Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Iñaky Pérez-González | 2082 | 88.90% | 1 | 4.55% |
Thomas Pugliese | 236 | 10.08% | 9 | 40.91% |
Tejun Heo | 8 | 0.34% | 2 | 9.09% |
Paul Gortmaker | 3 | 0.13% | 1 | 4.55% |
David Vrabel | 3 | 0.13% | 1 | 4.55% |
Johan Hovold | 2 | 0.09% | 1 | 4.55% |
Andy Shevchenko | 2 | 0.09% | 1 | 4.55% |
Greg Kroah-Hartman | 2 | 0.09% | 2 | 9.09% |
Rahul Bedarkar | 2 | 0.09% | 2 | 9.09% |
Anderson Lizardo | 1 | 0.04% | 1 | 4.55% |
Arun Sharma | 1 | 0.04% | 1 | 4.55% |
Total | 2342 | 22 |
// SPDX-License-Identifier: GPL-2.0 /* * WUSB Wire Adapter * rpipe management * * Copyright (C) 2005-2006 Intel Corporation * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> * * FIXME: docs * * RPIPE * * Targeted at different downstream endpoints * * Descriptor: use to config the remote pipe. * * The number of blocks could be dynamic (wBlocks in descriptor is * 0)--need to schedule them then. * * Each bit in wa->rpipe_bm represents if an rpipe is being used or * not. Rpipes are represented with a 'struct wa_rpipe' that is * attached to the hcpriv member of a 'struct usb_host_endpoint'. * * When you need to xfer data to an endpoint, you get an rpipe for it * with wa_ep_rpipe_get(), which gives you a reference to the rpipe * and keeps a single one (the first one) with the endpoint. When you * are done transferring, you drop that reference. At the end the * rpipe is always allocated and bound to the endpoint. There it might * be recycled when not used. * * Addresses: * * We use a 1:1 mapping mechanism between port address (0 based * index, actually) and the address. The USB stack knows about this. * * USB Stack port number 4 (1 based) * WUSB code port index 3 (0 based) * USB Address 5 (2 based -- 0 is for default, 1 for root hub) * * Now, because we don't use the concept as default address exactly * like the (wired) USB code does, we need to kind of skip it. So we * never take addresses from the urb->pipe, but from the * urb->dev->devnum, to make sure that we always have the right * destination address. */ #include <linux/atomic.h> #include <linux/bitmap.h> #include <linux/slab.h> #include <linux/export.h> #include "wusbhc.h" #include "wa-hc.h" static int __rpipe_get_descr(struct wahc *wa, struct usb_rpipe_descriptor *descr, u16 index) { ssize_t result; struct device *dev = &wa->usb_iface->dev; /* Get the RPIPE descriptor -- we cannot use the usb_get_descriptor() * function because the arguments are different. */ result = usb_control_msg( wa->usb_dev, usb_rcvctrlpipe(wa->usb_dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_RPIPE, USB_DT_RPIPE<<8, index, descr, sizeof(*descr), USB_CTRL_GET_TIMEOUT); if (result < 0) { dev_err(dev, "rpipe %u: get descriptor failed: %d\n", index, (int)result); goto error; } if (result < sizeof(*descr)) { dev_err(dev, "rpipe %u: got short descriptor " "(%zd vs %zd bytes needed)\n", index, result, sizeof(*descr)); result = -EINVAL; goto error; } result = 0; error: return result; } /* * * The descriptor is assumed to be properly initialized (ie: you got * it through __rpipe_get_descr()). */ static int __rpipe_set_descr(struct wahc *wa, struct usb_rpipe_descriptor *descr, u16 index) { ssize_t result; struct device *dev = &wa->usb_iface->dev; /* we cannot use the usb_get_descriptor() function because the * arguments are different. */ result = usb_control_msg( wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0), USB_REQ_SET_DESCRIPTOR, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_RPIPE, USB_DT_RPIPE<<8, index, descr, sizeof(*descr), USB_CTRL_SET_TIMEOUT); if (result < 0) { dev_err(dev, "rpipe %u: set descriptor failed: %d\n", index, (int)result); goto error; } if (result < sizeof(*descr)) { dev_err(dev, "rpipe %u: sent short descriptor " "(%zd vs %zd