Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Zimmerman | 1447 | 73.64% | 3 | 10.71% |
Doug Anderson | 194 | 9.87% | 8 | 28.57% |
Matthijs Kooijman | 170 | 8.65% | 4 | 14.29% |
John Youn | 55 | 2.80% | 1 | 3.57% |
Gregory Herrero | 50 | 2.54% | 3 | 10.71% |
Mian Yousaf Kaukab | 19 | 0.97% | 1 | 3.57% |
William Wu | 11 | 0.56% | 1 | 3.57% |
Gevorg Sahakyan | 6 | 0.31% | 1 | 3.57% |
Antti Seppälä | 5 | 0.25% | 1 | 3.57% |
Dom Cobley | 3 | 0.15% | 1 | 3.57% |
Grigor Tovmasyan | 2 | 0.10% | 1 | 3.57% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 3.57% |
Vahram Aharonyan | 1 | 0.05% | 1 | 3.57% |
Terin Stock | 1 | 0.05% | 1 | 3.57% |
Total | 1965 | 28 |
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * hcd.h - DesignWare HS OTG Controller host-mode declarations * * Copyright (C) 2004-2013 Synopsys, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the above-listed copyright holders may not be used * to endorse or promote products derived from this software without * specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __DWC2_HCD_H__ #define __DWC2_HCD_H__ /* * This file contains the structures, constants, and interfaces for the * Host Contoller Driver (HCD) * * The Host Controller Driver (HCD) is responsible for translating requests * from the USB Driver into the appropriate actions on the DWC_otg controller. * It isolates the USBD from the specifics of the controller by providing an * API to the USBD. */ struct dwc2_qh; /** * struct dwc2_host_chan - Software host channel descriptor * * @hc_num: Host channel number, used for register address lookup * @dev_addr: Address of the device * @ep_num: Endpoint of the device * @ep_is_in: Endpoint direction * @speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL: 0 * - USB_ENDPOINT_XFER_ISOC: 1 * - USB_ENDPOINT_XFER_BULK: 2 * - USB_ENDPOINT_XFER_INTR: 3 * @max_packet: Max packet size in bytes * @data_pid_start: PID for initial transaction. * 0: DATA0 * 1: DATA2 * 2: DATA1 * 3: MDATA (non-Control EP), * SETUP (Control EP) * @multi_count: Number of additional periodic transactions per * (micro)frame * @xfer_buf: Pointer to current transfer buffer position * @xfer_dma: DMA address of xfer_buf * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not * DWORD aligned * @xfer_len: Total number of bytes to transfer * @xfer_count: Number of bytes transferred so far * @start_pkt_count: Packet count at start of transfer * @xfer_started: True if the transfer has been started * @do_ping: True if a PING request should be issued on this channel * @error_state: True if the error count for this transaction is non-zero * @halt_on_queue: True if this channel should be halted the next time a * request is queued for the channel. This is necessary in * slave mode if no request queue space is available when * an attempt is made to halt the channel. * @halt_pending: True if the host channel has been halted, but the core * is not finished flushing queued requests * @do_split: Enable split for the channel * @complete_split: Enable complete split * @hub_addr: Address of high speed hub for the split * @hub_port: Port of the low/full speed device for the split * @xact_pos: Split transaction position. One of the following values: * - DWC2_HCSPLT_XACTPOS_MID * - DWC2_HCSPLT_XACTPOS_BEGIN * - DWC2_HCSPLT_XACTPOS_END * - DWC2_HCSPLT_XACTPOS_ALL * @requests: Number of requests issued for this channel since it was * assigned to the current transfer (not counting PINGs) * @schinfo: Scheduling micro-frame bitmap * @ntd: Number of transfer descriptors for the transfer * @halt_status: Reason for halting the host channel * @hcint: Contents of the HCINT register when the interrupt came * @qh: QH for the transfer being processed by this channel * @hc_list_entry: For linking to list of host channels * @desc_list_addr: Current QH's descriptor list DMA address * @desc_list_sz: Current QH's descriptor list size * @split_order_list_entry: List entry for keeping track of the order of splits * * This structure represents the state of a single host channel when acting in * host mode. It contains the data items needed to transfer packets to an * endpoint via a host channel. */ struct dwc2_host_chan { u8 hc_num; unsigned dev_addr:7; unsigned ep_num:4; unsigned ep_is_in:1; unsigned speed:4; unsigned ep_type:2; unsigned max_packet:11; unsigned data_pid_start:2; #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP unsigned multi_count:2; u8 *xfer_buf; dma_addr_t xfer_dma; dma_addr_t align_buf; u32 xfer_len; u32 