Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Iñaky Pérez-González | 1429 | 85.21% | 1 | 7.69% |
Ard Biesheuvel | 84 | 5.01% | 1 | 7.69% |
David Vrabel | 74 | 4.41% | 2 | 15.38% |
Andrew Lutomirski | 68 | 4.05% | 1 | 7.69% |
Herbert Xu | 13 | 0.78% | 1 | 7.69% |
Tejun Heo | 3 | 0.18% | 1 | 7.69% |
Greg Kroah-Hartman | 2 | 0.12% | 2 | 15.38% |
André Goddard Rosa | 1 | 0.06% | 1 | 7.69% |
Wei Yongjun | 1 | 0.06% | 1 | 7.69% |
Rahul Bedarkar | 1 | 0.06% | 1 | 7.69% |
Eric Biggers | 1 | 0.06% | 1 | 7.69% |
Total | 1677 | 13 |
// SPDX-License-Identifier: GPL-2.0 /* * Ultra Wide Band * AES-128 CCM Encryption * * Copyright (C) 2007 Intel Corporation * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> * * We don't do any encryption here; we use the Linux Kernel's AES-128 * crypto modules to construct keys and payload blocks in a way * defined by WUSB1.0[6]. Check the erratas, as typos are are patched * there. * * Thanks a zillion to John Keys for his help and clarifications over * the designed-by-a-committee text. * * So the idea is that there is this basic Pseudo-Random-Function * defined in WUSB1.0[6.5] which is the core of everything. It works * by tweaking some blocks, AES crypting them and then xoring * something else with them (this seems to be called CBC(AES) -- can * you tell I know jack about crypto?). So we just funnel it into the * Linux Crypto API. * * We leave a crypto test module so we can verify that vectors match, * every now and then. * * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I * am learning a lot... * * Conveniently, some data structures that need to be * funneled through AES are...16 bytes in size! */ #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/crypto.h> #include <linux/module.h> #include <linux/err.h> #include <linux/uwb.h> #include <linux/slab.h> #include <linux/usb/wusb.h> #include <linux/scatterlist.h> static int debug_crypto_verify; module_param(debug_crypto_verify, int, 0); MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms"); static void wusb_key_dump(const void *buf, size_t len) { print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1, buf, len, 0); } /* * Block of data, as understood by AES-CCM * * The code assumes this structure is nothing but a 16 byte array * (packed in a struct to avoid common mess ups that I usually do with * arrays and enforcing type checking). */ struct aes_ccm_block { u8 data[16]; } __attribute__((packed)); /* * Counter-mode Blocks (WUSB1.0[6.4]) * * According to CCM (or so it seems), for the purpose of calculating * the MIC, the message is broken in N counter-mode blocks, B0, B1, * ... BN. * * B0 contains flags, the CCM nonce and l(m). * * B1 contains l(a), the MAC header, the encryption offset and padding. * * If EO is nonzero, additional blocks are built from payload bytes * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The * padding is not xmitted. */ /* WUSB1.0[T6.4] */ struct aes_ccm_b0 { u8 flags; /* 0x59, per CCM spec */ struct aes_ccm_nonce ccm_nonce; __be16 lm; } __attribute__((packed)); /* WUSB1.0[T6.5] */ struct aes_ccm_b1 { __be16 la; u8 mac_header[10]; __le16 eo; u8 security_reserved; /* This is always zero */ u8 padding; /* 0 */ } __attribute__((packed)); /* * Encryption Blocks (WUSB1.0[6.4.4]) * * CCM uses Ax blocks to generate a keystream with which the MIC and * the message's payload are encoded. A0 always encrypts/decrypts the * MIC. Ax (x>0) are used for the successive payload blocks. * * The x is the counter, and is increased for each block. */ struct aes_ccm_a { u8 flags; /* 0x01, per CCM spec */ struct aes_ccm_nonce ccm_nonce; __be16 counter; /* Value of x */ } __attribute__((packed)); /* Scratch space for MAC calculations. */ struct wusb_mac_scratch { struct aes_ccm_b0 b0; struct aes_ccm_b1 b1; struct aes_ccm_a ax; }; /* * CC-MAC function WUSB1.0[6.5] * * Take a data string and produce the encrypted CBC Counter-mode MIC * * Note the names for most function arguments are made to (more or * less) match those used in the pseudo-function definition given in * WUSB1.0[6.5]. * * @tfm_cbc: CBC(AES) blkcipher handle (initialized) * * @tfm_aes: AES cipher handle (initialized) * * @mic: buffer for placing the computed MIC (Message Integrity * Code). This is exactly 8 bytes, and we expect the buffer to * be at least eight bytes in length. * * @key: 128 bit symmetric