_mode & MGSL_INTERFACE_RTS_EN) val |= BIT7; else val &= ~BIT7; wr_reg16(info, TCR, val); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int get_xsync(struct slgt_info *info, int __user *xsync) { DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync)); if (put_user(info->xsync, xsync)) return -EFAULT; return 0; } /* * set extended sync pattern (1 to 4 bytes) for extended sync mode * * sync pattern is contained in least significant bytes of value * most significant byte of sync pattern is oldest (1st sent/detected) */ static int set_xsync(struct slgt_info *info, int xsync) { unsigned long flags; DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync)); spin_lock_irqsave(&info->lock, flags); info->xsync = xsync; wr_reg32(info, XSR, xsync); spin_unlock_irqrestore(&info->lock, flags); return 0; } static int get_xctrl(struct slgt_info *info, int __user *xctrl) { DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl)); if (put_user(info->xctrl, xctrl)) return -EFAULT; return 0; } /* * set extended control options * * xctrl[31:19] reserved, must be zero * xctrl[18:17] extended sync pattern length in bytes * 00 = 1 byte in xsr[7:0] * 01 = 2 bytes in xsr[15:0] * 10 = 3 bytes in xsr[23:0] * 11 = 4 bytes in xsr[31:0] * xctrl[16] 1 = enable terminal count, 0=disabled * xctrl[15:0] receive terminal count for fixed length packets * value is count minus one (0 = 1 byte packet) * when terminal count is reached, receiver * automatically returns to hunt mode and receive * FIFO contents are flushed to DMA buffers with * end of frame (EOF) status */ static int set_xctrl(struct slgt_info *info, int xctrl) { unsigned long flags; DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl)); spin_lock_irqsave(&info->lock, flags); info->xctrl = xctrl; wr_reg32(info, XCR, xctrl); spin_unlock_irqrestore(&info->lock, flags); return 0; } /* * set general purpose IO pin state and direction * * user_gpio fields: * state each bit indicates a pin state * smask set bit indicates pin state to set * dir each bit indicates a pin direction (0=input, 1=output) * dmask set bit indicates pin direction to set */ static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) { unsigned long flags; struct gpio_desc gpio; __u32 data; if (!info->gpio_present) return -EINVAL; if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) return -EFAULT; DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n", info->device_name, gpio.state, gpio.smask, gpio.dir, gpio.dmask)); spin_lock_irqsave(&info->port_array[0]->lock, flags); if (gpio.dmask) { data = rd_reg32(info, IODR); data |= gpio.dmask & gpio.dir; data &= ~(gpio.dmask & ~gpio.dir); wr_reg32(info, IODR, data); } if (gpio.smask) { data = rd_reg32(info, IOVR); data |= gpio.smask & gpio.state; data &= ~(gpio.smask & ~gpio.state); wr_reg32(info, IOVR, data); } spin_unlock_irqrestore(&info->port_array[0]->lock, flags); return 0; } /* * get general purpose IO pin state and direction */ static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) { struct gpio_desc gpio; if (!info->gpio_present) return -EINVAL; gpio.state = rd_reg32(info, IOVR); gpio.smask = 0xffffffff; gpio.dir = rd_reg32(info, IODR); gpio.dmask = 0xffffffff; if (copy_to_user(user_gpio, &gpio, sizeof(gpio))) return -EFAULT; DBGINFO(("%s get_gpio state=%08x dir=%08x\n", info->device_name, gpio.state, gpio.dir)); return 0; } /* * conditional wait facility */ static void init_cond_wait(struct cond_wait *w, unsigned int data) { init_waitqueue_head(&w->q); init_waitqueue_entry(&w->wait, current); w->data = data; } static void add_cond_wait(struct cond_wait **head, struct cond_wait *w) { set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&w->q, &w->wait); w->next = *head; *head = w; } static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw) { struct cond_wait *w, *prev; remove_wait_queue(&cw->q, &cw->wait); set_current_state(TASK_RUNNING); for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) { if (w == cw) { if (prev != NULL) prev->next = w->next; else *head = w->next; break; } } } static void flush_cond_wait(struct cond_wait **head) { while (*head != NULL) { wake_up_interruptible(&(*head)->q); *head = (*head)->next; } } /* * wait for general purpose I/O pin(s) to enter specified state * * user_gpio fields: * state - bit indicates target pin state * smask - set bit indicates watched pin * * The wait ends when at least one watched pin enters the specified * state. When 0 (no error) is returned, user_gpio->state is set to the * state of all GPIO pins when the wait ends. * * Note: Each pin may be a dedicated input, dedicated output, or * configurable input/output. The number and configuration of pins * varies with the specific adapter model. Only input pins (dedicated * or configured) can be monitored with this function. */ static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio) { unsigned long flags; int rc = 0; struct gpio_desc gpio; struct cond_wait wait; u32 state; if (!info->gpio_present) return -EINVAL; if (copy_from_user(&gpio, user_gpio, sizeof(gpio))) return -EFAULT; DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n", info->device_name, gpio.state, gpio.smask)); /* ignore output pins identified by set IODR bit */ if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0) return -EINVAL; init_cond_wait(&wait, gpio.smask); spin_lock_irqsave(&info->port_array[0]->lock, flags); /* enable interrupts for watched pins */ wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask); /* get current pin states */ state = rd_reg32(info, IOVR); if (gpio.smask & ~(state ^ gpio.state)) { /* already in target state */ gpio.state = state; } else { /* wait for target state */ add_cond_wait(&info->gpio_wait_q, &wait); spin_unlock_irqrestore(&info->port_array[0]->lock, flags); schedule(); if (signal_pending(current)) rc = -ERESTARTSYS; else gpio.state = wait.data; spin_lock_irqsave(&info->port_array[0]->lock, flags); remove_cond_wait(&info->gpio_wait_q, &wait); } /* disable all GPIO interrupts if no waiting processes */ if (info->gpio_wait_q == NULL) wr_reg32(info, IOER, 0); spin_unlock_irqrestore(&info->port_array[0]->lock, flags); if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio))) rc = -EFAULT; return rc; } static int modem_input_wait(struct slgt_info *info,int arg) { unsigned long flags; int rc; struct mgsl_icount cprev, cnow; DECLARE_WAITQUEUE(wait, current); /* save current irq counts */ spin_lock_irqsave(&info->lock,flags); cprev = info->icount; add_wait_queue(&info->status_event_wait_q, &wait); set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); for(;;) { schedule(); if (signal_pending(current)) { rc = -ERESTARTSYS; break; } /* get new irq counts */ spin_lock_irqsave(&info->lock,flags); cnow = info->icount; set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); /* if no change, wait aborted for some reason */ if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) { rc = -EIO; break; } /* check for change in caller specified modem input */ if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) || (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) || (arg & TIOCM_CD && cnow.dcd != cprev.dcd) || (arg & TIOCM_CTS && cnow.cts != cprev.cts)) { rc = 0; break; } cprev = cnow; } remove_wait_queue(&info->status_event_wait_q, &wait); set_current_state(TASK_RUNNING); return rc; } /* * return state of serial control and status signals */ static int tiocmget(struct tty_struct *tty) { struct slgt_info *info = tty->driver_data; unsigned int result; unsigned long flags; spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) + ((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) + ((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) + ((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) + ((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) + ((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0); DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result)); return result; } /* * set modem control signals (DTR/RTS) * * cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit * TIOCMSET = set/clear signal values * value bit mask for command */ static int tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct slgt_info *info = tty->driver_data; unsigned long flags; DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear)); if (set & TIOCM_RTS) info->signals |= SerialSignal_RTS; if (set & TIOCM_DTR) info->signals |= SerialSignal_DTR; if (clear & TIOCM_RTS) info->signals &= ~SerialSignal_RTS; if (clear & TIOCM_DTR) info->signals &= ~SerialSignal_DTR; spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int carrier_raised(struct tty_port *port) { unsigned long flags; struct slgt_info *info = container_of(port, struct slgt_info, port); spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); return (info->signals & SerialSignal_DCD) ? 1 : 0; } static void dtr_rts(struct tty_port *port, int on) { unsigned long flags; struct slgt_info *info = container_of(port, struct slgt_info, port); spin_lock_irqsave(&info->lock,flags); if (on) info->signals |= SerialSignal_RTS | SerialSignal_DTR; else info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* * block current process until the device is ready to open */ static int block_til_ready(struct tty_struct *tty, struct file *filp, struct slgt_info *info) { DECLARE_WAITQUEUE(wait, current); int retval; bool do_clocal = false; unsigned long flags; int cd; struct tty_port *port = &info->port; DBGINFO(("%s block_til_ready\n", tty->driver->name)); if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) { /* nonblock mode is set or port is not enabled */ tty_port_set_active(port, 1); return 0; } if (C_CLOCAL(tty)) do_clocal = true; /* Wait for carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, port->count is dropped by one, so that * close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&port->open_wait, &wait); spin_lock_irqsave(&info->lock, flags); port->count--; spin_unlock_irqrestore(&info->lock, flags); port->blocked_open++; while (1) { if (C_BAUD(tty) && tty_port_initialized(port)) tty_port_raise_dtr_rts(port); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !tty_port_initialized(port)) { retval = (port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS; break; } cd = tty_port_carrier_raised(port); if (do_clocal || cd) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } DBGINFO(("%s block_til_ready wait\n", tty->driver->name)); tty_unlock(tty); schedule(); tty_lock(tty); } set_current_state(TASK_RUNNING); remove_wait_queue(&port->open_wait, &wait); if (!tty_hung_up_p(filp)) port->count++; port->blocked_open--; if (!retval) tty_port_set_active(port, 1); DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval)); return retval; } /* * allocate buffers used for calling line discipline receive_buf * directly in synchronous mode * note: add 5 bytes to max frame size to allow appending * 32-bit CRC and status byte when configured to do so */ static int alloc_tmp_rbuf(struct slgt_info *info) { info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL); if (info->tmp_rbuf == NULL) return -ENOMEM; /* unused flag buffer to satisfy receive_buf calling interface */ info->flag_buf = kzalloc(info->max_frame_size + 5, GFP_KERNEL); if (!info->flag_buf) { kfree(info->tmp_rbuf); info->tmp_rbuf = NULL; return -ENOMEM; } return 0; } static void free_tmp_rbuf(struct slgt_info *info) { kfree(info->tmp_rbuf); info->tmp_rbuf = NULL; kfree(info->flag_buf); info->flag_buf = NULL; } /* * allocate DMA descriptor lists. */ static int alloc_desc(struct slgt_info *info) { unsigned int i; unsigned int pbufs; /* allocate memory to hold descriptor lists */ info->bufs = pci_zalloc_consistent(info->pdev, DESC_LIST_SIZE, &info->bufs_dma_addr); if (info->bufs == NULL) return -ENOMEM; info->rbufs = (struct slgt_desc*)info->bufs; info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count; pbufs = (unsigned int)info->bufs_dma_addr; /* * Build circular lists of descriptors */ for (i=0; i < info->rbuf_count; i++) { /* physical address of this descriptor */ info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc)); /* physical address of next descriptor */ if (i == info->rbuf_count - 1) info->rbufs[i].next = cpu_to_le32(pbufs); else info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc))); set_desc_count(info->rbufs[i], DMABUFSIZE); } for (i=0; i < info->tbuf_count; i++) { /* physical address of this descriptor */ info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc)); /* physical address of next descriptor */ if (i == info->tbuf_count - 1) info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc)); else info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc))); } return 0; } static void free_desc(struct slgt_info *info) { if (info->bufs != NULL) { pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr); info->bufs = NULL; info->rbufs = NULL; info->tbufs = NULL; } } static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) { int i; for (i=0; i < count; i++) { if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL) return -ENOMEM; bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr); } return 0; } static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count) { int i; for (i=0; i < count; i++) { if (bufs[i].buf == NULL) continue; pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr); bufs[i].buf = NULL; } } static int alloc_dma_bufs(struct slgt_info *info) { info->rbuf_count = 32; info->tbuf_count = 32; if (alloc_desc(info) < 0 || alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 || alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 || alloc_tmp_rbuf(info) < 0) { DBGERR(("%s DMA buffer alloc fail\n", info->device_name)); return -ENOMEM; } reset_rbufs(info); return 0; } static void free_dma_bufs(struct slgt_info *info) { if (info->bufs) { free_bufs(info, info->rbufs, info->rbuf_count); free_bufs(info, info->tbufs, info->tbuf_count); free_desc(info); } free_tmp_rbuf(info); } static int claim_resources(struct slgt_info *info) { if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) { DBGERR(("%s reg addr conflict, addr=%08X\n", info->device_name, info->phys_reg_addr)); info->init_error = DiagStatus_AddressConflict; goto errout; } else info->reg_addr_requested = true; info->reg_addr = ioremap_nocache(info->phys_reg_addr, SLGT_REG_SIZE); if (!info->reg_addr) { DBGERR(("%s can't map device registers, addr=%08X\n", info->device_name, info->phys_reg_addr)); info->init_error = DiagStatus_CantAssignPciResources; goto errout; } return 0; errout: release_resources(info); return -ENODEV; } static void release_resources(struct slgt_info *info) { if (info->irq_requested) { free_irq(info->irq_level, info); info->irq_requested = false; } if (info->reg_addr_requested) { release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE); info->reg_addr_requested = false; } if (info->reg_addr) { iounmap(info->reg_addr); info->reg_addr = NULL; } } /* Add the specified device instance data structure to the * global linked list of devices and increment the device count. */ static void add_device(struct slgt_info *info) { char *devstr; info->next_device = NULL; info->line = slgt_device_count; sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line); if (info->line < MAX_DEVICES) { if (maxframe[info->line]) info->max_frame_size = maxframe[info->line]; } slgt_device_count++; if (!slgt_device_list) slgt_device_list = info; else { struct slgt_info *current_dev = slgt_device_list; while(current_dev->next_device) current_dev = current_dev->next_device; current_dev->next_device = info; } if (info->max_frame_size < 4096) info->max_frame_size = 4096; else if (info->max_frame_size > 65535) info->max_frame_size = 65535; switch(info->pdev->device) { case SYNCLINK_GT_DEVICE_ID: devstr = "GT"; break; case SYNCLINK_GT2_DEVICE_ID: devstr = "GT2"; break; case SYNCLINK_GT4_DEVICE_ID: devstr = "GT4"; break; case SYNCLINK_AC_DEVICE_ID: devstr = "AC"; info->params.mode = MGSL_MODE_ASYNC; break; default: devstr = "(unknown model)"; } printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n", devstr, info->device_name, info->phys_reg_addr, info->irq_level, info->max_frame_size); #if SYNCLINK_GENERIC_HDLC hdlcdev_init(info); #endif } static const struct tty_port_operations slgt_port_ops = { .carrier_raised = carrier_raised, .dtr_rts = dtr_rts, }; /* * allocate device instance structure, return NULL on failure */ static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev) { struct slgt_info *info; info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL); if (!info) { DBGERR(("%s device alloc failed adapter=%d port=%d\n", driver_name, adapter_num, port_num)); } else { tty_port_init(&info->port); info->port.ops = &slgt_port_ops; info->magic = MGSL_MAGIC; INIT_WORK(&info->task, bh_handler); info->max_frame_size = 4096; info->base_clock = 14745600; info->rbuf_fill_level = DMABUFSIZE; info->port.close_delay = 5*HZ/10; info->port.closing_wait = 30*HZ; init_waitqueue_head(&info->status_event_wait_q); init_waitqueue_head(&info->event_wait_q); spin_lock_init(&info->netlock); memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS)); info->idle_mode = HDLC_TXIDLE_FLAGS; info->adapter_num = adapter_num; info->port_num = port_num; timer_setup(&info->tx_timer, tx_timeout, 0); timer_setup(&info->rx_timer, rx_timeout, 0); /* Copy configuration info to device instance data */ info->pdev = pdev; info->irq_level = pdev->irq; info->phys_reg_addr = pci_resource_start(pdev,0); info->bus_type = MGSL_BUS_TYPE_PCI; info->irq_flags = IRQF_SHARED; info->init_error = -1; /* assume error, set to 0 on successful init */ } return info; } static void device_init(int adapter_num, struct pci_dev *pdev) { struct slgt_info *port_array[SLGT_MAX_PORTS]; int i; int port_count = 1; if (pdev->device == SYNCLINK_GT2_DEVICE_ID) port_count = 2; else if (pdev->device == SYNCLINK_GT4_DEVICE_ID) port_count = 4; /* allocate device instances for all ports */ for (i=0; i < port_count; ++i) { port_array[i] = alloc_dev(adapter_num, i, pdev); if (port_array[i] == NULL) { for (--i; i >= 0; --i) { tty_port_destroy(&port_array[i]->port); kfree(port_array[i]); } return; } } /* give copy of port_array to all ports and add to device list */ for (i=0; i < port_count; ++i) { memcpy(port_array[i]->port_array, port_array, sizeof(port_array)); add_device(port_array[i]); port_array[i]->port_count = port_count; spin_lock_init(&port_array[i]->lock); } /* Allocate and claim adapter resources */ if (!claim_resources(port_array[0])) { alloc_dma_bufs(port_array[0]); /* copy resource information from first port to others */ for (i = 1; i < port_count; ++i) { port_array[i]->irq_level = port_array[0]->irq_level; port_array[i]->reg_addr = port_array[0]->reg_addr; alloc_dma_bufs(port_array[i]); } if (request_irq(port_array[0]->irq_level, slgt_interrupt, port_array[0]->irq_flags, port_array[0]->device_name, port_array[0]) < 0) { DBGERR(("%s request_irq failed IRQ=%d\n", port_array[0]->device_name, port_array[0]->irq_level)); } else { port_array[0]->irq_requested = true; adapter_test(port_array[0]); for (i=1 ; i < port_count ; i++) { port_array[i]->init_error = port_array[0]->init_error; port_array[i]->gpio_present = port_array[0]->gpio_present; } } } for (i = 0; i < port_count; ++i) { struct slgt_info *info = port_array[i]; tty_port_register_device(&info->port, serial_driver, info->line, &info->pdev->dev); } } static int init_one(struct pci_dev *dev, const struct pci_device_id *ent) { if (pci_enable_device(dev)) { printk("error enabling