bytes required)\n", index, result, sizeof(*descr)); result = -EINVAL; goto error; } result = 0; error: return result; } static void rpipe_init(struct wa_rpipe *rpipe) { kref_init(&rpipe->refcnt); spin_lock_init(&rpipe->seg_lock); INIT_LIST_HEAD(&rpipe->seg_list); INIT_LIST_HEAD(&rpipe->list_node); } static unsigned rpipe_get_idx(struct wahc *wa, unsigned rpipe_idx) { unsigned long flags; spin_lock_irqsave(&wa->rpipe_lock, flags); rpipe_idx = find_next_zero_bit(wa->rpipe_bm, wa->rpipes, rpipe_idx); if (rpipe_idx < wa->rpipes) set_bit(rpipe_idx, wa->rpipe_bm); spin_unlock_irqrestore(&wa->rpipe_lock, flags); return rpipe_idx; } static void rpipe_put_idx(struct wahc *wa, unsigned rpipe_idx) { unsigned long flags; spin_lock_irqsave(&wa->rpipe_lock, flags); clear_bit(rpipe_idx, wa->rpipe_bm); spin_unlock_irqrestore(&wa->rpipe_lock, flags); } void rpipe_destroy(struct kref *_rpipe) { struct wa_rpipe *rpipe = container_of(_rpipe, struct wa_rpipe, refcnt); u8 index = le16_to_cpu(rpipe->descr.wRPipeIndex); if (rpipe->ep) rpipe->ep->hcpriv = NULL; rpipe_put_idx(rpipe->wa, index); wa_put(rpipe->wa); kfree(rpipe); } EXPORT_SYMBOL_GPL(rpipe_destroy); /* * Locate an idle rpipe, create an structure for it and return it * * @wa is referenced and unlocked * @crs enum rpipe_attr, required endpoint characteristics * * The rpipe can be used only sequentially (not in parallel). * * The rpipe is moved into the "ready" state. */ static int rpipe_get_idle(struct wa_rpipe **prpipe, struct wahc *wa, u8 crs, gfp_t gfp) { int result; unsigned rpipe_idx; struct wa_rpipe *rpipe; struct device *dev = &wa->usb_iface->dev; rpipe = kzalloc(sizeof(*rpipe), gfp); if (rpipe == NULL) return -ENOMEM; rpipe_init(rpipe); /* Look for an idle pipe */ for (rpipe_idx = 0; rpipe_idx < wa->rpipes; rpipe_idx++) { rpipe_idx = rpipe_get_idx(wa, rpipe_idx); if (rpipe_idx >= wa->rpipes) /* no more pipes :( */ break; result = __rpipe_get_descr(wa, &rpipe->descr, rpipe_idx); if (result < 0) dev_err(dev, "Can't get descriptor for rpipe %u: %d\n", rpipe_idx, result); else if ((rpipe->descr.bmCharacteristics & crs) != 0) goto found; rpipe_put_idx(wa, rpipe_idx); } *prpipe = NULL; kfree(rpipe); return -ENXIO; found: set_bit(rpipe_idx, wa->rpipe_bm); rpipe->wa = wa_get(wa); *prpipe = rpipe; return 0; } static int __rpipe_reset(struct wahc *wa, unsigned index) { int result; struct device *dev = &wa->usb_iface->dev; result = usb_control_msg( wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0), USB_REQ_RPIPE_RESET, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_RPIPE, 0, index, NULL, 0, USB_CTRL_SET_TIMEOUT); if (result < 0) dev_err(dev, "rpipe %u: reset failed: %d\n", index, result); return result; } /* * Fake companion descriptor for ep0 * * See WUSB1.0[7.4.4], most of this is zero for bulk/int/ctl */ static struct usb_wireless_ep_comp_descriptor epc0 = { .bLength = sizeof(epc0), .bDescriptorType = USB_DT_WIRELESS_ENDPOINT_COMP, .bMaxBurst = 1, .bMaxSequence = 2, }; /* * Look for EP companion descriptor * * Get there, look for Inara in the endpoint's extra descriptors */ static struct usb_wireless_ep_comp_descriptor *rpipe_epc_find( struct device *dev, struct usb_host_endpoint *ep) { void *itr; size_t itr_size; struct usb_descriptor_header *hdr; struct usb_wireless_ep_comp_descriptor *epcd; if (ep->desc.bEndpointAddress == 0) { epcd = &epc0; goto out; } itr = ep->extra; itr_size = ep->extralen; epcd = NULL; while (itr_size > 0) { if (itr_size < sizeof(*hdr)) { dev_err(dev, "HW Bug? ep 0x%02x: extra descriptors " "at offset %zu: only %zu bytes left\n", ep->desc.bEndpointAddress, itr - (void *) ep->extra, itr_size); break; } hdr = itr; if (hdr->bDescriptorType == USB_DT_WIRELESS_ENDPOINT_COMP) { epcd = itr; break; } if (hdr->bLength > itr_size) { dev_err(dev, "HW Bug? ep 