xfer_count; u16 start_pkt_count; u8 xfer_started; u8 do_ping; u8 error_state; u8 halt_on_queue; u8 halt_pending; u8 do_split; u8 complete_split; u8 hub_addr; u8 hub_port; u8 xact_pos; #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL u8 requests; u8 schinfo; u16 ntd; enum dwc2_halt_status halt_status; u32 hcint; struct dwc2_qh *qh; struct list_head hc_list_entry; dma_addr_t desc_list_addr; u32 desc_list_sz; struct list_head split_order_list_entry; }; struct dwc2_hcd_pipe_info { u8 dev_addr; u8 ep_num; u8 pipe_type; u8 pipe_dir; u16 maxp; u16 maxp_mult; }; struct dwc2_hcd_iso_packet_desc { u32 offset; u32 length; u32 actual_length; u32 status; }; struct dwc2_qtd; struct dwc2_hcd_urb { void *priv; struct dwc2_qtd *qtd; void *buf; dma_addr_t dma; void *setup_packet; dma_addr_t setup_dma; u32 length; u32 actual_length; u32 status; u32 error_count; u32 packet_count; u32 flags; u16 interval; struct dwc2_hcd_pipe_info pipe_info; struct dwc2_hcd_iso_packet_desc iso_descs[0]; }; /* Phases for control transfers */ enum dwc2_control_phase { DWC2_CONTROL_SETUP, DWC2_CONTROL_DATA, DWC2_CONTROL_STATUS, }; /* Transaction types */ enum dwc2_transaction_type { DWC2_TRANSACTION_NONE, DWC2_TRANSACTION_PERIODIC, DWC2_TRANSACTION_NON_PERIODIC, DWC2_TRANSACTION_ALL, }; /* The number of elements per LS bitmap (per port on multi_tt) */ #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \ BITS_PER_LONG) /** * struct dwc2_tt - dwc2 data associated with a usb_tt * * @refcount: Number of Queue Heads (QHs) holding a reference. * @usb_tt: Pointer back to the official usb_tt. * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP * elements (so sizeof(long) times that in bytes). * * This structure is stored in the hcpriv of the official usb_tt. */ struct dwc2_tt { int refcount; struct usb_tt *usb_tt; unsigned long periodic_bitmaps[]; }; /** * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus. * * @start_schedule_us: The start time on the main bus schedule. Note that * the main bus schedule is tightly packed and this * time should be interpreted as tightly packed (so * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us * instead of 125 us). * @duration_us: How long this transfer goes. */ struct dwc2_hs_transfer_time { u32 start_schedule_us; u16 duration_us; }; /** * struct dwc2_qh - Software queue head structure * * @hsotg: The HCD state structure for the DWC OTG controller * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL * - USB_ENDPOINT_XFER_BULK * - USB_ENDPOINT_XFER_INT * - USB_ENDPOINT_XFER_ISOC * @ep_is_in: Endpoint direction * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor * @maxp_mult: Multiplier for maxp * @dev_speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @data_toggle: Determines the PID of the next data packet for * non-controltransfers. Ignored for control transfers. * One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @ping_state: Ping state * @do_split: Full/low speed endpoint on high-speed hub requires split * @td_first: Index of first activated isochronous transfer descriptor * @td_last: Index of last activated isochronous transfer descriptor * @host_us: Bandwidth in microseconds per transfer as seen by host * @device_us: Bandwidth in microseconds per transfer as seen by device * @host_interval: Interval between transfers as seen by the host. If * the host is high speed and the device is low speed this * will be 8 times device interval. * @device_interval: Interval between transfers as seen by the device. * interval. * @next_active_frame: (Micro)frame _before_ we next need to put something on * the bus. We'll move the qh to active here. If the * host is in high speed mode this will be a uframe. If * the host is in low speed mode this will be a full frame. * @start_active_frame: If we are partway through a split transfer, this will be * what next_active_frame was when we started. Otherwise * it should always be the same as next_active_frame. * @num_hs_transfers: Number of transfers in hs_transfers. * Normally this is 1 but can be more than one for splits. * Always >= 1 unless the host is in low/full speed mode. * @hs_transfers: Transfers that are scheduled as seen by the high speed * bus. Not used if host is in low or full speed mode (but * note that it IS USED if the device is low or full speed * as long as the HOST is in high speed mode). * @ls_start_schedule_slice: Start time (in slices) on the low speed bus * schedule that's being used by this device. This * will be on the