Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 3099 | 62.91% | 18 | 42.86% |
Pawel Moll | 1362 | 27.65% | 2 | 4.76% |
Linus Walleij | 298 | 6.05% | 6 | 14.29% |
Andres Salomon | 41 | 0.83% | 1 | 2.38% |
Jon Medhurst (Tixy) | 38 | 0.77% | 1 | 2.38% |
Vladimir Zapolskiy | 34 | 0.69% | 3 | 7.14% |
Loïc Minier | 13 | 0.26% | 1 | 2.38% |
Antonino A. Daplas | 13 | 0.26% | 1 | 2.38% |
Kiran Padwal | 9 | 0.18% | 1 | 2.38% |
Dave P Martin | 7 | 0.14% | 1 | 2.38% |
Liam Beguin | 3 | 0.06% | 1 | 2.38% |
Jingoo Han | 3 | 0.06% | 1 | 2.38% |
SF Markus Elfring | 2 | 0.04% | 1 | 2.38% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 2.38% |
Yoann Padioleau | 1 | 0.02% | 1 | 2.38% |
Arvind Yadav | 1 | 0.02% | 1 | 2.38% |
Alessandro Rubini | 1 | 0.02% | 1 | 2.38% |
Total | 4926 | 42 |
/* * linux/drivers/video/amba-clcd.c * * Copyright (C) 2001 ARM Limited, by David A Rusling * Updated to 2.5, Deep Blue Solutions Ltd. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * * ARM PrimeCell PL110 Color LCD Controller */ #include <linux/amba/bus.h> #include <linux/amba/clcd.h> #include <linux/backlight.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_graph.h> #include <linux/slab.h> #include <linux/string.h> #include <video/display_timing.h> #include <video/of_display_timing.h> #include <video/videomode.h> #define to_clcd(info) container_of(info, struct clcd_fb, fb) /* This is limited to 16 characters when displayed by X startup */ static const char *clcd_name = "CLCD FB"; /* * Unfortunately, the enable/disable functions may be called either from * process or IRQ context, and we _need_ to delay. This is _not_ good. */ static inline void clcdfb_sleep(unsigned int ms) { if (in_atomic()) { mdelay(ms); } else { msleep(ms); } } static inline void clcdfb_set_start(struct clcd_fb *fb) { unsigned long ustart = fb->fb.fix.smem_start; unsigned long lstart; ustart += fb->fb.var.yoffset * fb->fb.fix.line_length; lstart = ustart + fb->fb.var.yres * fb->fb.fix.line_length / 2; writel(ustart, fb->regs + CLCD_UBAS); writel(lstart, fb->regs + CLCD_LBAS); } static void clcdfb_disable(struct clcd_fb *fb) { u32 val; if (fb->board->disable) fb->board->disable(fb); if (fb->panel->backlight) { fb->panel->backlight->props.power = FB_BLANK_POWERDOWN; backlight_update_status(fb->panel->backlight); } val = readl(fb->regs + fb->off_cntl); if (val & CNTL_LCDPWR) { val &= ~CNTL_LCDPWR; writel(val, fb->regs + fb->off_cntl); clcdfb_sleep(20); } if (val & CNTL_LCDEN) { val &= ~CNTL_LCDEN; writel(val, fb->regs + fb->off_cntl); } /* * Disable CLCD clock source. */ if (fb->clk_enabled) { fb->clk_enabled = false; clk_disable(fb->clk); } } static void clcdfb_enable(struct clcd_fb *fb, u32 cntl) { /* * Enable the CLCD clock source. */ if (!fb->clk_enabled) { fb->clk_enabled = true; clk_enable(fb->clk); } /* * Bring up by first enabling.. */ cntl |= CNTL_LCDEN; writel(cntl, fb->regs + fb->off_cntl); clcdfb_sleep(20); /* * and now apply power. */ cntl |= CNTL_LCDPWR; writel(cntl, fb->regs + fb->off_cntl); /* * Turn on backlight */ if (fb->panel->backlight) { fb->panel->backlight->props.power = FB_BLANK_UNBLANK; backlight_update_status(fb->panel->backlight); } /* * finally, enable the interface. */ if (fb->board->enable) fb->board->enable(fb); } static int clcdfb_set_bitfields(struct clcd_fb *fb, struct fb_var_screeninfo *var) { u32 caps; int ret = 0; if (fb->panel->caps && fb->board->caps) caps = fb->panel->caps & fb->board->caps; else { /* Old way of specifying what can be used */ caps = fb->panel->cntl & CNTL_BGR ? CLCD_CAP_BGR : CLCD_CAP_RGB; /* But mask out 444 modes as they weren't supported */ caps &= ~CLCD_CAP_444; } /* Only TFT panels can do RGB888/BGR888 */ if (!(fb->panel->cntl & CNTL_LCDTFT)) caps &= ~CLCD_CAP_888; memset(&var->transp, 0, sizeof(var->transp)); var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; switch (var->bits_per_pixel) { case 1: case 2: case 4: case 8: /* If we can't do 5551, reject */ caps &= CLCD_CAP_5551; if (!caps) { ret = -EINVAL; break; } var->red.length = var->bits_per_pixel; var->red.offset = 0; var->green.length = var->bits_per_pixel; var->green.offset = 0; var->blue.length = var->bits_per_pixel; var->blue.offset = 0; break; case 16: /* If we can't do 444, 5551 or 565, reject */ if (!(caps & (CLCD_CAP_444 | CLCD_CAP_5551 | CLCD_CAP_565))) { ret = -EINVAL; break; } /* * Green length can be 4, 5 or 6 depending whether * we're operating in 444, 5551 or 565 mode. */ if (var->green.length == 4 && caps & CLCD_CAP_444) caps &= CLCD_CAP_444; if (var->green.length == 5 && caps & CLCD_CAP_5551) caps &= CLCD_CAP_5551; else if (var->green.length == 6 && caps & CLCD_CAP_565) caps &= CLCD_CAP_565; else { /* * PL110 officially only supports RGB555, * but may be wired up to allow RGB565. */ if (caps & CLCD_CAP_565) { var->green.length = 6; caps &= CLCD_CAP_565; } else if (caps & CLCD_CAP_5551) { var->green.length = 5; caps &= CLCD_CAP_5551; } else { var->green.length = 4; caps &= CLCD_CAP_444; } } if (var->green.length >= 5) { var->red.length = 5; var->blue.length = 5; } else { var->red.length = 4; var->blue.length = 4; } break; case 32: /* If we can't do 888, reject */ caps &= CLCD_CAP_888; if (!caps) { ret = -EINVAL; break; } var->red.length = 8; var->green.length = 8; var->blue.length = 8; break; default: ret = -EINVAL; break; } /* * >= 16bpp displays have separate colour component bitfields * encoded in the pixel data. Calculate their position from * the bitfield length defined above. */ if (ret == 0 && var->bits_per_pixel >= 16) { bool bgr, rgb; bgr = caps & CLCD_CAP_BGR && var->blue.offset == 0; rgb = caps & CLCD_CAP_RGB && var->red.offset == 0; if (!bgr && !rgb) /* * The requested format was not possible, try just * our capabilities. One of BGR or RGB must be * supported. */ bgr = caps & CLCD_CAP_BGR; if (bgr) { var->blue.offset = 0; var->green.offset = var->blue.offset + var->blue.length; var->red.offset = var->green.offset + var->green.length; } else { var->red.offset = 0; var->green.offset = var->red.offset + var->red.length; var->blue.offset = var->green.offset + var->green.length; } } return ret; } static int clcdfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); int ret = -EINVAL; if (fb->board->check) ret = fb->board->check(fb, var); if (ret == 0 && var->xres_virtual * var->bits_per_pixel / 8 * var->yres_virtual > fb->fb.fix.smem_len) ret = -EINVAL; if (ret == 0) ret = clcdfb_set_bitfields(fb, var); return ret; } static int clcdfb_set_par(struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); struct clcd_regs regs; fb->fb.fix.line_length = fb->fb.var.xres_virtual * fb->fb.var.bits_per_pixel / 8; if (fb->fb.var.bits_per_pixel <= 8) fb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else fb->fb.fix.visual = FB_VISUAL_TRUECOLOR; fb->board->decode(fb, ®s); clcdfb_disable(fb); writel(regs.tim0, fb->regs + CLCD_TIM0); writel(regs.tim1, fb->regs + CLCD_TIM1); writel(regs.tim2, fb->regs + CLCD_TIM2); writel(regs.tim3, fb->regs + CLCD_TIM3); clcdfb_set_start(fb); clk_set_rate(fb->clk, (1000000000 / regs.pixclock) * 1000); fb->clcd_cntl = regs.cntl; clcdfb_enable(fb, regs.cntl); #ifdef DEBUG printk(KERN_INFO "CLCD: Registers set to\n" " %08x %08x %08x %08x\n" " %08x %08x %08x %08x\n", readl(fb->regs + CLCD_TIM0), readl(fb->regs + CLCD_TIM1), readl(fb->regs + CLCD_TIM2), readl(fb->regs + CLCD_TIM3), readl(fb->regs + CLCD_UBAS), readl(fb->regs + CLCD_LBAS), readl(fb->regs + fb->off_ienb), readl(fb->regs + fb->off_cntl)); #endif return 0; } static inline u32 convert_bitfield(int val, struct fb_bitfield *bf) { unsigned int mask = (1 << bf->length) - 1; return (val >> (16 - bf->length) & mask) << bf->offset; } /* * Set a single color register. The values supplied have a 16 bit * magnitude. Return != 0 for invalid regno. */ static int clcdfb_setcolreg(unsigned int regno, unsigned int red, unsigned int green, unsigned int blue, unsigned int transp, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); if (regno < 16) fb->cmap[regno] = convert_bitfield(transp, &fb->fb.var.transp) | convert_bitfield(blue, &fb->fb.var.blue) | convert_bitfield(green, &fb->fb.var.green) | convert_bitfield(red, &fb->fb.var.red); if (fb->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR && regno < 256) { int hw_reg = CLCD_PALETTE + ((regno * 2) & ~3); u32 val, mask, newval; newval = (red >> 11) & 0x001f; newval |= (green >> 6) & 0x03e0; newval |= (blue >> 1) & 0x7c00; /* * 3.2.11: if we're configured for big endian * byte order, the palette entries are swapped. */ if (fb->clcd_cntl & CNTL_BEBO) regno ^= 1; if (regno & 1) { newval <<= 16; mask = 0x0000ffff; } else { mask = 0xffff0000; } val = readl(fb->regs + hw_reg) & mask; writel(val | newval, fb->regs + hw_reg); } return regno > 255; } /* * Blank the screen if blank_mode != 0, else unblank. If blank == NULL * then the caller blanks by setting the CLUT (Color Look Up Table) to all * black. Return 0 if blanking succeeded, != 0 if un-/blanking failed due * to e.g. a video mode which doesn't support it. Implements VESA suspend * and powerdown modes on hardware that supports disabling hsync/vsync: * blank_mode == 2: suspend vsync * blank_mode == 3: suspend hsync * blank_mode == 4: powerdown */ static int clcdfb_blank(int blank_mode, struct fb_info *info) { struct clcd_fb *fb = to_clcd(info); if (blank_mode != 0) { clcdfb_disable(fb); } else { clcdfb_enable(fb, fb->clcd_cntl); } return 0; } static int clcdfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { struct clcd_fb *fb = to_clcd(info); unsigned long len, off = vma->vm_pgoff << PAGE_SHIFT; int ret = -EINVAL; len = info->fix.smem_len; if (off <= len && vma->vm_end - vma->vm_start <= len - off && fb->board->mmap) ret = fb->board->mmap(fb, vma); return ret; } static struct fb_ops clcdfb_ops = { .owner = THIS_MODULE, .fb_check_var = clcdfb_check_var, .fb_set_par = clcdfb_set_par, .fb_setcolreg = clcdfb_setcolreg, .fb_blank = clcdfb_blank, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_mmap = clcdfb_mmap, }; static int clcdfb_register(struct clcd_fb *fb) { int ret; /* * ARM PL111 always has IENB at 0x1c; it's only PL110 * which is reversed on some platforms. */ if (amba_manf(fb->dev) == 0x41 && amba_part(fb->dev) == 0x111) { fb->off_ienb = CLCD_PL111_IENB; fb->off_cntl = CLCD_PL111_CNTL; } else { fb->off_ienb = CLCD_PL110_IENB; fb->off_cntl = CLCD_PL110_CNTL; } fb->clk = clk_get(&fb->dev->dev, NULL); if (IS_ERR(fb->clk)) { ret = PTR_ERR(fb->clk); goto out; } ret = clk_prepare(fb->clk); if (ret) goto free_clk; fb->fb.device = &fb->dev->dev; fb->fb.fix.mmio_start = fb->dev->res.start; fb->fb.fix.mmio_len = resource_size(&fb->dev->res); fb->regs = ioremap(fb->fb.fix.mmio_start, fb->fb.fix.mmio_len); if (!fb->regs) { printk(KERN_ERR "CLCD: unable to remap registers\n"); ret = -ENOMEM; goto clk_unprep; } fb->fb.fbops = &clcdfb_ops; fb->fb.flags = FBINFO_FLAG_DEFAULT; fb->fb.pseudo_palette = fb->cmap; strncpy(fb->fb.fix.id, clcd_name, sizeof(fb->fb.fix.id)); fb->fb.fix.type = FB_TYPE_PACKED_PIXELS; fb->fb.fix.type_aux = 0; fb->fb.fix.xpanstep = 0; fb->fb.fix.ypanstep = 0; fb->fb.fix.ywrapstep = 0; fb->fb.fix.accel = FB_ACCEL_NONE; fb->fb.var.xres = fb->panel->mode.xres; fb->fb.var.yres = fb->panel->mode.yres; fb->fb.var.xres_virtual = fb->panel->mode.xres; fb->fb.var.yres_virtual = fb->panel->mode.yres; fb->fb.var.bits_per_pixel = fb->panel->bpp; fb->fb.var.grayscale = fb->panel->grayscale; fb->fb.var.pixclock = fb->panel->mode.pixclock; fb->fb.var.left_margin = fb->panel->mode.left_margin; fb->fb.var.right_margin = fb->panel->mode.right_margin; fb->fb.var.upper_margin = fb->panel->mode.upper_margin; fb->fb.var.lower_margin = fb->panel->mode.lower_margin; fb->fb.var.hsync_len = fb->panel->mode.hsync_len; fb->fb.var.vsync_len = fb->panel->mode.vsync_len; fb->fb.var.sync = fb->panel->mode.sync; fb->fb.var.vmode = fb->panel->mode.vmode; fb->fb.var.activate = FB_ACTIVATE_NOW; fb->fb.var.nonstd = 0; fb->fb.var.height = fb->panel->height; fb->fb.var.width = fb->panel->width; fb->fb.var.accel_flags = 0; fb->fb.monspecs.hfmin = 0; fb->fb.monspecs.hfmax = 100000; fb->fb.monspecs.vfmin = 0; fb->fb.monspecs.vfmax = 400; fb->fb.monspecs.dclkmin = 1000000; fb->fb.monspecs.dclkmax = 100000000; /* * Make sure that the bitfields are set appropriately. */ clcdfb_set_bitfields(fb, &fb->fb.var); /* * Allocate colourmap. */ ret = fb_alloc_cmap(&fb->fb.cmap, 256, 0); if (ret) goto unmap; /* * Ensure interrupts are disabled. */ writel(0, fb->regs + fb->off_ienb); fb_set_var(&fb->fb, &fb->fb.var); dev_info(&fb->dev->dev, "%s hardware, %s display\n", fb->board->name, fb->panel->mode.name); ret = register_framebuffer(&fb->fb); if (ret == 0) goto out; printk(KERN_ERR "CLCD: cannot register framebuffer (%d)\n", ret); fb_dealloc_cmap(&fb->fb.cmap); unmap: iounmap(fb->regs); clk_unprep: clk_unprepare(fb->clk); free_clk: clk_put(fb->clk); out: return ret; } #ifdef CONFIG_OF static int clcdfb_of_get_dpi_panel_mode(struct device_node *node, struct clcd_panel *clcd_panel) { int err; struct display_timing timing; struct videomode video; err = of_get_display_timing(node, "panel-timing", &timing); if (err) return err; videomode_from_timing(&timing, &video); err = fb_videomode_from_videomode(&video, &clcd_panel->mode); if (err) return err; /* Set up some inversion flags */ if (timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) clcd_panel->tim2 |= TIM2_IPC; else if (!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)) /* * To preserve backwards compatibility, the IPC (inverted * pixel clock) flag needs to be set on any display that * doesn't explicitly specify that the pixel clock is * active on the negative or positive edge. */ clcd_panel->tim2 |= TIM2_IPC; if (timing.flags & DISPLAY_FLAGS_HSYNC_LOW) clcd_panel->tim2 |= TIM2_IHS; if (timing.flags & DISPLAY_FLAGS_VSYNC_LOW) clcd_panel->tim2 |= TIM2_IVS; if (timing.flags & DISPLAY_FLAGS_DE_LOW) clcd_panel->tim2 |= TIM2_IOE; return 0; } static int clcdfb_snprintf_mode(char *buf, int size, struct fb_videomode *mode) { return snprintf(buf, size, "%ux%u@%u", mode->xres, mode->yres, mode->refresh); } static int clcdfb_of_get_backlight(struct device_node *panel, struct clcd_panel *clcd_panel) { struct device_node *backlight; /* Look up the optional backlight phandle */ backlight = of_parse_phandle(panel, "backlight", 0); if (backlight) { clcd_panel->backlight = of_find_backlight_by_node(backlight); of_node_put(backlight); if (!clcd_panel->backlight) return -EPROBE_DEFER; } return 0; } static int clcdfb_of_get_mode(struct device *dev, struct device_node *panel, struct clcd_panel *clcd_panel) { int err; struct fb_videomode *mode; char *name; int len; /* Only directly connected DPI panels supported for now */ if (of_device_is_compatible(panel, "panel-dpi")) err = clcdfb_of_get_dpi_panel_mode(panel, clcd_panel); else err = -ENOENT; if (err) return err; mode = &clcd_panel->mode; len = clcdfb_snprintf_mode(NULL, 0, mode); name = devm_kzalloc(dev, len + 1, GFP_KERNEL); if (!name) return -ENOMEM; clcdfb_snprintf_mode(name, len + 1, mode); mode->name = name; return 0; } static int clcdfb_of_init_tft_panel(struct clcd_fb *fb, u32 r0, u32 g0, u32 b0) { static struct { unsigned int part; u32 r0, g0, b0; u32 caps; } panels[] = { { 0x110, 1, 7, 13, CLCD_CAP_5551 }, { 0x110, 0, 8, 16, CLCD_CAP_888 }, { 0x110, 16, 8, 0, CLCD_CAP_888 }, { 0x111, 4, 14, 20, CLCD_CAP_444 }, { 0x111, 3, 11, 19, CLCD_CAP_444 | CLCD_CAP_5551 }, { 0x111, 3, 10, 19, CLCD_CAP_444 | CLCD_CAP_5551 | CLCD_CAP_565 }, { 0x111, 0, 8, 16, CLCD_CAP_444 | CLCD_CAP_5551 | CLCD_CAP_565 | CLCD_CAP_888 }, }; int i; /* Bypass pixel clock divider */ fb->panel->tim2 |= TIM2_BCD; /* TFT display, vert. comp. interrupt at the start of the back porch */ fb->panel->cntl |= CNTL_LCDTFT | CNTL_LCDVCOMP(1); fb->panel->caps = 0; /* Match the setup with known variants */ for (i = 0; i < ARRAY_SIZE(panels) && !fb->panel->caps; i++) { if (amba_part(fb->dev) != panels[i].part) continue; if (g0 != panels[i].g0) continue; if (r0 == panels[i].r0 && b0 == panels[i].b0) fb->panel->caps = panels[i].caps; } /* * If we actually physically connected the R lines to B and * vice versa */ if (r0 != 0 && b0 == 0) fb->panel->bgr_connection = true; return fb->panel->caps ? 