pci device %p\n", dev); return -EIO; } pci_set_master(dev); device_init(slgt_device_count, dev); return 0; } static void remove_one(struct pci_dev *dev) { } static const struct tty_operations ops = { .open = open, .close = close, .write = write, .put_char = put_char, .flush_chars = flush_chars, .write_room = write_room, .chars_in_buffer = chars_in_buffer, .flush_buffer = flush_buffer, .ioctl = ioctl, .compat_ioctl = slgt_compat_ioctl, .throttle = throttle, .unthrottle = unthrottle, .send_xchar = send_xchar, .break_ctl = set_break, .wait_until_sent = wait_until_sent, .set_termios = set_termios, .stop = tx_hold, .start = tx_release, .hangup = hangup, .tiocmget = tiocmget, .tiocmset = tiocmset, .get_icount = get_icount, .proc_show = synclink_gt_proc_show, }; static void slgt_cleanup(void) { int rc; struct slgt_info *info; struct slgt_info *tmp; printk(KERN_INFO "unload %s\n", driver_name); if (serial_driver) { for (info=slgt_device_list ; info != NULL ; info=info->next_device) tty_unregister_device(serial_driver, info->line); rc = tty_unregister_driver(serial_driver); if (rc) DBGERR(("tty_unregister_driver error=%d\n", rc)); put_tty_driver(serial_driver); } /* reset devices */ info = slgt_device_list; while(info) { reset_port(info); info = info->next_device; } /* release devices */ info = slgt_device_list; while(info) { #if SYNCLINK_GENERIC_HDLC hdlcdev_exit(info); #endif free_dma_bufs(info); free_tmp_rbuf(info); if (info->port_num == 0) release_resources(info); tmp = info; info = info->next_device; tty_port_destroy(&tmp->port); kfree(tmp); } if (pci_registered) pci_unregister_driver(&pci_driver); } /* * Driver initialization entry point. */ static int __init slgt_init(void) { int rc; printk(KERN_INFO "%s\n", driver_name); serial_driver = alloc_tty_driver(MAX_DEVICES); if (!serial_driver) { printk("%s can't allocate tty driver\n", driver_name); return -ENOMEM; } /* Initialize the tty_driver structure */ serial_driver->driver_name = slgt_driver_name; serial_driver->name = tty_dev_prefix; serial_driver->major = ttymajor; serial_driver->minor_start = 64; serial_driver->type = TTY_DRIVER_TYPE_SERIAL; serial_driver->subtype = SERIAL_TYPE_NORMAL; serial_driver->init_termios = tty_std_termios; serial_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver->init_termios.c_ispeed = 9600; serial_driver->init_termios.c_ospeed = 9600; serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; tty_set_operations(serial_driver, &ops); if ((rc = tty_register_driver(serial_driver)) < 0) { DBGERR(("%s can't register serial driver\n", driver_name)); put_tty_driver(serial_driver); serial_driver = NULL; goto error; } printk(KERN_INFO "%s, tty major#%d\n", driver_name, serial_driver->major); slgt_device_count = 0; if ((rc = pci_register_driver(&pci_driver)) < 0) { printk("%s pci_register_driver error=%d\n", driver_name, rc); goto error; } pci_registered = true; if (!slgt_device_list) printk("%s no devices found\n",driver_name); return 0; error: slgt_cleanup(); return rc; } static void __exit slgt_exit(void) { slgt_cleanup(); } module_init(slgt_init); module_exit(slgt_exit); /* * register access routines */ #define CALC_REGADDR() \ unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \ if (addr >= 0x80) \ reg_addr += (info->port_num) * 32; \ else if (addr >= 0x40) \ reg_addr += (info->port_num) * 16; static __u8 rd_reg8(struct slgt_info *info, unsigned int addr) { CALC_REGADDR(); return readb((void __iomem *)reg_addr); } static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value) { CALC_REGADDR(); writeb(value, (void __iomem *)reg_addr); } static __u16 rd_reg16(struct slgt_info *info, unsigned int addr) { CALC_REGADDR(); return readw((void __iomem *)reg_addr); } static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value) { CALC_REGADDR(); writew(value, (void __iomem *)reg_addr); } static __u32 rd_reg32(struct slgt_info *info, unsigned int addr) { CALC_REGADDR(); return readl((void __iomem *)reg_addr); } static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value) { CALC_REGADDR(); writel(value, (void __iomem *)reg_addr); } static void rdma_reset(struct slgt_info *info) { unsigned int i; /* set reset bit */ wr_reg32(info, RDCSR, BIT1); /* wait for enable bit cleared */ for(i=0 ; i < 1000 ; i++) if (!(rd_reg32(info, RDCSR) & BIT0)) break; } static void tdma_reset(struct slgt_info *info) { unsigned int i; /* set reset bit */ wr_reg32(info, TDCSR, BIT1); /* wait for enable bit cleared */ for(i=0 ; i < 1000 ; i++) if (!(rd_reg32(info, TDCSR) & BIT0)) break; } /* * enable internal loopback * TxCLK and RxCLK are generated from BRG * and TxD is looped back to RxD internally. */ static void enable_loopback(struct slgt_info *info) { /* SCR (serial control) BIT2=loopback enable */ wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2)); if (info->params.mode != MGSL_MODE_ASYNC) { /* CCR (clock control) * 07..05 tx clock source (010 = BRG) * 04..02 rx clock source (010 = BRG) * 01 auxclk enable (0 = disable) * 00 BRG enable (1 = enable) * * 0100 1001 */ wr_reg8(info, CCR, 0x49); /* set speed if available, otherwise use default */ if (info->params.clock_speed) set_rate(info, info->params.clock_speed); else set_rate(info, 3686400); } } /* * set baud rate generator to specified rate */ static void set_rate(struct slgt_info *info, u32 rate) { unsigned int div; unsigned int osc = info->base_clock; /* div = osc/rate - 1 * * Round div up if osc/rate is not integer to * force to next slowest rate. */ if (rate) { div = osc/rate; if (!(osc % rate) && div) div--; wr_reg16(info, BDR, (unsigned short)div); } } static void rx_stop(struct slgt_info *info) { unsigned short val; /* disable and reset receiver */ val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ wr_reg16(info, RCR, val); /* clear reset bit */ slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE); /* clear pending rx interrupts */ wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER); rdma_reset(info); info->rx_enabled = false; info->rx_restart = false; } static void rx_start(struct slgt_info *info) { unsigned short val; slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA); /* clear pending rx overrun IRQ */ wr_reg16(info, SSR, IRQ_RXOVER); /* reset and disable receiver */ val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */ wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */ wr_reg16(info, RCR, val); /* clear reset bit */ rdma_reset(info); reset_rbufs(info); if (info->rx_pio) { /* rx request when rx FIFO not