0x%02x: extra descriptor " "at offset %zu (type 0x%02x) " "length %d but only %zu bytes left\n", ep->desc.bEndpointAddress, itr - (void *) ep->extra, hdr->bDescriptorType, hdr->bLength, itr_size); break; } itr += hdr->bLength; itr_size -= hdr->bLength; } out: return epcd; } /* * Aim an rpipe to its device & endpoint destination * * Make sure we change the address to unauthenticated if the device * is WUSB and it is not authenticated. */ static int rpipe_aim(struct wa_rpipe *rpipe, struct wahc *wa, struct usb_host_endpoint *ep, struct urb *urb, gfp_t gfp) { int result = -ENOMSG; /* better code for lack of companion? */ struct device *dev = &wa->usb_iface->dev; struct usb_device *usb_dev = urb->dev; struct usb_wireless_ep_comp_descriptor *epcd; u32 ack_window, epcd_max_sequence; u8 unauth; epcd = rpipe_epc_find(dev, ep); if (epcd == NULL) { dev_err(dev, "ep 0x%02x: can't find companion descriptor\n", ep->desc.bEndpointAddress); goto error; } unauth = usb_dev->wusb && !usb_dev->authenticated ? 0x80 : 0; __rpipe_reset(wa, le16_to_cpu(rpipe->descr.wRPipeIndex)); atomic_set(&rpipe->segs_available, le16_to_cpu(rpipe->descr.wRequests)); /* FIXME: block allocation system; request with queuing and timeout */ /* FIXME: compute so seg_size > ep->maxpktsize */ rpipe->descr.wBlocks = cpu_to_le16(16); /* given */ /* ep0 maxpktsize is 0x200 (WUSB1.0[4.8.1]) */ if (usb_endpoint_xfer_isoc(&ep->desc)) rpipe->descr.wMaxPacketSize = epcd->wOverTheAirPacketSize; else rpipe->descr.wMaxPacketSize = ep->desc.wMaxPacketSize; rpipe->descr.hwa_bMaxBurst = max(min_t(unsigned int, epcd->bMaxBurst, 16U), 1U); rpipe->descr.hwa_bDeviceInfoIndex = wusb_port_no_to_idx(urb->dev->portnum); /* FIXME: use maximum speed as supported or recommended by device */ rpipe->descr.bSpeed = usb_pipeendpoint(urb->pipe) == 0 ? UWB_PHY_RATE_53 : UWB_PHY_RATE_200; dev_dbg(dev, "addr %u (0x%02x) rpipe #%u ep# %u speed %d\n", urb->dev->devnum, urb->dev->devnum | unauth, le16_to_cpu(rpipe->descr.wRPipeIndex), usb_pipeendpoint(urb->pipe), rpipe->descr.bSpeed); rpipe->descr.hwa_reserved = 0; rpipe->descr.bEndpointAddress = ep->desc.bEndpointAddress; /* FIXME: bDataSequence */ rpipe->descr.bDataSequence = 0; /* start with base window of hwa_bMaxBurst bits starting at 0. */ ack_window = 0xFFFFFFFF >> (32 - rpipe->descr.hwa_bMaxBurst); rpipe->descr.dwCurrentWindow = cpu_to_le32(ack_window); epcd_max_sequence = max(min_t(unsigned int, epcd->bMaxSequence, 32U), 2U); rpipe->descr.bMaxDataSequence = epcd_max_sequence - 1; rpipe->descr.bInterval = ep->desc.bInterval; if (usb_endpoint_xfer_isoc(&ep->desc)) rpipe->descr.bOverTheAirInterval = epcd->bOverTheAirInterval; else rpipe->descr.bOverTheAirInterval = 0; /* 0 if not isoc */ /* FIXME: xmit power & preamble blah blah */ rpipe->descr.bmAttribute = (ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); /* rpipe->descr.bmCharacteristics RO */ rpipe->descr.bmRetryOptions = (wa->wusb->retry_count & 0xF); /* FIXME: use for assessing link quality? */ rpipe->descr.wNumTransactionErrors = 0; result = __rpipe_set_descr(wa, &rpipe->descr, le16_to_cpu(rpipe->descr.wRPipeIndex)); if (result < 0) { dev_err(dev, "Cannot aim rpipe: %d\n", result); goto error; } result = 0; error: return result; } /* * Check an aimed rpipe to make sure it points to where we want * * We use bit 19 of the Linux USB pipe bitmap for unauth vs auth * space; when it is like that, we or 0x80 to make an unauth address. */ static int rpipe_check_aim(const struct wa_rpipe *rpipe, const struct wahc *wa, const struct usb_host_endpoint *ep, const struct urb *urb, gfp_t gfp) { int result = 0; struct device *dev = &wa->usb_iface->dev; u8 portnum = wusb_port_no_to_idx(urb->dev->portnum); #define AIM_CHECK(rdf, val, text) \ do { \ if (rpipe->descr.rdf != (val)) { \ dev_err(dev, \ "rpipe aim discrepancy: " #rdf " " text "\n", \ rpipe->descr.rdf, (val)); \ result = -EINVAL; \ WARN_ON(1); \ } \ } while (0) AIM_CHECK(hwa_bDeviceInfoIndex, portnum, "(%u vs %u)"); AIM_CHECK(bSpeed, usb_pipeendpoint(urb->pipe) == 0 ? UWB_PHY_RATE_53 : UWB_PHY_RATE_200, "(%u vs %u)"); AIM_CHECK(bEndpointAddress, ep->desc.bEndpointAddress, "(%u vs %u)"); AIM_CHECK(bInterval, ep->desc.bInterval, "(%u vs %u)"); AIM_CHECK(bmAttribute, ep->desc.bmAttributes & 0x03, "(%u vs %u)"); #undef AIM_CHECK return result; } #ifndef CONFIG_BUG #define CONFIG_BUG 0 #endif /* * Make sure there is an rpipe allocated for an endpoint * * If already allocated, we just refcount it; if not, we get an * idle one, aim it to the right location and take it. * * Attaches to ep->hcpriv and rpipe->ep to ep. */ int rpipe_get_by_ep(struct wahc *wa, struct usb_host_endpoint *ep, struct urb *urb, gfp_t gfp) { int result = 0; struct device *dev = &wa->usb_iface->dev; struct wa_rpipe *rpipe; u8 eptype; mutex_lock(&wa->rpipe_mutex); rpipe = ep->hcpriv; if (rpipe != NULL) { if (CONFIG_BUG == 1) { result = rpipe_check_aim(rpipe, wa, ep, urb, gfp); if (result < 0) goto error; } __rpipe_get(rpipe); dev_dbg(dev, "ep 0x%02x: reusing rpipe %u\n", ep->desc.bEndpointAddress, le16_to_cpu(rpipe->descr.wRPipeIndex)); } else { /* hmm, assign idle rpipe, aim it */ result = -ENOBUFS; eptype = ep->desc.bmAttributes & 0x03; result = rpipe_get_idle(&rpipe, wa, 1 << eptype, gfp); if (result < 0) goto error; result = rpipe_aim(rpipe, wa, ep, urb, gfp); if (result < 0) { rpipe_put(rpipe); goto error; } ep->hcpriv = rpipe; rpipe->ep = ep; __rpipe_get(rpipe); /* for caching into ep->hcpriv */ dev_dbg(dev, "ep 0x%02x: using rpipe %u\n", ep->desc.bEndpointAddress, le16_to_cpu(rpipe->descr.wRPipeIndex)); } error: mutex_unlock(&wa->rpipe_mutex); return result; } /* * Allocate the bitmap for each rpipe. */ int wa_rpipes_create(struct wahc *wa) { wa->rpipes = le16_to_cpu(wa->wa_descr->wNumRPipes); wa->rpipe_bm = bitmap_zalloc(wa->rpipes, GFP_KERNEL); if (wa->rpipe_bm == NULL) return -ENOMEM; return 0; } void wa_rpipes_destroy(struct wahc *wa) { struct device *dev = &wa->usb_iface->dev; if (!bitmap_empty(wa->rpipe_bm, wa->rpipes)) { WARN_ON(1); dev_err(dev, "BUG: pipes not released on exit: %*pb\n", wa->rpipes, wa->rpipe_bm); } bitmap_free(wa->rpipe_bm); } /* * Release resources allocated for an endpoint * * If there is an associated rpipe to this endpoint, Abort any pending * transfers and put it. If the rpipe ends up being destroyed, * __rpipe_destroy() will cleanup ep->hcpriv. * * This is called before calling hcd->stop(), so you don't need to do * anything else in there. */ void rpipe_ep_disable(struct wahc *wa, struct usb_host_endpoint *ep) { struct wa_rpipe *rpipe; mutex_lock(&wa->rpipe_mutex); rpipe = ep->hcpriv; if (rpipe != NULL) { u16 index = le16_to_cpu(rpipe->descr.wRPipeIndex); usb_control_msg( wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0), USB_REQ_RPIPE_ABORT, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_RPIPE, 0, index, NULL, 0, USB_CTRL_SET_TIMEOUT); rpipe_put(rpipe); } mutex_unlock(&wa->rpipe_mutex); } EXPORT_SYMBOL_GPL(rpipe_ep_disable); /* Clear the stalled status of an RPIPE. */ void rpipe_clear_feature_stalled(struct wahc *wa, struct usb_host_endpoint *ep) { struct wa_rpipe *rpipe; mutex_lock(&wa->rpipe_mutex); rpipe = ep->hcpriv; if (rpipe != NULL) { u16 index = le16_to_cpu(rpipe->descr.wRPipeIndex); usb_control_msg( wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0), USB_REQ_CLEAR_FEATURE, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_RPIPE, RPIPE_STALL, index, NULL, 0, USB_CTRL_SET_TIMEOUT); } mutex_unlock(&wa->rpipe_mutex); } EXPORT_SYMBOL_GPL(rpipe_clear_feature_stalled);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1