Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Williamson | 3546 | 45.26% | 19 | 35.19% |
Kirti Wankhede | 2935 | 37.46% | 9 | 16.67% |
Lu Baolu | 462 | 5.90% | 2 | 3.70% |
Suravee Suthikulpanit | 445 | 5.68% | 1 | 1.85% |
Eric Auger | 161 | 2.05% | 3 | 5.56% |
Will Deacon | 82 | 1.05% | 1 | 1.85% |
Dan J Williams | 41 | 0.52% | 1 | 1.85% |
Jason Gunthorpe | 26 | 0.33% | 1 | 1.85% |
Dan Carpenter | 24 | 0.31% | 1 | 1.85% |
Jike Song | 22 | 0.28% | 1 | 1.85% |
Robin Murphy | 21 | 0.27% | 3 | 5.56% |
Antonios Motakis | 19 | 0.24% | 1 | 1.85% |
Daniel Jordan | 15 | 0.19% | 1 | 1.85% |
Michael S. Tsirkin | 10 | 0.13% | 1 | 1.85% |
Wei Yongjun | 9 | 0.11% | 1 | 1.85% |
Ingo Molnar | 4 | 0.05% | 2 | 3.70% |
Joerg Roedel | 4 | 0.05% | 1 | 1.85% |
Ira Weiny | 3 | 0.04% | 1 | 1.85% |
Lorenzo Stoakes | 2 | 0.03% | 1 | 1.85% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.85% |
Pierre Morel | 1 | 0.01% | 1 | 1.85% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.85% |
Total | 7835 | 54 |
// SPDX-License-Identifier: GPL-2.0-only /* * VFIO: IOMMU DMA mapping support for Type1 IOMMU * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson <alex.williamson@redhat.com> * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com * * We arbitrarily define a Type1 IOMMU as one matching the below code. * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel * VT-d, but that makes it harder to re-use as theoretically anyone * implementing a similar IOMMU could make use of this. We expect the * IOMMU to support the IOMMU API and have few to no restrictions around * the IOVA range that can be mapped. The Type1 IOMMU is currently * optimized for relatively static mappings of a userspace process with * userpsace pages pinned into memory. We also assume devices and IOMMU * domains are PCI based as the IOMMU API is still centered around a * device/bus interface rather than a group interface. */ #include <linux/compat.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/rbtree.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/vfio.h> #include <linux/workqueue.h> #include <linux/mdev.h> #include <linux/notifier.h> #include <linux/dma-iommu.h> #include <linux/irqdomain.h> #define DRIVER_VERSION "0.2" #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" #define DRIVER_DESC "Type1 IOMMU driver for VFIO" static bool allow_unsafe_interrupts; module_param_named(allow_unsafe_interrupts, allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(allow_unsafe_interrupts, "Enable VFIO IOMMU support for on platforms without interrupt remapping support."); static bool disable_hugepages; module_param_named(disable_hugepages, disable_hugepages, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_hugepages, "Disable VFIO IOMMU support for IOMMU hugepages."); static unsigned int dma_entry_limit __read_mostly = U16_MAX; module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644); MODULE_PARM_DESC(dma_entry_limit, "Maximum number of user DMA mappings per container (65535)."); struct vfio_iommu { struct list_head domain_list; struct vfio_domain *external_domain; /* domain for external user */ struct mutex lock; struct rb_root dma_list; struct blocking_notifier_head notifier; unsigned int dma_avail; bool v2; bool nesting; }; struct vfio_domain { struct iommu_domain *domain; struct list_head next; struct list_head group_list; int prot; /* IOMMU_CACHE */ bool fgsp; /* Fine-grained super pages */ }; struct vfio_dma { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long vaddr; /* Process virtual addr */ size_t size; /* Map size (bytes) */ int prot; /* IOMMU_READ/WRITE */ bool iommu_mapped; bool lock_cap; /* capable(CAP_IPC_LOCK) */ struct task_struct *task; struct rb_root pfn_list; /* Ex-user pinned pfn list */ }; struct vfio_group { struct iommu_group *iommu_group; struct list_head next; bool mdev_group; /* An mdev group */ }; /* * Guest RAM pinning working set or DMA target */ struct vfio_pfn { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long pfn; /* Host pfn */ atomic_t ref_count; }; struct vfio_regions { struct list_head list; dma_addr_t iova; phys_addr_t phys; size_t len; }; #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \ (!list_empty(&iommu->domain_list)) static int put_pfn(unsigned long pfn, int prot); /* * This code handles mapping and unmapping of user data buffers * into DMA'ble space using the IOMMU */ static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu, dma_addr_t start, size_t size) { struct rb_node *node = iommu->dma_list.rb_node; while (node) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); if (start + size <= dma->iova) node = node->rb_left; else if (start >= dma->iova + dma->size) node = node->rb_right; else return dma; } return NULL; } static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new) { struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL; struct vfio_dma *dma; while (*link) { parent = *link; dma = rb_entry(parent, struct vfio_dma, node); if (new->iova + new->size <= dma->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &iommu->dma_list); } static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old) { rb_erase(&old->node, &iommu->dma_list); } /* * Helper Functions for host iova-pfn list */ static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova) { struct vfio_pfn *vpfn; struct rb_node *node = dma->pfn_list.rb_node; while (node) { vpfn = rb_entry(node, struct vfio_pfn, node); if (iova < vpfn->iova) node = node->rb_left; else if (iova > vpfn->iova) node = node->rb_right; else return vpfn; } return NULL; } static void vfio_link_pfn(struct vfio_dma *dma, struct vfio_pfn *new) { struct rb_node **link, *parent = NULL; struct vfio_pfn *vpfn; link = &dma->pfn_list.rb_node; while (*link) { parent = *link; vpfn = rb_entry(parent, struct vfio_pfn, node); if (new->iova < vpfn->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &dma->pfn_list); } static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old) { rb_erase(&old->node, &dma->pfn_list); } static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova, unsigned long pfn) { struct vfio_pfn *vpfn; vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL); if (!vpfn) return -ENOMEM; vpfn->iova = iova; vpfn->pfn = pfn; atomic_set(&vpfn->ref_count, 1); vfio_link_pfn(dma, vpfn); return 0; } static void vfio_remove_from_pfn_list(struct vfio_dma *dma, struct vfio_pfn *vpfn) { vfio_unlink_pfn(dma, vpfn); kfree(vpfn); } static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma, unsigned long iova) { struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova); if (vpfn) atomic_inc(&vpfn->ref_count); return vpfn; } static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn) { int ret = 0; if (atomic_dec_and_test(&vpfn->ref_count)) { ret = put_pfn(vpfn->pfn, dma->prot); vfio_remove_from_pfn_list(dma, vpfn); } return ret; } static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async) { struct mm_struct *mm; int ret; if (!npage) return 0; mm = async ? get_task_mm(dma->task) : dma->task->mm; if (!mm) return -ESRCH; /* process exited */ ret = down_write_killable(&mm->mmap_sem); if (!ret) { ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task, dma->lock_cap); up_write(&mm->mmap_sem); } if (async) mmput(mm); return ret; } /* * Some mappings aren't backed by a struct page, for example an mmap'd * MMIO range for our own or another device. These use a different * pfn conversion and shouldn't be tracked as locked pages. */ static bool is_invalid_reserved_pfn(unsigned long pfn) { if (pfn_valid(pfn)) { bool reserved; struct page *tail = pfn_to_page(pfn); struct page *head = compound_head(tail); reserved = !!(PageReserved(head)); if (head != tail) { /* * "head" is not a dangling pointer * (compound_head takes care of that) * but the hugepage may have been split * from under us (and we may not hold a * reference count on the head page so it can * be reused before we run PageReferenced), so * we've to check PageTail before returning * what we just read. */ smp_rmb(); if (PageTail(tail)) return reserved; } return PageReserved(tail); } return true; } static int put_pfn(unsigned long pfn, int prot) { if (!is_invalid_reserved_pfn(pfn)) { struct page *page = pfn_to_page(pfn); if (prot & IOMMU_WRITE) SetPageDirty(page); put_page(page); return 1; } return 0; } static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr, int prot, unsigned long *pfn) { struct page *page[1]; struct vm_area_struct *vma; struct vm_area_struct *vmas[1]; unsigned int flags = 0; int ret; if (prot & IOMMU_WRITE) flags |= FOLL_WRITE; down_read(&mm->mmap_sem); if (mm == current->mm) { ret = get_user_pages(vaddr, 1, flags | FOLL_LONGTERM, page, vmas); } else { ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page, vmas, NULL); /* * The lifetime of a vaddr_get_pfn() page pin is * userspace-controlled. In the fs-dax case this could * lead to indefinite stalls in filesystem operations. * Disallow attempts to pin fs-dax pages via this * interface. */ if (ret > 0 && vma_is_fsdax(vmas[0])) { ret = -EOPNOTSUPP; put_page(page[0]); } } up_read(&mm->mmap_sem); if (ret == 1) { *pfn = page_to_pfn(page[0]); return 0; } down_read(&mm->mmap_sem); vma = find_vma_intersection(mm, vaddr, vaddr + 1); if (vma && vma->vm_flags & VM_PFNMAP) { *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (is_invalid_reserved_pfn(*pfn)) ret = 0; } up_read(&mm->mmap_sem); return ret; } /* * Attempt to pin pages. We really don't want to track all the pfns and * the iommu can only map chunks of consecutive pfns anyway, so get the * first page and all consecutive pages with the same locking. */ static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr, long npage, unsigned long *pfn_base, unsigned long limit) { unsigned long pfn = 0; long ret, pinned = 0, lock_acct = 0; bool rsvd; dma_addr_t iova = vaddr - dma->vaddr + dma->iova; /* This code path is only user initiated */ if (!current->mm) return -ENODEV; ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base); if (ret) return ret; pinned++; rsvd = is_invalid_reserved_pfn(*pfn_base); /* * Reserved pages aren't counted against the user, externally pinned * pages are already counted against the user. */ if (!rsvd && !vfio_find_vpfn(dma, iova)) { if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) { put_pfn(*pfn_base, dma->prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); return -ENOMEM; } lock_acct++; } if (unlikely(disable_hugepages)) goto out; /* Lock all the consecutive pages from pfn_base */ for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage; pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) { ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn); if (ret) break; if (pfn != *pfn_base + pinned || rsvd != is_invalid_reserved_pfn(pfn)) { put_pfn(pfn, dma->prot); break; } if (!rsvd && !vfio_find_vpfn(dma, iova)) { if (!dma->lock_cap && current->mm->locked_vm + lock_acct + 1 > limit) { put_pfn(pfn, dma->prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); ret = -ENOMEM; goto unpin_out; } lock_acct++; } } out: ret = vfio_lock_acct(dma, lock_acct, false); unpin_out: if (ret) { if (!rsvd) { for (pfn = *pfn_base ; pinned ; pfn++, pinned--) put_pfn(pfn, dma->prot); } return ret; } return pinned; } static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova, unsigned long pfn, long npage, bool do_accounting) { long unlocked = 0, locked = 0; long i; for (i = 0; i < npage; i++, iova += PAGE_SIZE) { if (put_pfn(pfn++, dma->prot)) { unlocked++; if (vfio_find_vpfn(dma, iova)) locked++; } } if (do_accounting) vfio_lock_acct(dma, locked - unlocked, true); return unlocked; } static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr, unsigned long *pfn_base, bool do_accounting) { struct mm_struct *mm; int ret; mm = get_task_mm(dma->task); if (!mm) return -ENODEV; ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base); if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) { ret = vfio_lock_acct(dma, 1, true); if (ret) { put_pfn(*pfn_base, dma->prot); if (ret == -ENOMEM) pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK " "(%ld) exceeded\n", __func__, dma->task->comm, task_pid_nr(dma->task), task_rlimit(dma->task, RLIMIT_MEMLOCK)); } } mmput(mm); return ret; } static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova, bool do_accounting) { int unlocked; struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova); if (!vpfn) return 0; unlocked = vfio_iova_put_vfio_pfn(dma, vpfn); if (do_accounting) vfio_lock_acct(dma, -unlocked, true); return unlocked; } static int vfio_iommu_type1_pin_pages(void *iommu_data, unsigned long *user_pfn, int npage, int prot, unsigned long *phys_pfn) { struct vfio_iommu *iommu = iommu_data; int i, j, ret; unsigned long remote_vaddr; struct vfio_dma *dma; bool do_accounting; if (!iommu || !user_pfn || !phys_pfn) return -EINVAL; /* Supported for v2 version only */ if (!iommu->v2) return -EACCES; mutex_lock(&iommu->lock); /* Fail if notifier list is empty */ if (!iommu->notifier.head) { ret = -EINVAL; goto pin_done; } /* * If iommu capable domain exist in the container then all pages are * already pinned and accounted. Accouting should be done if there is no * iommu capable domain in the container. */ do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu); for (i = 0; i < npage; i++) { dma_addr_t iova; struct vfio_pfn *vpfn; iova = user_pfn[i] << PAGE_SHIFT; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); if (!dma) { ret = -EINVAL; goto pin_unwind; } if ((dma->prot & prot) != prot) { ret = -EPERM; goto pin_unwind; } vpfn = vfio_iova_get_vfio_pfn(dma, iova); if (vpfn) { phys_pfn[i] = vpfn->pfn; continue; } remote_vaddr = dma->vaddr + iova - dma->iova; ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i], do_accounting); if (ret) goto pin_unwind; ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]); if (ret) { vfio_unpin_page_external(dma, iova, do_accounting); goto pin_unwind; } } ret = i; goto pin_done; pin_unwind: phys_pfn[i] = 0; for (j = 0; j < i; j++) { dma_addr_t iova; iova = user_pfn[j] << PAGE_SHIFT; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); vfio_unpin_page_external(dma, iova, do_accounting); phys_pfn[j] = 0; } pin_done: mutex_unlock(&iommu->lock); return ret; } static int vfio_iommu_type1_unpin_pages(void *iommu_data, unsigned long *user_pfn, int npage) { struct vfio_iommu *iommu = iommu_data; bool do_accounting; int i; if (!iommu || !user_pfn) return -EINVAL; /* Supported for v2 version only */ if (!iommu->v2) return -EACCES; mutex_lock(&iommu->lock); do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu); for (i = 0; i < npage; i++) { struct vfio_dma *dma; dma_addr_t iova; iova = user_pfn[i] << PAGE_SHIFT; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); if (!dma) goto unpin_exit; vfio_unpin_page_external(dma, iova, do_accounting); } unpin_exit: mutex_unlock(&iommu->lock); return i > npage ? npage : (i > 0 ? i : -EINVAL); } static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain, struct list_head *regions) { long unlocked = 0; struct vfio_regions *entry, *next; iommu_tlb_sync(domain->domain); list_for_each_entry_safe(entry, next, regions, list) { unlocked += vfio_unpin_pages_remote(dma, entry->iova, entry->phys >> PAGE_SHIFT, entry->len >> PAGE_SHIFT, false); list_del(&entry->list); kfree(entry); } cond_resched(); return unlocked; } /* * Generally, VFIO needs to unpin remote pages after each IOTLB flush. * Therefore, when using IOTLB flush sync interface, VFIO need to keep track * of these regions (currently using a list). * * This value specifies maximum number of regions for each IOTLB flush sync. */ #define VFIO_IOMMU_TLB_SYNC_MAX 512 static size_t unmap_unpin_fast(struct vfio_domain *domain, struct vfio_dma *dma, dma_addr_t *iova, size_t len, phys_addr_t phys, long *unlocked, struct list_head *unmapped_list, int *unmapped_cnt) { size_t unmapped = 0; struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (entry) { unmapped = iommu_unmap_fast(domain->domain, *iova, len); if (!unmapped) { kfree(entry); } else { iommu_tlb_range_add(domain->domain, *iova, unmapped); entry->iova = *iova; entry->phys = phys; entry->len = unmapped; list_add_tail(&entry->list, unmapped_list); *iova += unmapped; (*unmapped_cnt)++; } } /* * Sync if the number of fast-unmap regions hits the limit * or in case of errors. */ if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) { *unlocked += vfio_sync_unpin(dma, domain, unmapped_list); *unmapped_cnt = 0; } return unmapped; } static size_t unmap_unpin_slow(struct vfio_domain *domain, struct vfio_dma *dma, dma_addr_t *iova, size_t len, phys_addr_t phys, long *unlocked) { size_t unmapped = iommu_unmap(domain->domain, *iova, len); if (unmapped) { *unlocked += vfio_unpin_pages_remote(dma, *iova, phys >> PAGE_SHIFT, unmapped >> PAGE_SHIFT, false); *iova += unmapped; cond_resched(); } return unmapped; } static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma, bool do_accounting) { dma_addr_t iova = dma->iova, end = dma->iova + dma->size; struct vfio_domain *domain, *d; LIST_HEAD(unmapped_region_list); int unmapped_region_cnt = 0; long unlocked = 0; if (!dma->size) return 0; if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)) return 0; /* * We use the IOMMU to track the physical addresses, otherwise we'd * need a much more complicated tracking system. Unfortunately that * means we need to use one of the iommu domains to figure out the * pfns to unpin. The rest need to be unmapped in advance so we have * no iommu translations remaining when the pages are unpinned. */ domain = d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); list_for_each_entry_continue(d, &iommu->domain_list, next) { iommu_unmap(d->domain, dma->iova, dma->size); cond_resched(); } while (iova < end) { size_t unmapped, len; phys_addr_t phys, next; phys = iommu_iova_to_phys(domain->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } /* * To optimize for fewer iommu_unmap() calls, each of which * may require hardware cache flushing, try to find the * largest contiguous physical memory chunk to unmap. */ for (len = PAGE_SIZE; !domain->fgsp && iova + len < end; len += PAGE_SIZE) { next = iommu_iova_to_phys(domain->domain, iova + len); if (next != phys + len) break; } /* * First, try to use fast unmap/unpin. In case of failure, * switch to slow unmap/unpin path. */ unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys, &unlocked, &unmapped_region_list, &unmapped_region_cnt); if (!unmapped) { unmapped = unmap_unpin_slow(domain, dma, &iova, len, phys, &unlocked); if (WARN_ON(!unmapped)) break; } } dma->iommu_mapped = false; if (unmapped_region_cnt) unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list); if (do_accounting) { vfio_lock_acct(dma, -unlocked, true); return 0; } return unlocked; } static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma) { vfio_unmap_unpin(iommu, dma, true); vfio_unlink_dma(iommu, dma); put_task_struct(dma->task); kfree(dma); iommu->dma_avail++; } static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu) { struct vfio_domain *domain; unsigned long bitmap = ULONG_MAX; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) bitmap &= domain->domain->pgsize_bitmap; mutex_unlock(&iommu->lock); /* * In case the IOMMU supports page sizes smaller than PAGE_SIZE * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes. * That way the user will be able to map/unmap buffers whose size/ * start address is aligned with PAGE_SIZE. Pinning code uses that * granularity while iommu driver can use the sub-PAGE_SIZE size * to map the buffer. */ if (bitmap & ~PAGE_MASK) { bitmap &= PAGE_MASK; bitmap |= PAGE_SIZE; } return bitmap; } static int vfio_dma_do_unmap(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_unmap *unmap) { uint64_t mask; struct vfio_dma *dma, *dma_last = NULL; size_t unmapped = 0; int ret = 0, retries = 0; mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1; if (unmap->iova & mask) return -EINVAL; if (!unmap->size || unmap->size & mask) return -EINVAL; if (unmap->iova + unmap->size - 1 < unmap->iova || unmap->size > SIZE_MAX) return -EINVAL; WARN_ON(mask & PAGE_MASK); again: mutex_lock(&iommu->lock); /* * vfio-iommu-type1 (v1) - User mappings were coalesced together to * avoid tracking individual mappings. This means that the granularity * of the original mapping was lost and the user was allowed to attempt * to unmap any range. Depending on the contiguousness of physical * memory and page sizes supported by the IOMMU, arbitrary unmaps may * or may not have worked. We only guaranteed unmap granularity * matching the original mapping; even though it was untracked here, * the original mappings are reflected in IOMMU mappings. This * resulted in a couple unusual behaviors. First, if a range is not * able to be unmapped, ex. a set of 4k pages that was mapped as a * 2M hugepage into the IOMMU, the unmap ioctl returns success but with * a zero sized unmap. Also, if an unmap request overlaps the first * address of a hugepage, the IOMMU will unmap the entire hugepage. * This also returns success and the returned unmap size reflects the * actual size unmapped. * * We attempt to maintain compatibility with this "v1" interface, but * we take control out of the hands of the IOMMU. Therefore, an unmap * request offset from the beginning of the original mapping will * return success with zero sized unmap. And an unmap request covering * the first iova of mapping will unmap the entire range. * * The v2 version of this interface intends to be more deterministic. * Unmap