empty */ wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14)); slgt_irq_on(info, IRQ_RXDATA); if (info->params.mode == MGSL_MODE_ASYNC) { /* enable saving of rx status */ wr_reg32(info, RDCSR, BIT6); } } else { /* rx request when rx FIFO half full */ wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14)); /* set 1st descriptor address */ wr_reg32(info, RDDAR, info->rbufs[0].pdesc); if (info->params.mode != MGSL_MODE_ASYNC) { /* enable rx DMA and DMA interrupt */ wr_reg32(info, RDCSR, (BIT2 + BIT0)); } else { /* enable saving of rx status, rx DMA and DMA interrupt */ wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0)); } } slgt_irq_on(info, IRQ_RXOVER); /* enable receiver */ wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1)); info->rx_restart = false; info->rx_enabled = true; } static void tx_start(struct slgt_info *info) { if (!info->tx_enabled) { wr_reg16(info, TCR, (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2)); info->tx_enabled = true; } if (desc_count(info->tbufs[info->tbuf_start])) { info->drop_rts_on_tx_done = false; if (info->params.mode != MGSL_MODE_ASYNC) { if (info->params.flags & HDLC_FLAG_AUTO_RTS) { get_signals(info); if (!(info->signals & SerialSignal_RTS)) { info->signals |= SerialSignal_RTS; set_signals(info); info->drop_rts_on_tx_done = true; } } slgt_irq_off(info, IRQ_TXDATA); slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE); /* clear tx idle and underrun status bits */ wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); } else { slgt_irq_off(info, IRQ_TXDATA); slgt_irq_on(info, IRQ_TXIDLE); /* clear tx idle status bit */ wr_reg16(info, SSR, IRQ_TXIDLE); } /* set 1st descriptor address and start DMA */ wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc); wr_reg32(info, TDCSR, BIT2 + BIT0); info->tx_active = true; } } static void tx_stop(struct slgt_info *info) { unsigned short val; del_timer(&info->tx_timer); tdma_reset(info); /* reset and disable transmitter */ val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */ wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */ slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER); /* clear tx idle and underrun status bit */ wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER)); reset_tbufs(info); info->tx_enabled = false; info->tx_active = false; } static void reset_port(struct slgt_info *info) { if (!info->reg_addr) return; tx_stop(info); rx_stop(info); info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR); set_signals(info); slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); } static void reset_adapter(struct slgt_info *info) { int i; for (i=0; i < info->port_count; ++i) { if (info->port_array[i]) reset_port(info->port_array[i]); } } static void async_mode(struct slgt_info *info) { unsigned short val; slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); tx_stop(info); rx_stop(info); /* TCR (tx control) * * 15..13 mode, 010=async * 12..10 encoding, 000=NRZ * 09 parity enable * 08 1=odd parity, 0=even parity * 07 1=RTS driver control * 06 1=break enable * 05..04 character length * 00=5 bits * 01=6 bits * 10=7 bits * 11=8 bits * 03 0=1 stop bit, 1=2 stop bits * 02 reset * 01 enable * 00 auto-CTS enable */ val = 0x4000; if (info->if_mode & MGSL_INTERFACE_RTS_EN) val |= BIT7; if (info->params.parity != ASYNC_PARITY_NONE) { val |= BIT9; if (info->params.parity == ASYNC_PARITY_ODD) val |= BIT8; } switch (info->params.data_bits) { case 6: val |= BIT4; break; case 7: val |= BIT5; break; case 8: val |= BIT5 + BIT4; break; } if (info->params.stop_bits != 1) val |= BIT3; if (info->params.flags & HDLC_FLAG_AUTO_CTS) val |= BIT0; wr_reg16(info, TCR, val); /* RCR (rx control) * * 15..13 mode, 010=async * 12..10 encoding, 000=NRZ * 09 parity enable * 08 1=odd parity, 0=even parity * 07..06 reserved, must be 0 * 05..04 character length * 00=5 bits * 01=6 bits * 10=7 bits * 11=8 bits * 03 reserved, must be zero * 02 reset * 01 enable * 00 auto-DCD enable */ val = 0x4000; if (info->params.parity != ASYNC_PARITY_NONE) { val |= BIT9; if (info->params.parity == ASYNC_PARITY_ODD) val |= BIT8; } switch (info->params.data_bits) { case 6: val |= BIT4; break; case 7: val |= BIT5; break; case 8: val |= BIT5 + BIT4; break; } if (info->params.flags & HDLC_FLAG_AUTO_DCD) val |= BIT0; wr_reg16(info, RCR, val); /* CCR (clock control) * * 07..05 011 = tx clock source is BRG/16 * 04..02 010 = rx clock source is BRG * 01 0 = auxclk disabled * 00 1 = BRG enabled * * 0110 1001 */ wr_reg8(info, CCR, 0x69); msc_set_vcr(info); /* SCR (serial control) * * 15 1=tx req on FIFO half empty * 14 1=rx req on FIFO half full * 13 tx data IRQ enable * 12 tx idle IRQ enable * 11 rx break on IRQ enable * 10 rx data IRQ enable * 09 rx break off IRQ enable * 08 overrun IRQ enable * 07 DSR IRQ enable * 06 CTS IRQ enable * 05 DCD IRQ enable * 04 RI IRQ enable * 03 0=16x sampling, 1=8x sampling * 02 1=txd->rxd internal loopback enable * 01 reserved, must be zero * 00 1=master IRQ enable */ val = BIT15 + BIT14 + BIT0; /* JCR[8] : 1 = x8 async mode feature available */ if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate && ((info->base_clock < (info->params.data_rate * 16)) || (info->base_clock % (info->params.data_rate * 16)))) { /* use 8x sampling */ val |= BIT3; set_rate(info, info->params.data_rate * 8); } else { /* use 16x sampling */ set_rate(info, info->params.data_rate * 16); } wr_reg16(info, SCR, val); slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER); if (info->params.loopback) enable_loopback(info); } static void sync_mode(struct slgt_info *info) { unsigned short val; slgt_irq_off(info, IRQ_ALL | IRQ_MASTER); tx_stop(info); rx_stop(info); /* TCR (tx control) * * 15..13 mode * 000=HDLC/SDLC * 001=raw bit synchronous * 010=asynchronous/isochronous * 011=monosync byte synchronous * 100=bisync byte synchronous * 101=xsync byte synchronous * 12..10 encoding * 09 CRC enable * 08 CRC32 * 07 1=RTS driver control * 06 preamble enable * 05..04 preamble length * 03 share open/close flag * 02 reset * 01 enable * 00 auto-CTS enable */ val = BIT2; switch(info->params.mode) { case MGSL_MODE_XSYNC: val |= BIT15 + BIT13; break; case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; case MGSL_MODE_BISYNC: val |= BIT15; break; case MGSL_MODE_RAW: val |= BIT13; break; } if (info->if_mode & MGSL_INTERFACE_RTS_EN) val |= BIT7; switch(info->params.encoding) { case HDLC_ENCODING_NRZB: val |= BIT10; break; case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; } switch (info->params.crc_type & HDLC_CRC_MASK) { case HDLC_CRC_16_CCITT: val |= BIT9; break; case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; } if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE) val |= BIT6; switch (info->params.preamble_length) { case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break; case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break; case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break; } if (info->params.flags & HDLC_FLAG_AUTO_CTS) val |= BIT0; wr_reg16(info, TCR, val); /* TPR (transmit preamble) */ switch (info->params.preamble) { case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break; case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break; case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break; case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break; case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break; default: val = 0x7e; break; } wr_reg8(info, TPR, (unsigned char)val); /* RCR (rx control) * * 15..13 mode * 000=HDLC/SDLC * 001=raw bit synchronous * 010=asynchronous/isochronous * 011=monosync byte synchronous * 100=bisync byte synchronous * 101=xsync byte synchronous * 12..10 encoding * 09 CRC enable * 08 CRC32 * 07..03 reserved, must be 0 * 02 reset * 01 enable * 00 auto-DCD enable */ val = 0; switch(info->params.mode) { case MGSL_MODE_XSYNC: val |= BIT15 + BIT13; break; case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break; case MGSL_MODE_BISYNC: val |= BIT15; break; case MGSL_MODE_RAW: val |= BIT13; break; } switch(info->params.encoding) { case HDLC_ENCODING_NRZB: val |= BIT10; break; case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break; case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break; case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break; case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break; case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break; case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break; } switch (info->params.crc_type & HDLC_CRC_MASK) { case HDLC_CRC_16_CCITT: val |= BIT9; break; case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break; } if (info->params.flags & HDLC_FLAG_AUTO_DCD) val |= BIT0; wr_reg16(info, RCR, val); /* CCR (clock control) * * 07..05 tx clock source * 04..02 rx clock source * 01 auxclk enable * 00 BRG enable */ val = 0; if (info->params.flags & HDLC_FLAG_TXC_BRG) { // when RxC source is DPLL, BRG generates 16X DPLL // reference clock, so take TxC from BRG/16 to get // transmit clock at actual data rate if (info->params.flags & HDLC_FLAG_RXC_DPLL) val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */ else val |= BIT6; /* 010, txclk = BRG */ } else if (info->params.flags & HDLC_FLAG_TXC_DPLL) val |= BIT7; /* 100, txclk = DPLL Input */ else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN) val |= BIT5; /* 001, txclk = RXC Input */ if (info->params.flags & HDLC_FLAG_RXC_BRG) val |= BIT3; /* 010, rxclk = BRG */ else if (info->params.flags & HDLC_FLAG_RXC_DPLL) val |= BIT4; /* 100, rxclk = DPLL */ else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN) val |= BIT2; /* 001, rxclk = TXC Input */ if (info->params.clock_speed) val |= BIT1 + BIT0; wr_reg8(info, CCR, (unsigned char)val); if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL)) { // program DPLL mode switch(info->params.encoding) { case HDLC_ENCODING_BIPHASE_MARK: case HDLC_ENCODING_BIPHASE_SPACE: val = BIT7; break; case HDLC_ENCODING_BIPHASE_LEVEL: case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val = BIT7 + BIT6; break; default: val = BIT6; // NRZ encodings } wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val)); // DPLL requires a 16X reference clock from BRG set_rate(info, info->params.clock_speed * 16); } else set_rate(info, info->params.clock_speed); tx_set_idle(info); msc_set_vcr(info); /* SCR (serial control) * * 15 1=tx req on FIFO half empty * 14 1=rx req on FIFO half full * 13 tx data IRQ enable * 12 tx idle IRQ enable * 11 underrun IRQ enable * 10 rx data IRQ enable * 09 rx idle IRQ enable * 08 overrun IRQ enable * 07 DSR IRQ enable * 06 CTS IRQ enable * 05 DCD IRQ enable * 04 RI IRQ enable * 03 reserved, must be zero * 02 1=txd->rxd internal loopback enable * 01 reserved, must be zero * 00 1=master IRQ enable */ wr_reg16(info, SCR, BIT15 + BIT14 + BIT0); if (info->params.loopback) enable_loopback(info); } /* * set transmit idle mode */ static void tx_set_idle(struct slgt_info *info) { unsigned char val; unsigned short tcr; /* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits */ tcr = rd_reg16(info, TCR); if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) { /* disable preamble, set idle size to 16 bits */ tcr = (tcr & ~(BIT6 + BIT5)) | BIT4; /* MSB of 16 bit idle specified in tx preamble register (TPR) */ wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff)); } else if (!(tcr & BIT6)) { /* preamble is disabled, set idle size to 8 bits */ tcr &= ~(BIT5 + BIT4); } wr_reg16(info, TCR, tcr); if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) { /* LSB of custom tx idle specified in tx idle register */ val = (unsigned char)(info->idle_mode & 0xff); } else { /* standard 8 bit idle patterns */ switch(info->idle_mode) { case HDLC_TXIDLE_FLAGS: val = 0x7e; break; case HDLC_TXIDLE_ALT_ZEROS_ONES: case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break; case HDLC_TXIDLE_ZEROS: case HDLC_TXIDLE_SPACE: val = 0x00; break; default: val = 0xff; } } wr_reg8(info, TIR, val); } /* * get state of V24 status (input) signals */ static void get_signals(struct slgt_info *info) { unsigned short status = rd_reg16(info, SSR); /* clear all serial signals except RTS and DTR */ info->signals &= SerialSignal_RTS | SerialSignal_DTR; if (status & BIT3) info->signals |= SerialSignal_DSR; if (status & BIT2) info->signals |= SerialSignal_CTS; if (status & BIT1) info->signals |= SerialSignal_DCD; if (status & BIT0) info->signals |= SerialSignal_RI; } /* * set V.24 Control Register based on current configuration */ static void msc_set_vcr(struct slgt_info *info) { unsigned char val = 0; /* VCR (V.24 control) * * 07..04 serial IF select * 03 DTR * 02 RTS * 01 LL * 00 RL */ switch(info->if_mode & MGSL_INTERFACE_MASK) { case MGSL_INTERFACE_RS232: val |= BIT5; /* 0010 */ break; case MGSL_INTERFACE_V35: val |= BIT7 + BIT6 + BIT5; /* 1110 */ break; case MGSL_INTERFACE_RS422: val |= BIT6; /* 0100 */ break; } if (info->if_mode & MGSL_INTERFACE_MSB_FIRST) val |= BIT4; if (info->signals & SerialSignal_DTR) val |= BIT3; if (info->signals & SerialSignal_RTS) val |= BIT2; if (info->if_mode & MGSL_INTERFACE_LL) val |= BIT1; if (info->if_mode & MGSL_INTERFACE_RL) val |= BIT0; wr_reg8(info, VCR, val); } /* * set state of V24 control (output) signals */ static void set_signals(struct slgt_info *info) { unsigned char val = rd_reg8(info, VCR); if (info->signals & SerialSignal_DTR) val |= BIT3; else val &= ~BIT3; if (info->signals & SerialSignal_RTS) val |= BIT2; else val &= ~BIT2; wr_reg8(info, VCR, val); } /* * free range of receive DMA buffers (i to last) */ static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last) { int done = 0; while(!done) { /* reset current buffer for reuse */ info->rbufs[i].status = 0; set_desc_count(info->rbufs[i], info->rbuf_fill_level); if (i == last) done = 1; if (++i == info->rbuf_count) i = 0; } info->rbuf_current = i; } /* * mark all receive DMA buffers as free */ static void reset_rbufs(struct slgt_info *info) { free_rbufs(info, 0, info->rbuf_count - 1); info->rbuf_fill_index = 0; info->rbuf_fill_count = 0; } /* * pass receive HDLC frame to upper layer * * return true if frame available, otherwise false */ static bool rx_get_frame(struct slgt_info *info) { unsigned int start, end; unsigned short status; unsigned int framesize = 0; unsigned long flags; struct tty_struct *tty = info->port.tty; unsigned char addr_field = 0xff; unsigned int crc_size = 0; switch (info->params.crc_type & HDLC_CRC_MASK) { case HDLC_CRC_16_CCITT: crc_size = 2; break; case HDLC_CRC_32_CCITT: crc_size = 4; break; } check_again: framesize = 0; addr_field = 0xff; start = end = info->rbuf_current; for (;;) { if (!desc_complete(info->rbufs[end])) goto cleanup; if (framesize == 0 && info->params.addr_filter != 0xff) addr_field = info->rbufs[end].buf[0]; framesize += desc_count(info->rbufs[end]); if (desc_eof(info->rbufs[end])) break; if (++end == info->rbuf_count) end = 0; if (end == info->rbuf_current) { if (info->rx_enabled){ spin_lock_irqsave(&info->lock,flags); rx_start(info); spin_unlock_irqrestore(&info->lock,flags); } goto cleanup; } } /* status * * 15 buffer complete * 14..06 reserved * 05..04 residue * 02 eof (end of frame) * 01 CRC error * 00 abort */ status = desc_status(info->rbufs[end]); /* ignore CRC bit if not using CRC (bit is undefined) */ if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE) status &= ~BIT1; if (framesize == 0 || (addr_field != 0xff && addr_field != info->params.addr_filter)) { free_rbufs(info, start, end); goto check_again; } if (framesize < (2 + crc_size) || status & BIT0) { info->icount.rxshort++; framesize = 0; } else if (status & BIT1) { info->icount.rxcrc++; if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) framesize = 0; } #if SYNCLINK_GENERIC_HDLC if (framesize == 0) { info->netdev->stats.rx_errors++; info->netdev->stats.rx_frame_errors++; } #endif DBGBH(("%s rx frame status=%04X size=%d\n", info->device_name, status, framesize)); DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx"); if (framesize) { if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) { framesize -= crc_size; crc_size = 0; } if (framesize > info->max_frame_size + crc_size) info->icount.rxlong++; else { /* copy dma buffer(s) to contiguous temp buffer */ int copy_count = framesize; int i = start; unsigned char *p = info->tmp_rbuf; info->tmp_rbuf_count = framesize; info->icount.rxok++; while(copy_count) { int partial_count = min_t(int, copy_count, info->rbuf_fill_level); memcpy(p, info->rbufs[i].buf, partial_count); p += partial_count; copy_count -= partial_count; if (++i == info->rbuf_count) i = 0; } if (info->params.crc_type & HDLC_CRC_RETURN_EX) { *p = (status & BIT1) ? RX_CRC_ERROR : RX_OK; framesize++; } #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_rx(info,info->tmp_rbuf, framesize); else #endif ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize); } } free_rbufs(info, start, end); return true; cleanup: return false; } /* * pass receive buffer (RAW synchronous mode) to tty layer * return true if buffer available, otherwise false */ static bool rx_get_buf(struct slgt_info *info) { unsigned int i = info->rbuf_current; unsigned int count; if (!desc_complete(info->rbufs[i])) return false; count = desc_count(info->rbufs[i]); switch(info->params.mode) { case MGSL_MODE_MONOSYNC: case MGSL_MODE_BISYNC: case MGSL_MODE_XSYNC: /* ignore residue in byte synchronous modes */ if (desc_residue(info->rbufs[i])) count--; break; } DBGDATA(info, info->rbufs[i].buf, count, "rx"); DBGINFO(("rx_get_buf size=%d\n", count)); if (count) ldisc_receive_buf(info->port.tty, info->rbufs[i].buf, info->flag_buf, count); free_rbufs(info, i, i); return true; } static void reset_tbufs(struct slgt_info *info) { unsigned int i; info->tbuf_current = 0; for (i=0 ; i < info->tbuf_count ; i++) { info->tbufs[i].status = 0; info->tbufs[i].count = 0; } } /* * return number of free transmit DMA buffers */ static unsigned int free_tbuf_count(struct slgt_info *info) { unsigned int count = 0; unsigned int i = info->tbuf_current; do { if (desc_count(info->tbufs[i])) break; /* buffer in use */ ++count; if (++i == info->tbuf_count) i=0; } while (i != info->tbuf_current); /* if tx DMA active, last zero count buffer is in use */ if (count && (rd_reg32(info, TDCSR) & BIT0)) --count; return count; } /* * return number of bytes in unsent transmit DMA buffers * and the serial controller tx FIFO */ static unsigned int tbuf_bytes(struct slgt_info *info) { unsigned int total_count = 0; unsigned int i = info->tbuf_current; unsigned int reg_value; unsigned int count; unsigned int active_buf_count = 0; /* * Add descriptor counts for all tx DMA buffers. * If count is zero (cleared by DMA controller after read), * the buffer is complete or is actively being read from. * * Record buf_count of last buffer with zero count starting * from current ring position. buf_count is mirror * copy of count and is not cleared by serial controller. * If DMA controller is active, that buffer is actively * being read so add to total. */ do { count = desc_count(info->tbufs[i]); if (count) total_count += count; else if (!total_count) active_buf_count = info->tbufs[i].buf_count; if (++i == info->tbuf_count) i = 0; } while (i != info->tbuf_current); /* read tx DMA status register */ reg_value = rd_reg32(info, TDCSR); /* if tx DMA active, last zero count buffer is in use */ if (reg_value & BIT0) total_count += active_buf_count; /* add tx FIFO count = reg_value[15..8] */ total_count += (reg_value >> 