Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mundt | 1160 | 62.77% | 12 | 34.29% |
Stuart Menefy | 421 | 22.78% | 4 | 11.43% |
Linus Torvalds (pre-git) | 104 | 5.63% | 1 | 2.86% |
Kautuk Consul | 30 | 1.62% | 1 | 2.86% |
Nicholas Piggin | 29 | 1.57% | 1 | 2.86% |
Matt Fleming | 23 | 1.24% | 2 | 5.71% |
Johannes Weiner | 21 | 1.14% | 1 | 2.86% |
Linus Torvalds | 18 | 0.97% | 2 | 5.71% |
David Rientjes | 12 | 0.65% | 1 | 2.86% |
Ingo Molnar | 7 | 0.38% | 2 | 5.71% |
David Hildenbrand | 5 | 0.27% | 1 | 2.86% |
Eric W. Biedermann | 4 | 0.22% | 2 | 5.71% |
Shaohua Li | 4 | 0.22% | 1 | 2.86% |
Magnus Damm | 3 | 0.16% | 1 | 2.86% |
David Howells | 3 | 0.16% | 1 | 2.86% |
Souptick Joarder | 2 | 0.11% | 1 | 2.86% |
Anshuman Khandual | 2 | 0.11% | 1 | 2.86% |
Total | 1848 | 35 |
/* * Page fault handler for SH with an MMU. * * Copyright (C) 1999 Niibe Yutaka * Copyright (C) 2003 - 2012 Paul Mundt * * Based on linux/arch/i386/mm/fault.c: * Copyright (C) 1995 Linus Torvalds * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/hardirq.h> #include <linux/kprobes.h> #include <linux/perf_event.h> #include <linux/kdebug.h> #include <linux/uaccess.h> #include <asm/io_trapped.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include <asm/traps.h> static void force_sig_info_fault(int si_signo, int si_code, unsigned long address) { force_sig_fault(si_signo, si_code, (void __user *)address); } /* * This is useful to dump out the page tables associated with * 'addr' in mm 'mm'. */ static void show_pte(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; if (mm) { pgd = mm->pgd; } else { pgd = get_TTB(); if (unlikely(!pgd)) pgd = swapper_pg_dir; } printk(KERN_ALERT "pgd = %p\n", pgd); pgd += pgd_index(addr); printk(KERN_ALERT "[%08lx] *pgd=%0*Lx", addr, (u32)(sizeof(*pgd) * 2), (u64)pgd_val(*pgd)); do { pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) break; if (pgd_bad(*pgd)) { printk("(bad)"); break; } pud = pud_offset(pgd, addr); if (PTRS_PER_PUD != 1) printk(", *pud=%0*Lx", (u32)(sizeof(*pud) * 2), (u64)pud_val(*pud)); if (pud_none(*pud)) break; if (pud_bad(*pud)) { printk("(bad)"); break; } pmd = pmd_offset(pud, addr); if (PTRS_PER_PMD != 1) printk(", *pmd=%0*Lx", (u32)(sizeof(*pmd) * 2), (u64)pmd_val(*pmd)); if (pmd_none(*pmd)) break; if (pmd_bad(*pmd)) { printk("(bad)"); break; } /* We must not map this if we have highmem enabled */ if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) break; pte = pte_offset_kernel(pmd, addr); printk(", *pte=%0*Lx", (u32)(sizeof(*pte) * 2), (u64)pte_val(*pte)); } while (0); printk("\n"); } static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pgd += index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) return NULL; pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) return NULL; if (!pud_present(*pud)) set_pud(pud, *pud_k); pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) return NULL; if (!pmd_present(*pmd)) set_pmd(pmd, *pmd_k); else { /* * The page tables are fully synchronised so there must * be another reason for the fault. Return NULL here to * signal that we have not taken care of the fault. */ BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); return NULL; } return pmd_k; } #ifdef CONFIG_SH_STORE_QUEUES #define __FAULT_ADDR_LIMIT P3_ADDR_MAX #else #define __FAULT_ADDR_LIMIT VMALLOC_END #endif /* * Handle a fault on the vmalloc or module mapping area */ static noinline int vmalloc_fault(unsigned long address) { pgd_t *pgd_k; pmd_t *pmd_k; pte_t *pte_k; /* Make sure we are in vmalloc/module/P3 area: */ if (!(address >= VMALLOC_START && address < __FAULT_ADDR_LIMIT)) return -1; /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ pgd_k = get_TTB(); pmd_k = vmalloc_sync_one(pgd_k, address); if (!pmd_k) return -1; pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; } static void show_fault_oops(struct pt_regs *regs, unsigned long address) { if (!oops_may_print()) return; printk(KERN_ALERT "BUG: unable to handle kernel "); if (address < PAGE_SIZE) printk(KERN_CONT "NULL pointer dereference"); else printk(KERN_CONT "paging request"); printk(KERN_CONT " at %08lx\n", address); printk(KERN_ALERT "PC:"); printk_address(regs->pc, 1); show_pte(NULL, address); } static noinline void no_context(struct pt_regs *regs, unsigned long error_code, unsigned long address) { /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; if (handle_trapped_io(regs, address)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); show_fault_oops(regs, address); die("Oops", regs, error_code); bust_spinlocks(0); do_exit(SIGKILL); } static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address, int si_code) { /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { /* * It's possible to have interrupts off here: */ local_irq_enable(); force_sig_info_fault(SIGSEGV, si_code, address); return; } no_context(regs, error_code, address); } static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address, int si_code) { struct mm_struct *mm = current->mm; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ up_read(&mm->mmap_sem); __bad_area_nosemaphore(regs, error_code, address, si_code); } static noinline void bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area(regs, error_code, address, SEGV_MAPERR); } static noinline void bad_area_access_error(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area(regs, error_code, address, SEGV_ACCERR); } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die: */ if (!user_mode(regs)) no_context(regs, error_code, address); force_sig_info_fault(SIGBUS, BUS_ADRERR, address); } static noinline int mm_fault_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, vm_fault_t fault) { /* * Pagefault was interrupted by SIGKILL. We have no reason to * continue pagefault. */ if (fatal_signal_pending(current)) { if (!(fault & VM_FAULT_RETRY)) up_read(¤t->mm->mmap_sem); if (!user_mode(regs)) no_context(regs, error_code, address); return 1; } if (!(fault & VM_FAULT_ERROR)) return 0; if (fault & VM_FAULT_OOM) { /* Kernel mode? Handle exceptions or die: */ if (!user_mode(regs)) { up_read(¤t->mm->mmap_sem); no_context(regs, error_code, address); return 1; } up_read(¤t->mm->mmap_sem); /* * We ran out of memory, call the OOM killer, and return the * userspace (which will retry the fault, or kill us if we got * oom-killed): */ pagefault_out_of_memory(); } else { if (fault & VM_FAULT_SIGBUS) do_sigbus(regs, error_code, address); else if (fault & VM_FAULT_SIGSEGV) bad_area(regs, error_code, address); else BUG(); } return 1; } static inline int access_error(int error_code, struct vm_area_struct *vma) { if (error_code & FAULT_CODE_WRITE) { /* write, present and write, not present: */ if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; return 0; } /* ITLB miss on NX page */ if (unlikely((error_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC))) return 1; /* read, not present: */ if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) return 1; return 0; } static int fault_in_kernel_space(unsigned long address) { return address >= TASK_SIZE; } /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address) { unsigned long vec; struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; vm_fault_t fault; unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; tsk = current; mm = tsk->mm; vec = lookup_exception_vector(); /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(fault_in_kernel_space(address))) { if (vmalloc_fault(address) >= 0) return; if (kprobe_page_fault(regs, vec)) return; bad_area_nosemaphore(regs, error_code, address); return; } if (unlikely(kprobe_page_fault(regs, vec))) return; /* Only enable interrupts if they were on before the fault */ if ((regs->sr & SR_IMASK) != SR_IMASK) local_irq_enable(); perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); /* * If we're in an interrupt, have no user context or are running * with pagefaults disabled then we must not take the fault: */ if (unlikely(faulthandler_disabled() || !mm)) { bad_area_nosemaphore(regs, error_code, address); return; } retry: down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (unlikely(!vma)) { bad_area(regs, error_code, address); return; } if (likely(vma->vm_start <= address)) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { bad_area(regs, error_code, address); return; } if (unlikely(expand_stack(vma, address))) { bad_area(regs, error_code, address); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: if (unlikely(access_error(error_code, vma))) { bad_area_access_error(regs, error_code, address); return; } set_thread_fault_code(error_code); if (user_mode(regs)) flags |= FAULT_FLAG_USER; if (error_code & FAULT_CODE_WRITE) flags |= FAULT_FLAG_WRITE; /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, address, flags); if (unlikely(fault & (VM_FAULT_RETRY | VM_FAULT_ERROR))) if (mm_fault_error(regs, error_code, address, fault)) return; if (flags & FAULT_FLAG_ALLOW_RETRY) { if (fault & VM_FAULT_MAJOR) { tsk->maj_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); } else { tsk->min_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } if (fault & VM_FAULT_RETRY) { flags &= ~FAULT_FLAG_ALLOW_RETRY; flags |= FAULT_FLAG_TRIED; /* * No need to up_read(&mm->mmap_sem) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } } up_read(&mm->mmap_sem); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1