requests must fully cover previous mappings. Multiple * mappings may still be unmaped by specifying large ranges, but there * must not be any previous mappings bisected by the range. An error * will be returned if these conditions are not met. The v2 interface * will only return success and a size of zero if there were no * mappings within the range. */ if (iommu->v2) { dma = vfio_find_dma(iommu, unmap->iova, 1); if (dma && dma->iova != unmap->iova) { ret = -EINVAL; goto unlock; } dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0); if (dma && dma->iova + dma->size != unmap->iova + unmap->size) { ret = -EINVAL; goto unlock; } } while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) { if (!iommu->v2 && unmap->iova > dma->iova) break; /* * Task with same address space who mapped this iova range is * allowed to unmap the iova range. */ if (dma->task->mm != current->mm) break; if (!RB_EMPTY_ROOT(&dma->pfn_list)) { struct vfio_iommu_type1_dma_unmap nb_unmap; if (dma_last == dma) { BUG_ON(++retries > 10); } else { dma_last = dma; retries = 0; } nb_unmap.iova = dma->iova; nb_unmap.size = dma->size; /* * Notify anyone (mdev vendor drivers) to invalidate and * unmap iovas within the range we're about to unmap. * Vendor drivers MUST unpin pages in response to an * invalidation. */ mutex_unlock(&iommu->lock); blocking_notifier_call_chain(&iommu->notifier, VFIO_IOMMU_NOTIFY_DMA_UNMAP, &nb_unmap); goto again; } unmapped += dma->size; vfio_remove_dma(iommu, dma); } unlock: mutex_unlock(&iommu->lock); /* Report how much was unmapped */ unmap->size = unmapped; return ret; } static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova, unsigned long pfn, long npage, int prot) { struct vfio_domain *d; int ret; list_for_each_entry(d, &iommu->domain_list, next) { ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, npage << PAGE_SHIFT, prot | d->prot); if (ret) goto unwind; cond_resched(); } return 0; unwind: list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) iommu_unmap(d->domain, iova, npage << PAGE_SHIFT); return ret; } static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma, size_t map_size) { dma_addr_t iova = dma->iova; unsigned long vaddr = dma->vaddr; size_t size = map_size; long npage; unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; int ret = 0; while (size) { /* Pin a contiguous chunk of memory */ npage = vfio_pin_pages_remote(dma, vaddr + dma->size, size >> PAGE_SHIFT, &pfn, limit); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; break; } /* Map it! */ ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, dma->prot); if (ret) { vfio_unpin_pages_remote(dma, iova + dma->size, pfn, npage, true); break; } size -= npage << PAGE_SHIFT; dma->size += npage << PAGE_SHIFT; } dma->iommu_mapped = true; if (ret) vfio_remove_dma(iommu, dma); return ret; } static int vfio_dma_do_map(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_map *map) { dma_addr_t iova = map->iova; unsigned long vaddr = map->vaddr; size_t size = map->size; int ret = 0, prot = 0; uint64_t mask; struct vfio_dma *dma; /* Verify that none of our __u64 fields overflow */ if (map->size != size || map->vaddr != vaddr || map->iova != iova) return -EINVAL; mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1; WARN_ON(mask & PAGE_MASK); /* READ/WRITE from device perspective */ if (map->flags & VFIO_DMA_MAP_FLAG_WRITE) prot |= IOMMU_WRITE; if (map->flags & VFIO_DMA_MAP_FLAG_READ) prot |= IOMMU_READ; if (!prot || !size || (size | iova | vaddr) & mask) return -EINVAL; /* Don't allow IOVA or virtual address wrap */ if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) return -EINVAL; mutex_lock(&iommu->lock); if (vfio_find_dma(iommu, iova, size)) { ret = -EEXIST; goto out_unlock; } if (!iommu->dma_avail) { ret = -ENOSPC; goto out_unlock; } dma = kzalloc(sizeof(*dma), GFP_KERNEL); if (!dma) { ret = -ENOMEM; goto out_unlock; } iommu->dma_avail--; dma->iova = iova; dma->vaddr = vaddr; dma->prot = prot; /* * We need to be able to both add to a task's locked memory and test * against the locked memory limit and we need to be able to do both * outside of this call path as pinning can be asynchronous via the * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a * task_struct and VM locked pages requires an mm_struct, however * holding an indefinite mm reference is not recommended, therefore we * only hold a reference to a task. We could hold a reference to * current, however QEMU uses this call path through vCPU threads, * which can be killed resulting in a NULL mm and failure in the unmap * path when called via a different thread. Avoid this problem by * using the group_leader as threads within the same group require * both CLONE_THREAD and CLONE_VM and will therefore use the same * mm_struct. * * Previously we also used the task for testing CAP_IPC_LOCK at the * time of pinning and accounting, however has_capability() makes use * of real_cred, a copy-on-write field, so we can't guarantee that it * matches group_leader, or in fact that it might not change by the * time it's evaluated. If a process were to call MAP_DMA with * CAP_IPC_LOCK but later drop it, it doesn't make sense that they * possibly see different results for an iommu_mapped vfio_dma vs * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the * time of calling MAP_DMA. */ get_task_struct(current->group_leader); dma->task = current->group_leader; dma->lock_cap = capable(CAP_IPC_LOCK); dma->pfn_list = RB_ROOT; /* Insert zero-sized and grow as we map chunks of it */ vfio_link_dma(iommu, dma); /* Don't pin and map if container doesn't contain IOMMU capable domain*/ if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)) dma->size = size; else ret = vfio_pin_map_dma(iommu, dma, size); out_unlock: mutex_unlock(&iommu->lock); return ret; } static int vfio_bus_type(struct device *dev, void *data) { struct bus_type **bus = data; if (*bus && *bus != dev->bus) return -EINVAL; *bus = dev->bus; return 0; } static int vfio_iommu_replay(struct vfio_iommu *iommu, struct vfio_domain *domain) { struct vfio_domain *d; struct rb_node *n; unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; int ret; /* Arbitrarily pick the first domain in the list for lookups */ d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); n = rb_first(&iommu->dma_list); for (; n; n = rb_next(n)) { struct vfio_dma *dma; dma_addr_t iova; dma = rb_entry(n, struct vfio_dma, node); iova = dma->iova; while (iova < dma->iova + dma->size) { phys_addr_t phys; size_t size; if (dma->iommu_mapped) { phys_addr_t p; dma_addr_t i; phys = iommu_iova_to_phys(d->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } size = PAGE_SIZE; p = phys + size; i = iova + size; while (i < dma->iova + dma->size && p == iommu_iova_to_phys(d->domain, i)) { size += PAGE_SIZE; p += PAGE_SIZE; i += PAGE_SIZE; } } else { unsigned long pfn; unsigned long vaddr = dma->vaddr + (iova - dma->iova); size_t n = dma->iova + dma->size - iova; long npage; npage = vfio_pin_pages_remote(dma, vaddr, n >> PAGE_SHIFT, &pfn, limit); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; return ret; } phys = pfn << PAGE_SHIFT; size = npage << PAGE_SHIFT; } ret = iommu_map(domain->domain, iova, phys, size, dma->prot | domain->prot); if (ret) return ret; iova += size; } dma->iommu_mapped = true; } return 0; } /* * We change our unmap behavior slightly depending on whether the IOMMU * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage * for practically any contiguous power-of-two mapping we give it. This means * we don't need to look for contiguous chunks ourselves to make unmapping * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when * hugetlbfs is in use. */ static void vfio_test_domain_fgsp(struct vfio_domain *domain) { struct page *pages; int ret, order = get_order(PAGE_SIZE * 2); pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); if (!pages) return; ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2, IOMMU_READ | IOMMU_WRITE | domain->prot); if (!ret) { size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE); if (unmapped == PAGE_SIZE) iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE); else domain->fgsp = true; } __free_pages(pages, order); } static struct vfio_group *find_iommu_group(struct vfio_domain *domain, struct iommu_group *iommu_group) { struct vfio_group *g; list_for_each_entry(g, &domain->group_list, next) { if (g->iommu_group == iommu_group) return g; } return NULL; } static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base) { struct list_head group_resv_regions; struct iommu_resv_region *region, *next; bool ret = false; INIT_LIST_HEAD(&group_resv_regions); iommu_get_group_resv_regions(group, &group_resv_regions); list_for_each_entry(region, &group_resv_regions, list) { /* * The presence of any 'real' MSI regions should take * precedence over the software-managed one if the * IOMMU driver happens to advertise both types. */ if (region->type == IOMMU_RESV_MSI) { ret = false; break; } if (region->type == IOMMU_RESV_SW_MSI) { *base = region->start; ret = true; } } list_for_each_entry_safe(region, next, &group_resv_regions, list) kfree(region); return ret; } static struct device *vfio_mdev_get_iommu_device(struct device *dev) { struct device *(*fn)(struct device *dev); struct device *iommu_device; fn = symbol_get(mdev_get_iommu_device); if (fn) { iommu_device = fn(dev); symbol_put(mdev_get_iommu_device); return iommu_device; } return NULL; } static int vfio_mdev_attach_domain(struct device *dev, void *data) { struct iommu_domain *domain = data; struct device *iommu_device; iommu_device = vfio_mdev_get_iommu_device(dev); if (iommu_device) { if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX)) return iommu_aux_attach_device(domain, iommu_device); else return iommu_attach_device(domain, iommu_device); } return -EINVAL; } static int vfio_mdev_detach_domain(struct device *dev, void *data) { struct iommu_domain *domain = data; struct device *iommu_device; iommu_device = vfio_mdev_get_iommu_device(dev); if (iommu_device) { if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX)) iommu_aux_detach_device(domain, iommu_device); else iommu_detach_device(domain, iommu_device); } return 0; } static int vfio_iommu_attach_group(struct vfio_domain *domain, struct vfio_group *group) { if (group->mdev_group) return iommu_group_for_each_dev(group->iommu_group, domain->domain, vfio_mdev_attach_domain); else return iommu_attach_group(domain->domain, group->iommu_group); } static void vfio_iommu_detach_group(struct vfio_domain *domain, struct vfio_group *group) { if (group->mdev_group) iommu_group_for_each_dev(group->iommu_group, domain->domain, vfio_mdev_detach_domain); else iommu_detach_group(domain->domain, group->iommu_group); } static bool vfio_bus_is_mdev(struct bus_type *bus) { struct bus_type *mdev_bus; bool ret = false; mdev_bus = symbol_get(mdev_bus_type); if (mdev_bus) { ret = (bus == mdev_bus); symbol_put(mdev_bus_type); } return ret; } static int vfio_mdev_iommu_device(struct device *dev, void *data) { struct device **old = data, *new; new = vfio_mdev_get_iommu_device(dev); if (!new || (*old && *old != new)) return -EINVAL; *old = new; return 0; } static int vfio_iommu_type1_attach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_group *group; struct vfio_domain *domain, *d; struct bus_type *bus = NULL; int ret; bool resv_msi, msi_remap; phys_addr_t resv_msi_base; mutex_lock(&iommu->lock); list_for_each_entry(d, &iommu->domain_list, next) { if (find_iommu_group(d, iommu_group)) { mutex_unlock(&iommu->lock); return -EINVAL; } } if (iommu->external_domain) { if (find_iommu_group(iommu->external_domain, iommu_group)) { mutex_unlock(&iommu->lock); return -EINVAL; } } group = kzalloc(sizeof(*group), GFP_KERNEL); domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!group || !domain) { ret = -ENOMEM; goto out_free; } group->iommu_group = iommu_group; /* Determine bus_type in order to allocate a domain */ ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type); if (ret) goto out_free; if (vfio_bus_is_mdev(bus)) { struct device *iommu_device = NULL; group->mdev_group = true; /* Determine the isolation type */ ret = iommu_group_for_each_dev(iommu_group, &iommu_device, vfio_mdev_iommu_device); if (ret || !iommu_device) { if (!iommu->external_domain) { INIT_LIST_HEAD(&domain->group_list); iommu->external_domain = domain; } else { kfree(domain); } list_add(&group->next, &iommu->external_domain->group_list); mutex_unlock(&iommu->lock); return 0; } bus = iommu_device->bus; } domain->domain = iommu_domain_alloc(bus); if (!domain->domain) { ret = -EIO; goto out_free; } if (iommu->nesting) { int attr = 1; ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING, &attr); if (ret) goto out_domain; } ret = vfio_iommu_attach_group(domain, group); if (ret) goto out_domain; resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base); INIT_LIST_HEAD(&domain->group_list); list_add(&group->next, &domain->group_list); msi_remap = irq_domain_check_msi_remap() || iommu_capable(bus, IOMMU_CAP_INTR_REMAP); if (!allow_unsafe_interrupts && !msi_remap) { pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n", __func__); ret = -EPERM; goto out_detach; } if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY)) domain->prot |= IOMMU_CACHE; /* * Try to match an existing compatible domain. We don't want to * preclude an IOMMU driver supporting multiple bus_types and being * able to include different bus_types in the same IOMMU domain, so * we test whether the domains use the same iommu_ops rather than * testing if they're on the same bus_type. */ list_for_each_entry(d, &iommu->domain_list, next) { if (d->domain->ops == domain->domain->ops && d->prot == domain->prot) { vfio_iommu_detach_group(domain, group); if (!vfio_iommu_attach_group(d, group)) { list_add(&group->next, &d->group_list); iommu_domain_free(domain->domain); kfree(domain); mutex_unlock(&iommu->lock); return 0; } ret = vfio_iommu_attach_group(domain, group); if (ret) goto out_domain; } } vfio_test_domain_fgsp(domain); /* replay mappings on new domains */ ret = vfio_iommu_replay(iommu, domain); if (ret) goto out_detach; if (resv_msi) { ret = iommu_get_msi_cookie(domain->domain, resv_msi_base); if (ret) goto out_detach; } list_add(&domain->next, &iommu->domain_list); mutex_unlock(&iommu->lock); return 0; out_detach: vfio_iommu_detach_group(domain, group); out_domain: iommu_domain_free(domain->domain); out_free: kfree(domain); kfree(group); mutex_unlock(&iommu->lock); return ret; } static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu) { struct rb_node *node; while ((node = rb_first(&iommu->dma_list))) vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node)); } static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu) { struct rb_node *n, *p; n = rb_first(&iommu->dma_list); for (; n; n = rb_next(n)) { struct vfio_dma *dma; long locked = 0, unlocked = 0; dma = rb_entry(n, struct vfio_dma, node); unlocked += vfio_unmap_unpin(iommu, dma, false); p = rb_first(&dma->pfn_list); for (; p; p = rb_next(p)) { struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node); if (!is_invalid_reserved_pfn(vpfn->pfn)) locked++; } vfio_lock_acct(dma, locked - unlocked, true); } } static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu) { struct rb_node *n; n = rb_first(&iommu->dma_list); for (; n; n = rb_next(n)) { struct vfio_dma *dma; dma = rb_entry(n, struct vfio_dma, node); if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list))) break; } /* mdev vendor driver must unregister notifier */ WARN_ON(iommu->notifier.head); } static void vfio_iommu_type1_detach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain; struct vfio_group *group; mutex_lock(&iommu->lock); if (iommu->external_domain) { group = find_iommu_group(iommu->external_domain, iommu_group); if (group) { list_del(&group->next); kfree(group); if (list_empty(&iommu->external_domain->group_list)) { vfio_sanity_check_pfn_list(iommu); if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu)) vfio_iommu_unmap_unpin_all(iommu); kfree(iommu->external_domain); iommu->external_domain = NULL; } goto