Contributors: 11
Author Tokens Token Proportion Commits Commit Proportion
David Gibson 507 43.74% 2 4.55%
Christophe Leroy 405 34.94% 17 38.64%
Benjamin Herrenschmidt 157 13.55% 6 13.64%
Aneesh Kumar K.V 46 3.97% 7 15.91%
Kumar Gala 32 2.76% 5 11.36%
Kirill A. Shutemov 4 0.35% 2 4.55%
Christoph Hellwig 3 0.26% 1 2.27%
Anton Blanchard 2 0.17% 1 2.27%
Peter Zijlstra 1 0.09% 1 2.27%
Greg Kroah-Hartman 1 0.09% 1 2.27%
Jason Gunthorpe 1 0.09% 1 2.27%
Total 1159 44


/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
#define _ASM_POWERPC_NOHASH_32_PGTABLE_H

#define __ARCH_USE_5LEVEL_HACK
#include <asm-generic/pgtable-nopmd.h>

#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/mmu.h>			/* For sub-arch specific PPC_PIN_SIZE */
#include <asm/asm-405.h>

#ifdef CONFIG_44x
extern int icache_44x_need_flush;
#endif

#endif /* __ASSEMBLY__ */

#define PTE_INDEX_SIZE	PTE_SHIFT
#define PMD_INDEX_SIZE	0
#define PUD_INDEX_SIZE	0
#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)

#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
#define PUD_CACHE_INDEX	PUD_INDEX_SIZE

#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
#define PMD_TABLE_SIZE	0
#define PUD_TABLE_SIZE	0
#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
#endif	/* __ASSEMBLY__ */

#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)

/*
 * The normal case is that PTEs are 32-bits and we have a 1-page
 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
 *
 * For any >32-bit physical address platform, we can use the following
 * two level page table layout where the pgdir is 8KB and the MS 13 bits
 * are an index to the second level table.  The combined pgdir/pmd first
 * level has 2048 entries and the second level has 512 64-bit PTE entries.
 * -Matt
 */
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS		0

#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_ADDRESS	0UL

#define pte_ERROR(e) \
	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
		(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))

#ifndef __ASSEMBLY__

int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);

#endif /* !__ASSEMBLY__ */


/*
 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
 * value (for now) on others, from where we can start layout kernel
 * virtual space that goes below PKMAP and FIXMAP
 */
#include <asm/fixmap.h>

/*
 * ioremap_bot starts at that address. Early ioremaps move down from there,
 * until mem_init() at which point this becomes the top of the vmalloc
 * and ioremap space
 */
#ifdef CONFIG_HIGHMEM
#define IOREMAP_TOP	PKMAP_BASE
#else
#define IOREMAP_TOP	FIXADDR_START
#endif

/* PPC32 shares vmalloc area with ioremap */
#define IOREMAP_START	VMALLOC_START
#define IOREMAP_END	VMALLOC_END

/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 16MB value just means that there will be a 64MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * We no longer map larger than phys RAM with the BATs so we don't have
 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 * about clashes between our early calls to ioremap() that start growing down
 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 * we actually run into our mappings setup in the early boot with the VM
 * system.  This really does become a problem for machines with good amounts
 * of RAM.  -- Cort
 */
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#define VMALLOC_END	ioremap_bot

/*
 * Bits in a linux-style PTE.  These match the bits in the
 * (hardware-defined) PowerPC PTE as closely as possible.
 */

#if defined(CONFIG_40x)
#include <asm/nohash/32/pte-40x.h>
#elif defined(CONFIG_44x)
#include <asm/nohash/32/pte-44x.h>
#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
#include <asm/nohash/pte-book3e.h>
#elif defined(CONFIG_FSL_BOOKE)
#include <asm/nohash/32/pte-fsl-booke.h>
#elif defined(CONFIG_PPC_8xx)
#include <asm/nohash/32/pte-8xx.h>
#endif

/*
 * Location of the PFN in the PTE. Most 32-bit platforms use the same
 * as _PAGE_SHIFT here (ie, naturally aligned).
 * Platform who don't just pre-define the value so we don't override it here.
 */
#ifndef PTE_RPN_SHIFT
#define PTE_RPN_SHIFT	(PAGE_SHIFT)
#endif

/*
 * The mask covered by the RPN must be a ULL on 32-bit platforms with
 * 64-bit PTEs.
 */
#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
#else
#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
#endif

/*
 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 * pgprot changes.
 */
#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)

#ifndef __ASSEMBLY__

#define pte_clear(mm, addr, ptep) \
	do { pte_update(ptep, ~0, 0); } while (0)

#ifndef pte_mkwrite
static inline pte_t pte_mkwrite(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_RW);
}
#endif

static inline pte_t pte_mkdirty(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_DIRTY);
}

static inline pte_t pte_mkyoung(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_ACCESSED);
}

#ifndef pte_wrprotect
static inline pte_t pte_wrprotect(pte_t pte)
{
	return __pte(pte_val(pte) & ~_PAGE_RW);
}
#endif

static inline pte_t pte_mkexec(pte_t pte)
{
	return __pte(pte_val(pte) | _PAGE_EXEC);
}