periodic_bitmap in a * "struct dwc2_tt". Not used if this device is high * speed. Note that this is in "schedule slice" which * is tightly packed. * @ntd: Actual number of transfer descriptors in a list * @dw_align_buf: Used instead of original buffer if its physical address * is not dword-aligned * @dw_align_buf_dma: DMA address for dw_align_buf * @qtd_list: List of QTDs for this QH * @channel: Host channel currently processing transfers for this QH * @qh_list_entry: Entry for QH in either the periodic or non-periodic * schedule * @desc_list: List of transfer descriptors * @desc_list_dma: Physical address of desc_list * @desc_list_sz: Size of descriptors list * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer * descriptor and indicates original XferSize value for the * descriptor * @unreserve_timer: Timer for releasing periodic reservation. * @wait_timer: Timer used to wait before re-queuing. * @dwc_tt: Pointer to our tt info (or NULL if no tt). * @ttport: Port number within our tt. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending * @unreserve_pending: True if we planned to unreserve but haven't yet. * @schedule_low_speed: True if we have a low/full speed component (either the * host is in low/full speed mode or do_split). * @want_wait: We should wait before re-queuing; only matters for non- * periodic transfers and is ignored for periodic ones. * @wait_timer_cancel: Set to true to cancel the wait_timer. * * @tt_buffer_dirty: True if EP's TT buffer is not clean. * A Queue Head (QH) holds the static characteristics of an endpoint and * maintains a list of transfers (QTDs) for that endpoint. A QH structure may * be entered in either the non-periodic or periodic schedule. */ struct dwc2_qh { struct dwc2_hsotg *hsotg; u8 ep_type; u8 ep_is_in; u16 maxp; u16 maxp_mult; u8 dev_speed; u8 data_toggle; u8 ping_state; u8 do_split; u8 td_first; u8 td_last; u16 host_us; u16 device_us; u16 host_interval; u16 device_interval; u16 next_active_frame; u16 start_active_frame; s16 num_hs_transfers; struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES]; u32 ls_start_schedule_slice; u16 ntd; u8 *dw_align_buf; dma_addr_t dw_align_buf_dma; struct list_head qtd_list; struct dwc2_host_chan *channel; struct list_head qh_list_entry; struct dwc2_dma_desc *desc_list; dma_addr_t desc_list_dma; u32 desc_list_sz; u32 *n_bytes; struct timer_list unreserve_timer; struct hrtimer wait_timer; struct dwc2_tt *dwc_tt; int ttport; unsigned tt_buffer_dirty:1; unsigned unreserve_pending:1; unsigned schedule_low_speed:1; unsigned want_wait:1; unsigned wait_timer_cancel:1; }; /** * struct dwc2_qtd - Software queue transfer descriptor (QTD) * * @control_phase: Current phase for control transfers (Setup, Data, or * Status) * @in_process: Indicates if this QTD is currently processed by HW * @data_toggle: Determines the PID of the next data packet for the * data phase of control transfers. Ignored for other * transfer types. One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @complete_split: Keeps track of the current split type for FS/LS * endpoints on a HS Hub * @isoc_split_pos: Position of the ISOC split in full/low speed * @isoc_frame_index: Index of the next frame descriptor for an isochronous * transfer. A frame descriptor describes the buffer * position and length of the data to be transferred in the * next scheduled (micro)frame of an isochronous transfer. * It also holds status for that transaction. The frame * index starts at 0. * @isoc_split_offset: Position of the ISOC split in the buffer for the * current frame * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT * @error_count: Holds the number of bus errors that have occurred for * a transaction within this transfer * @n_desc: Number of DMA descriptors for this QTD * @isoc_frame_index_last: Last activated frame (packet) index, used in * descriptor DMA mode only * @num_naks: Number of NAKs received on this QTD. * @urb: URB for this transfer * @qh: Queue head for this QTD * @qtd_list_entry: For linking to the QH's list of QTDs * @isoc_td_first: Index of first activated isochronous transfer * descriptor in Descriptor DMA mode * @isoc_td_last: Index of last activated isochronous transfer * descriptor in Descriptor DMA mode * * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, * interrupt, or isochronous transfer. A single QTD is created for each URB * (of one of these types) submitted to the HCD. The transfer associated with * a QTD may require one or multiple transactions. * * A