Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Graf | 1855 | 92.56% | 15 | 62.50% |
Paul Mackerras | 142 | 7.09% | 5 | 20.83% |
Simon Guo | 3 | 0.15% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.10% | 1 | 4.17% |
Santosh Sivaraj | 1 | 0.05% | 1 | 4.17% |
Vipin K Parashar | 1 | 0.05% | 1 | 4.17% |
Total | 2004 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright SUSE Linux Products GmbH 2009 * * Authors: Alexander Graf <agraf@suse.de> */ #include <linux/types.h> #include <linux/string.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/highmem.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> /* #define DEBUG_MMU */ /* #define DEBUG_MMU_PTE */ /* #define DEBUG_MMU_PTE_IP 0xfff14c40 */ #ifdef DEBUG_MMU #define dprintk(X...) printk(KERN_INFO X) #else #define dprintk(X...) do { } while(0) #endif #ifdef DEBUG_MMU_PTE #define dprintk_pte(X...) printk(KERN_INFO X) #else #define dprintk_pte(X...) do { } while(0) #endif #define PTEG_FLAG_ACCESSED 0x00000100 #define PTEG_FLAG_DIRTY 0x00000080 #ifndef SID_SHIFT #define SID_SHIFT 28 #endif static inline bool check_debug_ip(struct kvm_vcpu *vcpu) { #ifdef DEBUG_MMU_PTE_IP return vcpu->arch.regs.nip == DEBUG_MMU_PTE_IP; #else return true; #endif } static inline u32 sr_vsid(u32 sr_raw) { return sr_raw & 0x0fffffff; } static inline bool sr_valid(u32 sr_raw) { return (sr_raw & 0x80000000) ? false : true; } static inline bool sr_ks(u32 sr_raw) { return (sr_raw & 0x40000000) ? true: false; } static inline bool sr_kp(u32 sr_raw) { return (sr_raw & 0x20000000) ? true: false; } static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *pte, bool data, bool iswrite); static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, u64 *vsid); static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr) { return kvmppc_get_sr(vcpu, (eaddr >> 28) & 0xf); } static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr, bool data) { u64 vsid; struct kvmppc_pte pte; if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data, false)) return pte.vpage; kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16); } static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu) { kvmppc_set_msr(vcpu, 0); } static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu *vcpu, u32 sre, gva_t eaddr, bool primary) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u32 page, hash, pteg, htabmask; hva_t r; page = (eaddr & 0x0FFFFFFF) >> 12; htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0; hash = ((sr_vsid(sre) ^ page) << 6); if (!primary) hash = ~hash; hash &= htabmask; pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash; dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n", kvmppc_get_pc(vcpu), eaddr, vcpu_book3s->sdr1, pteg, sr_vsid(sre)); r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT); if (kvm_is_error_hva(r)) return r; return r | (pteg & ~PAGE_MASK); } static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary) { return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) | (primary ? 0 : 0x40) | 0x80000000; } static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *pte, bool data, bool iswrite) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); struct kvmppc_bat *bat; int i; for (i = 0; i < 8; i++) { if (data) bat = &vcpu_book3s->dbat[i]; else bat = &vcpu_book3s->ibat[i]; if (kvmppc_get_msr(vcpu) & MSR_PR) { if (!bat->vp) continue; } else { if (!bat->vs) continue; } if (check_debug_ip(vcpu)) { dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n", data ? 'd' : 'i', i, eaddr, bat->bepi, bat->bepi_mask); } if ((eaddr & bat->bepi_mask) == bat->bepi) { u64 vsid; kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); vsid <<= 16; pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid; pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask); pte->may_read = bat->pp; pte->may_write = bat->pp > 1; pte->may_execute = true; if (!pte->may_read) { printk(KERN_INFO "BAT is not readable!\n"); continue; } if (iswrite && !pte->may_write) { dprintk_pte("BAT is read-only!\n"); continue; } return 0; } } return -ENOENT; } static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *pte, bool data, bool iswrite, bool primary) { u32 sre; hva_t ptegp; u32 pteg[16]; u32 pte0, pte1; u32 ptem = 0; int i; int found = 0; sre = find_sr(vcpu, eaddr); dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28, sr_vsid(sre), sre); pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data); ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu, sre, eaddr, primary); if (kvm_is_error_hva(ptegp)) { printk(KERN_INFO "KVM: Invalid PTEG!