8) & 0xff; /* if transmitter active add one byte for shift register */ if (info->tx_active) total_count++; return total_count; } /* * load data into transmit DMA buffer ring and start transmitter if needed * return true if data accepted, otherwise false (buffers full) */ static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size) { unsigned short count; unsigned int i; struct slgt_desc *d; /* check required buffer space */ if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info)) return false; DBGDATA(info, buf, size, "tx"); /* * copy data to one or more DMA buffers in circular ring * tbuf_start = first buffer for this data * tbuf_current = next free buffer * * Copy all data before making data visible to DMA controller by * setting descriptor count of the first buffer. * This prevents an active DMA controller from reading the first DMA * buffers of a frame and stopping before the final buffers are filled. */ info->tbuf_start = i = info->tbuf_current; while (size) { d = &info->tbufs[i]; count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size); memcpy(d->buf, buf, count); size -= count; buf += count; /* * set EOF bit for last buffer of HDLC frame or * for every buffer in raw mode */ if ((!size && info->params.mode == MGSL_MODE_HDLC) || info->params.mode == MGSL_MODE_RAW) set_desc_eof(*d, 1); else set_desc_eof(*d, 0); /* set descriptor count for all but first buffer */ if (i != info->tbuf_start) set_desc_count(*d, count); d->buf_count = count; if (++i == info->tbuf_count) i = 0; } info->tbuf_current = i; /* set first buffer count to make new data visible to DMA controller */ d = &info->tbufs[info->tbuf_start]; set_desc_count(*d, d->buf_count); /* start transmitter if needed and update transmit timeout */ if (!info->tx_active) tx_start(info); update_tx_timer(info); return true; } static int register_test(struct slgt_info *info) { static unsigned short patterns[] = {0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696}; static unsigned int count = ARRAY_SIZE(patterns); unsigned int i; int rc = 0; for (i=0 ; i < count ; i++) { wr_reg16(info, TIR, patterns[i]); wr_reg16(info, BDR, patterns[(i+1)%count]); if ((rd_reg16(info, TIR) != patterns[i]) || (rd_reg16(info, BDR) != patterns[(i+1)%count])) { rc = -ENODEV; break; } } info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0; info->init_error = rc ? 0 : DiagStatus_AddressFailure; return rc; } static int irq_test(struct slgt_info *info) { unsigned long timeout; unsigned long flags; struct tty_struct *oldtty = info->port.tty; u32 speed = info->params.data_rate; info->params.data_rate = 921600; info->port.tty = NULL; spin_lock_irqsave(&info->lock, flags); async_mode(info); slgt_irq_on(info, IRQ_TXIDLE); /* enable transmitter */ wr_reg16(info, TCR, (unsigned short)(rd_reg16(info, TCR) | BIT1)); /* write one byte and wait for tx idle */ wr_reg16(info, TDR, 0); /* assume failure */ info->init_error = DiagStatus_IrqFailure; info->irq_occurred = false; spin_unlock_irqrestore(&info->lock, flags); timeout=100; while(timeout-- && !info->irq_occurred) msleep_interruptible(10); spin_lock_irqsave(&info->lock,flags); reset_port(info); spin_unlock_irqrestore(&info->lock,flags); info->params.data_rate = speed; info->port.tty = oldtty; info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure; return info->irq_occurred ? 0 : -ENODEV; } static int loopback_test_rx(struct slgt_info *info) { unsigned char *src, *dest; int count; if (desc_complete(info->rbufs[0])) { count = desc_count(info->rbufs[0]); src = info->rbufs[0].buf; dest = info->tmp_rbuf; for( ; count ; count-=2, src+=2) { /* src=data byte (src+1)=status byte */ if (!(*(src+1) & (BIT9 + BIT8))) { *dest = *src; dest++; info->tmp_rbuf_count++; } } DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx"); return 1; } return 0; } static int loopback_test(struct slgt_info *info) { #define TESTFRAMESIZE 20 unsigned long timeout; u16 count = TESTFRAMESIZE; unsigned char buf[TESTFRAMESIZE]; int rc = -ENODEV; unsigned long flags; struct tty_struct *oldtty = info->port.tty; MGSL_PARAMS params; memcpy(¶ms, &info->params, sizeof(params)); info->params.mode = MGSL_MODE_ASYNC; info->params.data_rate = 921600; info->params.loopback = 1; info->port.tty = NULL; /* build and send transmit frame */ for (count = 0; count < TESTFRAMESIZE; ++count) buf[count] = (unsigned char)count; info->tmp_rbuf_count = 0; memset(info->tmp_rbuf, 0, TESTFRAMESIZE); /* program hardware for HDLC and enabled receiver */ spin_lock_irqsave(&info->lock,flags); async_mode(info); rx_start(info); tx_load(info, buf, count); spin_unlock_irqrestore(&info->lock, flags); /* wait for receive complete */ for (timeout = 100; timeout; --timeout) { msleep_interruptible(10); if (loopback_test_rx(info)) { rc = 0; break; } } /* verify received frame length and contents */ if (!rc && (info->tmp_rbuf_count != count || memcmp(buf, info->tmp_rbuf, count))) { rc = -ENODEV; } spin_lock_irqsave(&info->lock,flags); reset_adapter(info); spin_unlock_irqrestore(&info->lock,flags); memcpy(&info->params, ¶ms, sizeof(info->params)); info->port.tty = oldtty; info->init_error = rc ? DiagStatus_DmaFailure : 0; return rc; } static int adapter_test(struct slgt_info *info) { DBGINFO(("testing %s\n", info->device_name)); if (register_test(info) < 0) { printk("register test failure %s addr=%08X\n", info->device_name, info->phys_reg_addr); } else if (irq_test(info) < 0) { printk("IRQ test failure %s IRQ=%d\n", info->device_name, info->irq_level); } else if (loopback_test(info) < 0) { printk("loopback test failure %s\n", info->device_name); } return info->init_error; } /* * transmit timeout handler */ static void tx_timeout(struct timer_list *t) { struct slgt_info *info = from_timer(info, t, tx_timer); unsigned long flags; DBGINFO(("%s tx_timeout\n", info->device_name)); if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) { info->icount.txtimeout++; } spin_lock_irqsave(&info->lock,flags); tx_stop(info); spin_unlock_irqrestore(&info->lock,flags); #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_tx_done(info); else #endif bh_transmit(info); } /* * receive buffer polling timer */ static void rx_timeout(struct timer_list *t) { struct slgt_info *info = from_timer(info, t, rx_timer); unsigned long flags; DBGINFO(("%s rx_timeout\n", info->device_name)); spin_lock_irqsave(&info->lock, flags); info->pending_bh |= BH_RECEIVE; spin_unlock_irqrestore(&info->lock, flags); bh_handler(&info->task); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1