QTD is linked to a Queue Head, which is entered in either the * non-periodic or periodic schedule for execution. When a QTD is chosen for * execution, some or all of its transactions may be executed. After * execution, the state of the QTD is updated. The QTD may be retired if all * its transactions are complete or if an error occurred. Otherwise, it * remains in the schedule so more transactions can be executed later. */ struct dwc2_qtd { enum dwc2_control_phase control_phase; u8 in_process; u8 data_toggle; u8 complete_split; u8 isoc_split_pos; u16 isoc_frame_index; u16 isoc_split_offset; u16 isoc_td_last; u16 isoc_td_first; u32 ssplit_out_xfer_count; u8 error_count; u8 n_desc; u16 isoc_frame_index_last; u16 num_naks; struct dwc2_hcd_urb *urb; struct dwc2_qh *qh; struct list_head qtd_list_entry; }; #ifdef DEBUG struct hc_xfer_info { struct dwc2_hsotg *hsotg; struct dwc2_host_chan *chan; }; #endif u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg); /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) { return (struct usb_hcd *)hsotg->priv; } /* * Inline used to disable one channel interrupt. Channel interrupts are * disabled when the channel is halted or released by the interrupt handler. * There is no need to handle further interrupts of that type until the * channel is re-assigned. In fact, subsequent handling may cause crashes * because the channel structures are cleaned up when the channel is released. */ static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) { u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum)); mask &= ~intr; dwc2_writel(hsotg, mask, HCINTMSK(chnum)); } void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan); void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, enum dwc2_halt_status halt_status); void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan); /* * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they * are read as 1, they won't clear when written back. */ static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) { u32 hprt0 = dwc2_readl(hsotg, HPRT0); hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG); return hprt0; } static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) { return pipe->ep_num; } static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type; } static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe) { return pipe->maxp; } static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe) { return pipe->maxp_mult; } static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) { return pipe->dev_addr; } static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC; } static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_INT; } static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_BULK; } static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL; } static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) { return pipe->pipe_dir == USB_DIR_IN; } static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) { return !dwc2_hcd_is_pipe_in(pipe); } int dwc2_hcd_init(struct dwc2_hsotg *hsotg); void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); /* Transaction Execution Functions */ enum dwc2_transaction_type dwc2_hcd_select_transactions( struct dwc2_hsotg *hsotg); void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, enum dwc2_transaction_type tr_type); /* Schedule Queue Functions */ /* Implemented in hcd_queue.c */ struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, gfp_t mem_flags); void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, int sched_csplit); void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh); /* Unlinks and frees a QTD */ static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh) { list_del(&qtd->qtd_list_entry); kfree(qtd); } /* Descriptor DMA support functions */ void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, enum dwc2_halt_status halt_status); int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, gfp_t mem_flags); void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); /* Check if QH is non-periodic */ #define dwc2_qh_is_non_per(_qh_ptr_) \ ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \ (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL) #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; } static inline bool dbg_qh(struct dwc2_qh *qh) { return true; } static inline bool dbg_urb(struct urb *urb) { return true; } static inline bool dbg_perio(void) { return true; } #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */ static inline bool dbg_hc(struct dwc2_host_chan *hc) { return hc->ep_type == USB_ENDPOINT_XFER_BULK || hc->ep_type == USB_ENDPOINT_XFER_CONTROL; } static inline bool dbg_qh(struct dwc2_qh *qh) { return qh->ep_type == USB_ENDPOINT_XFER_BULK || qh->ep_type == USB_ENDPOINT_XFER_CONTROL; } static inline bool dbg_urb(struct urb *urb) { return usb_pipetype(urb->pipe) == PIPE_BULK || usb_pipetype(urb->pipe) == PIPE_CONTROL; } static inline bool dbg_perio(void) { return false; } #endif /* * Returns true if frame1 index is greater than frame2 index. The comparison * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the * frame number when the max index frame number is reached. */ static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2) { u16 diff = fr_idx1 - fr_idx2; u16 sign = diff & (FRLISTEN_64_SIZE >> 1); return diff && !sign; } /* * Returns true if frame1 is less than or equal to frame2. The comparison is * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the * frame number when the max frame number is reached. */ static inline int dwc2_frame_num_le(u16 frame1, u16 frame2) { return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1); } /* * Returns true if frame1 is greater than frame2. The comparison is done * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame * number when the max frame number is reached. */ static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2) { return (frame1 != frame2) && ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1); } /* * Increments frame by the amount specified by inc. The addition is done * modulo HFNUM_MAX_FRNUM. Returns the incremented value. */ static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc) { return (frame + inc) & HFNUM_MAX_FRNUM; } static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec) { return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM; } static inline u16 dwc2_full_frame_num(u16 frame) { return (frame & HFNUM_MAX_FRNUM) >> 3; } static inline u16 dwc2_micro_frame_num(u16 frame) { return frame & 0x7; } /* * Returns the Core Interrupt Status register contents, ANDed with the Core * Interrupt Mask register contents */ static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) { return dwc2_readl(hsotg, GINTSTS) & dwc2_readl(hsotg, GINTMSK); } static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->status; } static inline u32 dwc2_hcd_urb_get_actual_length( struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->actual_length; } static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) { return dwc2_urb->error_count; } static inline void dwc2_hcd_urb_set_iso_desc_params( struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, u32 length) { dwc2_urb->iso_descs[desc_num].offset = offset; dwc2_urb->iso_descs[desc_num].length = length; } static inline u32 dwc2_hcd_urb_get_iso_desc_status( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { return dwc2_urb->iso_descs[desc_num].status; } static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { return dwc2_urb->iso_descs[desc_num].actual_length; } static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { struct dwc2_qh *qh = ep->hcpriv; if (qh && !list_empty(&qh->qh_list_entry)) return 1; return 0; } static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { struct dwc2_qh *qh = ep->hcpriv; if (!qh) { WARN_ON(1); return 0; } return qh->host_us; } void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, struct dwc2_qtd *qtd); /* HCD Core API */ /** * dwc2_handle_hcd_intr() - Called on every hardware interrupt * * @hsotg: The DWC2 HCD * * Returns IRQ_HANDLED if interrupt is handled * Return IRQ_NONE if interrupt is not handled */ irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_stop() - Halts the DWC_otg host mode operation * * @hsotg: The DWC2 HCD */ void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, * and 0 otherwise * * @hsotg: The DWC2 HCD */ int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_dump_state() - Dumps hsotg state * * @hsotg: The DWC2 HCD * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); /* URB interface */ /* Transfer flags */ #define URB_GIVEBACK_ASAP 0x1 #define URB_SEND_ZERO_PACKET 0x2 /* Host driver callbacks */ struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, gfp_t mem_flags, int *ttport); void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt); int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, int status); #endif /* __DWC2_HCD_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1