key * * @n: CCM nonce * * @a: ASCII string, 14 bytes long (I guess zero padded if needed; * we use exactly 14 bytes). * * @b: data stream to be processed * * @blen: size of b... * * Still not very clear how this is done, but looks like this: we * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we * take the payload and divide it in blocks (16 bytes), xor them with * the previous crypto result (16 bytes) and crypt it, repeat the next * block with the output of the previous one, rinse wash. So we use * the CBC-MAC(AES) shash, that does precisely that. The IV (Initial * Vector) is 16 bytes and is set to zero, so * * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and * using the 14 bytes of @a to fill up * b1.{mac_header,e0,security_reserved,padding}. * * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of * l(m) is orthogonal, they bear no relationship, so it is not * in conflict with the parameter's relation that * WUSB1.0[6.4.2]) defines. * * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in * first errata released on 2005/07. * * NOTE: we need to clean IV to zero at each invocation to make sure * we start with a fresh empty Initial Vector, so that the CBC * works ok. * * NOTE: blen is not aligned to a block size, we'll pad zeros, that's * what sg[4] is for. Maybe there is a smarter way to do this. */ static int wusb_ccm_mac(struct crypto_shash *tfm_cbcmac, struct wusb_mac_scratch *scratch, void *mic, const struct aes_ccm_nonce *n, const struct aes_ccm_label *a, const void *b, size_t blen) { SHASH_DESC_ON_STACK(desc, tfm_cbcmac); u8 iv[AES_BLOCK_SIZE]; /* * These checks should be compile time optimized out * ensure @a fills b1's mac_header and following fields */ BUILD_BUG_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la)); BUILD_BUG_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block)); BUILD_BUG_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block)); BUILD_BUG_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block)); /* Setup B0 */ scratch->b0.flags = 0x59; /* Format B0 */ scratch->b0.ccm_nonce = *n; scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */ /* Setup B1 * * The WUSB spec is anything but clear! WUSB1.0[6.5] * says that to initialize B1 from A with 'l(a) = blen + * 14'--after clarification, it means to use A's contents * for MAC Header, EO, sec reserved and padding. */ scratch->b1.la = cpu_to_be16(blen + 14); memcpy(&scratch->b1.mac_header, a, sizeof(*a)); desc->tfm = tfm_cbcmac; crypto_shash_init(desc); crypto_shash_update(desc, (u8 *)&scratch->b0, sizeof(scratch->b0) + sizeof(scratch->b1)); crypto_shash_finup(desc, b, blen, iv); /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5] * The procedure is to AES crypt the A0 block and XOR the MIC * Tag against it; we only do the first 8 bytes and place it * directly in the destination buffer. */ scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */ scratch->ax.ccm_nonce = *n; scratch->ax.counter = 0; /* reuse the CBC-MAC transform to perform the single block encryption */ crypto_shash_digest(desc, (u8 *)&scratch->ax, sizeof(scratch->ax), (u8 *)&scratch->ax); crypto_xor_cpy(mic, (u8 *)&scratch->ax, iv, 8); return 8; } /* * WUSB Pseudo Random Function (WUSB1.0[6.5]) * * @b: buffer to the source data; cannot be a global or const local * (will confuse the scatterlists) */ ssize_t wusb_prf(void *out, size_t out_size, const u8 key[16], const struct aes_ccm_nonce *_n, const struct aes_ccm_label *a, const void *b, size_t blen, size_t len) { ssize_t result, bytes = 0, bitr; struct aes_ccm_nonce n = *_n; struct crypto_shash *tfm_cbcmac; struct wusb_mac_scratch scratch; u64 sfn = 0; __le64 sfn_le; tfm_cbcmac = crypto_alloc_shash("cbcmac(aes)", 0, 0); if (IS_ERR(tfm_cbcmac)) { result = PTR_ERR(tfm_cbcmac); printk(KERN_ERR "E: can't load CBCMAC-AES: %d\n", (int)result); goto error_alloc_cbcmac; } result = crypto_shash_setkey(tfm_cbcmac, key, AES_BLOCK_SIZE); if (result < 0) { printk(KERN_ERR "E: can't set CBCMAC-AES key: %d\n", (int)result); goto error_setkey_cbcmac; } for (bitr = 0; bitr < (len + 63) / 64; bitr++) { sfn_le = cpu_to_le64(sfn++); memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */ result = wusb_ccm_mac(tfm_cbcmac, &scratch, out + bytes, &n, a, b, blen); if (result < 0) goto error_ccm_mac; bytes += result; } result = bytes; error_ccm_mac: error_setkey_cbcmac: crypto_free_shash(tfm_cbcmac); error_alloc_cbcmac: return result; } /* WUSB1.0[A.2] test vectors */ static const u8 stv_hsmic_key[16] = { 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d, 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f }; static const struct aes_ccm_nonce stv_hsmic_n = { .sfn = { 0 }, .tkid = { 0x76, 0x98, 0x01, }, .dest_addr = { .data = { 0xbe, 0x00 } }, .src_addr = { .data = { 0x76, 0x98 } }, }; /* * Out-of-band MIC Generation verification code * */ static int wusb_oob_mic_verify(void) { int result; u8 mic[8]; /* WUSB1.0[A.2] test vectors */ static const struct usb_handshake stv_hsmic_hs = { .bMessageNumber = 2, .bStatus = 00, .tTKID = { 0x76, 0x98, 0x01 }, .bReserved = 00, .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f }, .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f }, .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c, 0x14, 0x7b }, }; size_t hs_size; result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs); if (result < 0) printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result); else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) { printk(KERN_ERR "E: OOB MIC test: " "mismatch between MIC result and WUSB1.0[A2]\n"); hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC); printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size); wusb_key_dump(&stv_hsmic_hs, hs_size); printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n", sizeof(stv_hsmic_n)); wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n)); printk(KERN_ERR "E: MIC out:\n"); wusb_key_dump(mic, sizeof(mic)); printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n"); wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC)); result = -EINVAL; } else result = 0; return result; } /* * Test vectors for Key derivation * * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1] * (errata corrected in 2005/07). */ static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = { 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f }; static const struct aes_ccm_nonce stv_keydvt_n_a1 = { .sfn = { 0 }, .tkid = { 0x76, 0x98, 0x01, }, .dest_addr = { .data = { 0xbe, 0x00 } }, .src_addr = { .data = { 0x76, 0x98 } }, }; static const struct wusb_keydvt_out stv_keydvt_out_a1 = { .kck = { 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d, 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f }, .ptk = { 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06, 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d } }; /* * Performa a test to make sure we match the vectors defined in * WUSB1.0[A.1](Errata2006/12) */ static int wusb_key_derive_verify(void) { int result = 0; struct wusb_keydvt_out keydvt_out; /* These come from WUSB1.0[A.1] + 2006/12 errata */ static const struct wusb_keydvt_in stv_keydvt_in_a1 = { .hnonce = { 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }, .dnonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f } }; result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1, &stv_keydvt_in_a1); if (result < 0) printk(KERN_ERR "E: WUSB key derivation test: " "derivation failed: %d\n", result); if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) { printk(KERN_ERR "E: WUSB key derivation test: " "mismatch between key derivation result " "and WUSB1.0[A1] Errata 2006/12\n"); printk(KERN_ERR "E: keydvt in: key\n"); wusb_key_dump(stv_key_a1, sizeof(stv_key_a1)); printk(KERN_ERR "E: keydvt in: nonce\n"); wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1)); printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n"); wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1)); printk(KERN_ERR "E: keydvt out: KCK\n"); wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck)); printk(KERN_ERR "E: keydvt out: PTK\n"); wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk)); result = -EINVAL; } else result = 0; return result; } /* * Initialize crypto system * * FIXME: we do nothing now, other than verifying. Later on we'll * cache the encryption stuff, so that's why we have a separate init. */ int wusb_crypto_init(void) { int result; if (debug_crypto_verify) { result = wusb_key_derive_verify(); if (result < 0) return result; return wusb_oob_mic_verify(); } return 0; } void wusb_crypto_exit(void) { /* FIXME: free cached crypto transforms */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1