0 : -EINVAL; } static int clcdfb_of_init_display(struct clcd_fb *fb) { struct device_node *endpoint, *panel; int err; unsigned int bpp; u32 max_bandwidth; u32 tft_r0b0g0[3]; fb->panel = devm_kzalloc(&fb->dev->dev, sizeof(*fb->panel), GFP_KERNEL); if (!fb->panel) return -ENOMEM; /* * Fetch the panel endpoint. */ endpoint = of_graph_get_next_endpoint(fb->dev->dev.of_node, NULL); if (!endpoint) return -ENODEV; panel = of_graph_get_remote_port_parent(endpoint); if (!panel) return -ENODEV; err = clcdfb_of_get_backlight(panel, fb->panel); if (err) return err; err = clcdfb_of_get_mode(&fb->dev->dev, panel, fb->panel); if (err) return err; err = of_property_read_u32(fb->dev->dev.of_node, "max-memory-bandwidth", &max_bandwidth); if (!err) { /* * max_bandwidth is in bytes per second and pixclock in * pico-seconds, so the maximum allowed bits per pixel is * 8 * max_bandwidth / (PICOS2KHZ(pixclock) * 1000) * Rearrange this calculation to avoid overflow and then ensure * result is a valid format. */ bpp = max_bandwidth / (1000 / 8) / PICOS2KHZ(fb->panel->mode.pixclock); bpp = rounddown_pow_of_two(bpp); if (bpp > 32) bpp = 32; } else bpp = 32; fb->panel->bpp = bpp; #ifdef CONFIG_CPU_BIG_ENDIAN fb->panel->cntl |= CNTL_BEBO; #endif fb->panel->width = -1; fb->panel->height = -1; if (of_property_read_u32_array(endpoint, "arm,pl11x,tft-r0g0b0-pads", tft_r0b0g0, ARRAY_SIZE(tft_r0b0g0)) != 0) return -ENOENT; return clcdfb_of_init_tft_panel(fb, tft_r0b0g0[0], tft_r0b0g0[1], tft_r0b0g0[2]); } static int clcdfb_of_vram_setup(struct clcd_fb *fb) { int err; struct device_node *memory; u64 size; err = clcdfb_of_init_display(fb); if (err) return err; memory = of_parse_phandle(fb->dev->dev.of_node, "memory-region", 0); if (!memory) return -ENODEV; fb->fb.screen_base = of_iomap(memory, 0); if (!fb->fb.screen_base) return -ENOMEM; fb->fb.fix.smem_start = of_translate_address(memory, of_get_address(memory, 0, &size, NULL)); fb->fb.fix.smem_len = size; return 0; } static int clcdfb_of_vram_mmap(struct clcd_fb *fb, struct vm_area_struct *vma) { unsigned long off, user_size, kernel_size; off = vma->vm_pgoff << PAGE_SHIFT; user_size = vma->vm_end - vma->vm_start; kernel_size = fb->fb.fix.smem_len; if (off >= kernel_size || user_size > (kernel_size - off)) return -ENXIO; return remap_pfn_range(vma, vma->vm_start, __phys_to_pfn(fb->fb.fix.smem_start) + vma->vm_pgoff, user_size, pgprot_writecombine(vma->vm_page_prot)); } static void clcdfb_of_vram_remove(struct clcd_fb *fb) { iounmap(fb->fb.screen_base); } static int clcdfb_of_dma_setup(struct clcd_fb *fb) { unsigned long framesize; dma_addr_t dma; int err; err = clcdfb_of_init_display(fb); if (err) return err; framesize = PAGE_ALIGN(fb->panel->mode.xres * fb->panel->mode.yres * fb->panel->bpp / 8); fb->fb.screen_base = dma_alloc_coherent(&fb->dev->dev, framesize, &dma, GFP_KERNEL); if (!fb->fb.screen_base) return -ENOMEM; fb->fb.fix.smem_start = dma; fb->fb.fix.smem_len = framesize; return 0; } static int clcdfb_of_dma_mmap(struct clcd_fb *fb, struct vm_area_struct *vma) { return dma_mmap_wc(&fb->dev->dev, vma, fb->fb.screen_base, fb->fb.fix.smem_start, fb->fb.fix.smem_len); } static void clcdfb_of_dma_remove(struct clcd_fb *fb) { dma_free_coherent(&fb->dev->dev, fb->fb.fix.smem_len, fb->fb.screen_base, fb->fb.fix.smem_start); } static struct clcd_board *clcdfb_of_get_board(struct amba_device *dev) { struct clcd_board *board = devm_kzalloc(&dev->dev, sizeof(*board), GFP_KERNEL); struct device_node *node = dev->dev.of_node; if (!board) return NULL; board->name = of_node_full_name(node); board->caps = CLCD_CAP_ALL; board->check = clcdfb_check; board->decode = clcdfb_decode; if (of_find_property(node, "memory-region", NULL)) { board->setup = clcdfb_of_vram_setup; board->mmap = clcdfb_of_vram_mmap; board->remove = clcdfb_of_vram_remove; } else { board->setup = clcdfb_of_dma_setup; board->mmap = clcdfb_of_dma_mmap; board->remove = clcdfb_of_dma_remove; } return board; } #else static struct clcd_board *clcdfb_of_get_board(struct amba_device *dev) { return NULL; } #endif static int clcdfb_probe(struct amba_device *dev, const struct amba_id *id) { struct clcd_board *board = dev_get_platdata(&dev->dev); struct clcd_fb *fb; int ret; if (!board) board = clcdfb_of_get_board(dev); if (!board) return -EINVAL; ret = dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)); if (ret) goto out; ret = amba_request_regions(dev, NULL); if (ret) { printk(KERN_ERR "CLCD: unable to reserve regs region\n"); goto out; } fb = kzalloc(sizeof(*fb), GFP_KERNEL); if (!fb) { ret = -ENOMEM; goto free_region; } fb->dev = dev; fb->board = board; dev_info(&fb->dev->dev, "PL%03x designer %02x rev%u at 0x%08llx\n", amba_part(dev), amba_manf(dev), amba_rev(dev), (unsigned long long)dev->res.start); ret = fb->board->setup(fb); if (ret) goto free_fb; ret = clcdfb_register(fb); if (ret == 0) { amba_set_drvdata(dev, fb); goto out; } fb->board->remove(fb); free_fb: kfree(fb); free_region: amba_release_regions(dev); out: return ret; } static int clcdfb_remove(struct amba_device *dev) { struct clcd_fb *fb = amba_get_drvdata(dev); clcdfb_disable(fb); unregister_framebuffer(&fb->fb); if (fb->fb.cmap.len) fb_dealloc_cmap(&fb->fb.cmap); iounmap(fb->regs); clk_unprepare(fb->clk); clk_put(fb->clk); fb->board->remove(fb); kfree(fb); amba_release_regions(dev); return 0; } static const struct amba_id clcdfb_id_table[] = { { .id = 0x00041110, .mask = 0x000ffffe, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, clcdfb_id_table); static struct amba_driver clcd_driver = { .drv = { .name = "clcd-pl11x", }, .probe = clcdfb_probe, .remove = clcdfb_remove, .id_table = clcdfb_id_table, }; static int __init amba_clcdfb_init(void) { if (fb_get_options("ambafb", NULL)) return -ENODEV; return amba_driver_register(&clcd_driver); } module_init(amba_clcdfb_init); static void __exit amba_clcdfb_exit(void) { amba_driver_unregister(&clcd_driver); } module_exit(amba_clcdfb_exit); MODULE_DESCRIPTION("ARM PrimeCell PL110 CLCD core driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1