\n"); goto no_page_found; } ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary); if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) { printk_ratelimited(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp); goto no_page_found; } for (i=0; i<16; i+=2) { pte0 = be32_to_cpu(pteg[i]); pte1 = be32_to_cpu(pteg[i + 1]); if (ptem == pte0) { u8 pp; pte->raddr = (pte1 & ~(0xFFFULL)) | (eaddr & 0xFFF); pp = pte1 & 3; if ((sr_kp(sre) && (kvmppc_get_msr(vcpu) & MSR_PR)) || (sr_ks(sre) && !(kvmppc_get_msr(vcpu) & MSR_PR))) pp |= 4; pte->may_write = false; pte->may_read = false; pte->may_execute = true; switch (pp) { case 0: case 1: case 2: case 6: pte->may_write = true; /* fall through */ case 3: case 5: case 7: pte->may_read = true; break; } dprintk_pte("MMU: Found PTE -> %x %x - %x\n", pte0, pte1, pp); found = 1; break; } } /* Update PTE C and A bits, so the guest's swapper knows we used the page */ if (found) { u32 pte_r = pte1; char __user *addr = (char __user *) (ptegp + (i+1) * sizeof(u32)); /* * Use single-byte writes to update the HPTE, to * conform to what real hardware does. */ if (pte->may_read && !(pte_r & PTEG_FLAG_ACCESSED)) { pte_r |= PTEG_FLAG_ACCESSED; put_user(pte_r >> 8, addr + 2); } if (iswrite && pte->may_write && !(pte_r & PTEG_FLAG_DIRTY)) { pte_r |= PTEG_FLAG_DIRTY; put_user(pte_r, addr + 3); } if (!pte->may_read || (iswrite && !pte->may_write)) return -EPERM; return 0; } no_page_found: if (check_debug_ip(vcpu)) { dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n", to_book3s(vcpu)->sdr1, ptegp); for (i=0; i<16; i+=2) { dprintk_pte(" %02d: 0x%x - 0x%x (0x%x)\n", i, be32_to_cpu(pteg[i]), be32_to_cpu(pteg[i+1]), ptem); } } return -ENOENT; } static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *pte, bool data, bool iswrite) { int r; ulong mp_ea = vcpu->arch.magic_page_ea; pte->eaddr = eaddr; pte->page_size = MMU_PAGE_4K; /* Magic page override */ if (unlikely(mp_ea) && unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) && !(kvmppc_get_msr(vcpu) & MSR_PR)) { pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data); pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff); pte->raddr &= KVM_PAM; pte->may_execute = true; pte->may_read = true; pte->may_write = true; return 0; } r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data, iswrite); if (r < 0) r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, iswrite, true); if (r == -ENOENT) r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, iswrite, false); return r; } static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum) { return kvmppc_get_sr(vcpu, srnum); } static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum, ulong value) { kvmppc_set_sr(vcpu, srnum, value); kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT); } static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large) { int i; struct kvm_vcpu *v; /* flush this VA on all cpus */ kvm_for_each_vcpu(i, v, vcpu->kvm) kvmppc_mmu_pte_flush(v, ea, 0x0FFFF000); } static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid, u64 *vsid) { ulong ea = esid << SID_SHIFT; u32 sr; u64 gvsid = esid; u64 msr = kvmppc_get_msr(vcpu); if (msr & (MSR_DR|MSR_IR)) { sr = find_sr(vcpu, ea); if (sr_valid(sr)) gvsid = sr_vsid(sr); } /* In case we only have one of MSR_IR or MSR_DR set, let's put that in the real-mode context (and hope RM doesn't access high memory) */ switch (msr & (MSR_DR|MSR_IR)) { case 0: *vsid = VSID_REAL | esid; break; case MSR_IR: *vsid = VSID_REAL_IR | gvsid; break; case MSR_DR: *vsid = VSID_REAL_DR | gvsid; break; case MSR_DR|MSR_IR: if (sr_valid(sr)) *vsid = sr_vsid(sr); else *vsid = VSID_BAT | gvsid; break; default: BUG(); } if (msr & MSR_PR) *vsid |= VSID_PR; return 0; } static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu) { return true; } void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu) { struct kvmppc_mmu *mmu = &vcpu->arch.mmu; mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin; mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin; mmu->xlate = kvmppc_mmu_book3s_32_xlate; mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr; mmu->tlbie = kvmppc_mmu_book3s_32_tlbie; mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid; mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp; mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32; mmu->slbmte = NULL; mmu->slbmfee = NULL; mmu->slbmfev = NULL; mmu->slbfee = NULL; mmu->slbie = NULL; mmu->slbia = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1