detach_group_done; } } list_for_each_entry(domain, &iommu->domain_list, next) { group = find_iommu_group(domain, iommu_group); if (!group) continue; vfio_iommu_detach_group(domain, group); list_del(&group->next); kfree(group); /* * Group ownership provides privilege, if the group list is * empty, the domain goes away. If it's the last domain with * iommu and external domain doesn't exist, then all the * mappings go away too. If it's the last domain with iommu and * external domain exist, update accounting */ if (list_empty(&domain->group_list)) { if (list_is_singular(&iommu->domain_list)) { if (!iommu->external_domain) vfio_iommu_unmap_unpin_all(iommu); else vfio_iommu_unmap_unpin_reaccount(iommu); } iommu_domain_free(domain->domain); list_del(&domain->next); kfree(domain); } break; } detach_group_done: mutex_unlock(&iommu->lock); } static void *vfio_iommu_type1_open(unsigned long arg) { struct vfio_iommu *iommu; iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); if (!iommu) return ERR_PTR(-ENOMEM); switch (arg) { case VFIO_TYPE1_IOMMU: break; case VFIO_TYPE1_NESTING_IOMMU: iommu->nesting = true; /* fall through */ case VFIO_TYPE1v2_IOMMU: iommu->v2 = true; break; default: kfree(iommu); return ERR_PTR(-EINVAL); } INIT_LIST_HEAD(&iommu->domain_list); iommu->dma_list = RB_ROOT; iommu->dma_avail = dma_entry_limit; mutex_init(&iommu->lock); BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier); return iommu; } static void vfio_release_domain(struct vfio_domain *domain, bool external) { struct vfio_group *group, *group_tmp; list_for_each_entry_safe(group, group_tmp, &domain->group_list, next) { if (!external) vfio_iommu_detach_group(domain, group); list_del(&group->next); kfree(group); } if (!external) iommu_domain_free(domain->domain); } static void vfio_iommu_type1_release(void *iommu_data) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain, *domain_tmp; if (iommu->external_domain) { vfio_release_domain(iommu->external_domain, true); vfio_sanity_check_pfn_list(iommu); kfree(iommu->external_domain); } vfio_iommu_unmap_unpin_all(iommu); list_for_each_entry_safe(domain, domain_tmp, &iommu->domain_list, next) { vfio_release_domain(domain, false); list_del(&domain->next); kfree(domain); } kfree(iommu); } static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu) { struct vfio_domain *domain; int ret = 1; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) { if (!(domain->prot & IOMMU_CACHE)) { ret = 0; break; } } mutex_unlock(&iommu->lock); return ret; } static long vfio_iommu_type1_ioctl(void *iommu_data, unsigned int cmd, unsigned long arg) { struct vfio_iommu *iommu = iommu_data; unsigned long minsz; if (cmd == VFIO_CHECK_EXTENSION) { switch (arg) { case VFIO_TYPE1_IOMMU: case VFIO_TYPE1v2_IOMMU: case VFIO_TYPE1_NESTING_IOMMU: return 1; case VFIO_DMA_CC_IOMMU: if (!iommu) return 0; return vfio_domains_have_iommu_cache(iommu); default: return 0; } } else if (cmd == VFIO_IOMMU_GET_INFO) { struct vfio_iommu_type1_info info; minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = VFIO_IOMMU_INFO_PGSIZES; info.iova_pgsizes = vfio_pgsize_bitmap(iommu); return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_IOMMU_MAP_DMA) { struct vfio_iommu_type1_dma_map map; uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; minsz = offsetofend(struct vfio_iommu_type1_dma_map, size); if (copy_from_user(&map, (void __user *)arg, minsz)) return -EFAULT; if (map.argsz < minsz || map.flags & ~mask) return -EINVAL; return vfio_dma_do_map(iommu, &map); } else if (cmd == VFIO_IOMMU_UNMAP_DMA) { struct vfio_iommu_type1_dma_unmap unmap; long ret; minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size); if (copy_from_user(&unmap, (void __user *)arg, minsz)) return -EFAULT; if (unmap.argsz < minsz || unmap.flags) return -EINVAL; ret = vfio_dma_do_unmap(iommu, &unmap); if (ret) return ret; return copy_to_user((void __user *)arg, &unmap, minsz) ? -EFAULT : 0; } return -ENOTTY; } static int vfio_iommu_type1_register_notifier(void *iommu_data, unsigned long *events, struct notifier_block *nb) { struct vfio_iommu *iommu = iommu_data; /* clear known events */ *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP; /* refuse to register if still events remaining */ if (*events) return -EINVAL; return blocking_notifier_chain_register(&iommu->notifier, nb); } static int vfio_iommu_type1_unregister_notifier(void *iommu_data, struct notifier_block *nb) { struct vfio_iommu *iommu = iommu_data; return blocking_notifier_chain_unregister(&iommu->notifier, nb); } static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = { .name = "vfio-iommu-type1", .owner = THIS_MODULE, .open = vfio_iommu_type1_open, .release = vfio_iommu_type1_release, .ioctl = vfio_iommu_type1_ioctl, .attach_group = vfio_iommu_type1_attach_group, .detach_group = vfio_iommu_type1_detach_group, .pin_pages = vfio_iommu_type1_pin_pages, .unpin_pages = vfio_iommu_type1_unpin_pages, .register_notifier = vfio_iommu_type1_register_notifier, .unregister_notifier = vfio_iommu_type1_unregister_notifier, }; static int __init vfio_iommu_type1_init(void) { return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1); } static void __exit vfio_iommu_type1_cleanup(void) { vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1); } module_init(vfio_iommu_type1_init); module_exit(vfio_iommu_type1_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1