#define pmd_none(pmd)		(!pmd_val(pmd))
#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
static inline void pmd_clear(pmd_t *pmdp)
{
	*pmdp = __pmd(0);
}



/*
 * PTE updates. This function is called whenever an existing
 * valid PTE is updated. This does -not- include set_pte_at()
 * which nowadays only sets a new PTE.
 *
 * Depending on the type of MMU, we may need to use atomic updates
 * and the PTE may be either 32 or 64 bit wide. In the later case,
 * when using atomic updates, only the low part of the PTE is
 * accessed atomically.
 *
 * In addition, on 44x, we also maintain a global flag indicating
 * that an executable user mapping was modified, which is needed
 * to properly flush the virtually tagged instruction cache of
 * those implementations.
 */
#ifndef CONFIG_PTE_64BIT
static inline unsigned long pte_update(pte_t *p,
				       unsigned long clr,
				       unsigned long set)
{
#ifdef PTE_ATOMIC_UPDATES
	unsigned long old, tmp;

	__asm__ __volatile__("\
1:	lwarx	%0,0,%3\n\
	andc	%1,%0,%4\n\
	or	%1,%1,%5\n"
	PPC405_ERR77(0,%3)
"	stwcx.	%1,0,%3\n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*p)
	: "r" (p), "r" (clr), "r" (set), "m" (*p)
	: "cc" );
#else /* PTE_ATOMIC_UPDATES */
	unsigned long old = pte_val(*p);
	unsigned long new = (old & ~clr) | set;

#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
	p->pte = p->pte1 = p->pte2 = p->pte3 = new;
#else
	*p = __pte(new);
#endif
#endif /* !PTE_ATOMIC_UPDATES */

#ifdef CONFIG_44x
	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
		icache_44x_need_flush = 1;
#endif
	return old;
}
#else /* CONFIG_PTE_64BIT */
static inline unsigned long long pte_update(pte_t *p,
					    unsigned long clr,
					    unsigned long set)
{
#ifdef PTE_ATOMIC_UPDATES
	unsigned long long old;
	unsigned long tmp;

	__asm__ __volatile__("\
1:	lwarx	%L0,0,%4\n\
	lwzx	%0,0,%3\n\
	andc	%1,%L0,%5\n\
	or	%1,%1,%6\n"
	PPC405_ERR77(0,%3)
"	stwcx.	%1,0,%4\n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*p)
	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
	: "cc" );
#else /* PTE_ATOMIC_UPDATES */
	unsigned long long old = pte_val(*p);
	*p = __pte((old & ~(unsigned long long)clr) | set);
#endif /* !PTE_ATOMIC_UPDATES */

#ifdef CONFIG_44x
	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
		icache_44x_need_flush = 1;
#endif
	return old;
}
#endif /* CONFIG_PTE_64BIT */

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
{
	unsigned long old;
	old = pte_update(ptep, _PAGE_ACCESSED, 0);
	return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
				       pte_t *ptep)
{
	return __pte(pte_update(ptep, ~0, 0));
}

#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pte_t *ptep)
{
	unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
	unsigned long set = pte_val(pte_wrprotect(__pte(0)));

	pte_update(ptep, clr, set);
}

static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
					   pte_t *ptep, pte_t entry,
					   unsigned long address,
					   int psize)
{
	pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
	pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
	unsigned long set = pte_val(entry) & pte_val(pte_set);
	unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);

	pte_update(ptep, clr, set);

	flush_tlb_page(vma, address);
}

static inline int pte_young(pte_t pte)
{
	return pte_val(pte) & _PAGE_ACCESSED;
}

#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B)	((pte_val(A) ^ pte_val(B)) == 0)

/*
 * Note that on Book E processors, the pmd contains the kernel virtual
 * (lowmem) address of the pte page.  The physical address is less useful
 * because everything runs with translation enabled (even the TLB miss
 * handler).  On everything else the pmd contains the physical address
 * of the pte page.  -- paulus
 */
#ifndef CONFIG_BOOKE
#define pmd_page_vaddr(pmd)	\
	((unsigned long)__va(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
#define pmd_page(pmd)		\
	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
#else
#define pmd_page_vaddr(pmd)	\
	((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
#define pmd_page(pmd)		\
	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
#endif

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* to find an entry in a page-table-directory */
#define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))

/* Find an entry in the third-level page table.. */
#define pte_index(address)		\
	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr)	\
	(pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \
				  pte_index(addr))
#define pte_offset_map(dir, addr)		\
	((pte_t *)(kmap_atomic(pmd_page(*(dir))) + \
		   (pmd_page_vaddr(*(dir)) & ~PAGE_MASK)) + pte_index(addr))
#define pte_unmap(pte)		kunmap_atomic(pte)

/*
 * Encode and decode a swap entry.
 * Note that the bits we use in a PTE for representing a swap entry
 * must not include the _PAGE_PRESENT bit.
 *   -- paulus
 */
#define __swp_type(entry)		((entry).val & 0x1f)
#define __swp_offset(entry)		((entry).val >> 5)
#define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })

#endif /* !__ASSEMBLY__ */

#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */