Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 2796 | 99.33% | 5 | 45.45% |
David S. Miller | 15 | 0.53% | 2 | 18.18% |
Linus Torvalds | 1 | 0.04% | 1 | 9.09% |
Sam Ravnborg | 1 | 0.04% | 1 | 9.09% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 9.09% |
Steven Cole | 1 | 0.04% | 1 | 9.09% |
Total | 2815 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * arch/sparc/math-emu/math.c * * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) * Copyright (C) 1999 David S. Miller (davem@redhat.com) * * This is a good place to start if you're trying to understand the * emulation code, because it's pretty simple. What we do is * essentially analyse the instruction to work out what the operation * is and which registers are involved. We then execute the appropriate * FXXXX function. [The floating point queue introduces a minor wrinkle; * see below...] * The fxxxxx.c files each emulate a single insn. They look relatively * simple because the complexity is hidden away in an unholy tangle * of preprocessor macros. * * The first layer of macros is single.h, double.h, quad.h. Generally * these files define macros for working with floating point numbers * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, * for instance. These macros are usually defined as calls to more * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number * of machine words required to store the given IEEE format is passed * as a parameter. [double.h and co check the number of bits in a word * and define FP_ADD_D & co appropriately]. * The generic macros are defined in op-common.h. This is where all * the grotty stuff like handling NaNs is coded. To handle the possible * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() * where wc is the 'number of machine words' parameter (here 2). * These are defined in the third layer of macros: op-1.h, op-2.h * and op-4.h. These handle operations on floating point numbers composed * of 1,2 and 4 machine words respectively. [For example, on sparc64 * doubles are one machine word so macros in double.h eventually use * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] * soft-fp.h is on the same level as op-common.h, and defines some * macros which are independent of both word size and FP format. * Finally, sfp-machine.h is the machine dependent part of the * code: it defines the word size and what type a word is. It also * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h * provide several possible flavours of multiply algorithm, most * of which require that you supply some form of asm or C primitive to * do the actual multiply. (such asm primitives should be defined * in sfp-machine.h too). udivmodti4.c is the same sort of thing. * * There may be some errors here because I'm working from a * SPARC architecture manual V9, and what I really want is V8... * Also, the insns which can generate exceptions seem to be a * greater subset of the FPops than for V9 (for example, FCMPED * has to be emulated on V8). So I think I'm going to have * to emulate them all just to be on the safe side... * * Emulation routines originate from soft-fp package, which is * part of glibc and has appropriate copyrights in it (allegedly). * * NB: on sparc int == long == 4 bytes, long long == 8 bytes. * Most bits of the kernel seem to go for long rather than int, * so we follow that practice... */ /* TODO: * fpsave() saves the FP queue but fpload() doesn't reload it. * Therefore when we context switch or change FPU ownership * we have to check to see if the queue had anything in it and * emulate it if it did. This is going to be a pain. */ #include <linux/types.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/perf_event.h> #include <linux/uaccess.h> #include "sfp-util_32.h" #include <math-emu/soft-fp.h> #include <math-emu/single.h> #include <math-emu/double.h> #include <math-emu/quad.h> #define FLOATFUNC(x) extern int x(void *,void *,void *) /* The Vn labels indicate what version of the SPARC architecture gas thinks * each insn is. This is from the binutils source :-> */ /* quadword instructions */ #define FSQRTQ 0x02b /* v8 */ #define FADDQ 0x043 /* v8 */ #define FSUBQ 0x047 /* v8 */ #define FMULQ 0x04b /* v8 */ #define FDIVQ 0x04f /* v8 */ #define FDMULQ 0x06e /* v8 */ #define FQTOS 0x0c7 /* v8 */ #define FQTOD 0x0cb /* v8 */ #define FITOQ 0x0cc /* v8 */ #define FSTOQ 0x0cd /* v8 */ #define FDTOQ 0x0ce /* v8 */ #define FQTOI 0x0d3 /* v8 */ #define FCMPQ 0x053 /* v8 */ #define FCMPEQ 0x057 /* v8 */ /* single/double instructions (subnormal): should all work */ #define FSQRTS 0x029 /* v7 */ #define FSQRTD 0x02a /* v7 */ #define FADDS 0x041 /* v6 */ #define FADDD 0x042 /* v6 */ #define FSUBS 0x045 /* v6 */ #define FSUBD 0x046 /* v6 */ #define FMULS 0x049 /* v6 */ #define FMULD 0x04a /* v6 */ #define FDIVS 0x04d /* v6 */ #define FDIVD 0x04e /* v6 */ #define FSMULD 0x069 /* v6 */ #define FDTOS 0x0c6 /* v6 */ #define FSTOD 0x0c9 /* v6 */ #define FSTOI 0x0d1 /* v6 */ #define FDTOI 0x0d2 /* v6 */ #define FABSS 0x009 /* v6 */ #define FCMPS 0x051 /* v6 */ #define FCMPES 0x055 /* v6 */ #define FCMPD 0x052 /* v6 */ #define FCMPED 0x056 /* v6 */ #define FMOVS 0x001 /* v6 */ #define FNEGS 0x005 /* v6 */ #define FITOS 0x0c4 /* v6 */ #define FITOD 0x0c8 /* v6 */ #define FSR_TEM_SHIFT 23UL #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT) #define FSR_AEXC_SHIFT 5UL #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT) #define FSR_CEXC_SHIFT 0UL #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); /* Unlike the Sparc64 version (which has a struct fpustate), we * pass the taskstruct corresponding to the task which currently owns the * FPU. This is partly because we don't have the fpustate struct and * partly because the task owning the FPU isn't always current (as is * the case for the Sparc64 port). This is probably SMP-related... * This function returns 1 if all queued insns were emulated successfully. * The test for unimplemented FPop in kernel mode has been moved into * kernel/traps.c for simplicity. */ int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) { /* regs->pc isn't necessarily the PC at which the offending insn is sitting. * The FPU maintains a queue of FPops which cause traps. * When it hits an instruction that requires that the trapped op succeeded * (usually because it reads a reg. that the trapped op wrote) then it * causes this exception. We need to emulate all the insns on the queue * and then allow the op to proceed. * This code should also handle the case where the trap was precise, * in which case the queue length is zero and regs->pc points at the * single FPop to be emulated. (this case is untested, though :->) * You'll need this case if you want to be able to emulate all FPops * because the FPU either doesn't exist or has been software-disabled. * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it * might sound because the Ultra does funky things with a superscalar * architecture.] */ /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ int i; int retcode = 0; /* assume all succeed */ unsigned long insn; perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); #ifdef DEBUG_MATHEMU printk("In do_mathemu()... pc is %08lx\n", regs->pc); printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); for (i = 0; i < fpt->thread.fpqdepth; i++) printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, (unsigned long)fpt->thread.fpqueue[i].insn_addr); #endif if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ #ifdef DEBUG_MATHEMU printk("precise trap at %08lx\n", regs->pc); #endif if (!get_user(insn, (u32 __user *) regs->pc)) { retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); if (retcode) { /* in this case we need to fix up PC & nPC */ regs->pc = regs->npc; regs->npc += 4; } } return retcode; } /* Normal case: need to empty the queue... */ for (i = 0; i < fpt->thread.fpqdepth; i++) { retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); if (!retcode) /* insn failed, no point doing any more */ break; } /* Now empty the queue and clear the queue_not_empty flag */ if (retcode) fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); else fpt->thread.fsr &= ~0x3000; fpt->thread.fpqdepth = 0; return retcode; } /* All routines returning an exception to raise should detect * such exceptions _before_ rounding to be consistent with * the behavior of the hardware in the implemented cases * (and thus with the recommendations in the V9 architecture * manual). * * We return 0 if a SIGFPE should be sent, 1 otherwise. */ static inline int record_exception(unsigned long *pfsr, int eflag) { unsigned long fsr = *pfsr; int would_trap; /* Determine if this exception would have generated a trap. */ would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; /* If trapping, we only want to signal one bit. */ if (would_trap != 0) { eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); if ((eflag & (eflag - 1)) != 0) { if (eflag & FP_EX_INVALID) eflag = FP_EX_INVALID; else if (eflag & FP_EX_OVERFLOW) eflag = FP_EX_OVERFLOW; else if (eflag & FP_EX_UNDERFLOW) eflag = FP_EX_UNDERFLOW; else if (eflag & FP_EX_DIVZERO) eflag = FP_EX_DIVZERO; else if (eflag & FP_EX_INEXACT) eflag = FP_EX_INEXACT; } } /* Set CEXC, here is the rule: * * In general all FPU ops will set one and only one * bit in the CEXC field, this is always the case * when the IEEE exception trap is enabled in TEM. */ fsr &= ~(FSR_CEXC_MASK); fsr |= ((long)eflag << FSR_CEXC_SHIFT); /* Set the AEXC field, rule is: * * If a trap would not be generated, the * CEXC just generated is OR'd into the * existing value of AEXC. */ if (would_trap == 0) fsr |= ((long)eflag << FSR_AEXC_SHIFT); /* If trapping, indicate fault trap type IEEE. */ if (would_trap != 0) fsr |= (1UL << 14); *pfsr = fsr; return (would_trap ? 0 : 1); } typedef union { u32 s; u64 d; u64 q[2]; } *argp; static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) { /* Emulate the given insn, updating fsr and fregs appropriately. */ int type = 0; /* r is rd, b is rs2 and a is rs1. The *u arg tells whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) int freg; argp rs1 = NULL, rs2 = NULL, rd = NULL; FP_DECL_EX; FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); int IR; long fsr; #ifdef DEBUG_MATHEMU printk("In do_mathemu(), emulating %08lx\n", insn); #endif if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { switch ((insn >> 5) & 0x1ff) { case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; case FADDQ: case FSUBQ: case FMULQ: case FDIVQ: TYPE(3,3,1,3,1,3,1); break; case FDMULQ: TYPE(3,3,1,2,1,2,1); break; case FQTOS: TYPE(3,1,1,3,1,0,0); break; case FQTOD: TYPE(3,2,1,3,1,0,0); break; case FITOQ: TYPE(3,3,1,1,0,0,0); break; case FSTOQ: TYPE(3,3,1,1,1,0,0); break; case FDTOQ: TYPE(3,3,1,2,1,0,0); break; case FQTOI: TYPE(3,1,0,3,1,0,0); break; case FSQRTS: TYPE(2,1,1,1,1,0,0); break; case FSQRTD: TYPE(2,2,1,2,1,0,0); break; case FADDD: case FSUBD: case FMULD: case FDIVD: TYPE(2,2,1,2,1,2,1); break; case FADDS: case FSUBS: case FMULS: case FDIVS: TYPE(2,1,1,1,1,1,1); break; case FSMULD: TYPE(2,2,1,1,1,1,1); break; case FDTOS: TYPE(2,1,1,2,1,0,0); break; case FSTOD: TYPE(2,2,1,1,1,0,0); break; case FSTOI: TYPE(2,1,0,1,1,0,0); break; case FDTOI: TYPE(2,1,0,2,1,0,0); break; case FITOS: TYPE(2,1,1,1,0,0,0); break; case FITOD: TYPE(2,2,1,1,0,0,0); break; case FMOVS: case FABSS: case FNEGS: TYPE(2,1,0,1,0,0,0); break; } } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { switch ((insn >> 5) & 0x1ff) { case FCMPS: TYPE(3,0,0,1,1,1,1); break; case FCMPES: TYPE(3,0,0,1,1,1,1); break; case FCMPD: TYPE(3,0,0,2,1,2,1); break; case FCMPED: TYPE(3,0,0,2,1,2,1); break; case FCMPQ: TYPE(3,0,0,3,1,3,1); break; case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; } } if (!type) { /* oops, didn't recognise that FPop */ #ifdef DEBUG_MATHEMU printk("attempt to emulate unrecognised FPop!\n"); #endif return 0; } /* Decode the registers to be used */ freg = (*pfsr >> 14) & 0xf; *pfsr &= ~0x1c000; /* clear the traptype bits */ freg = ((insn >> 14) & 0x1f); switch (type & 0x3) { /* is rs1 single, double or quad? */ case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *pfsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *pfsr |= (6 << 14); return 0; } } rs1 = (argp)&fregs[freg]; switch (type & 0x7) { case 7: FP_UNPACK_QP (QA, rs1); break; case 6: FP_UNPACK_DP (DA, rs1); break; case 5: FP_UNPACK_SP (SA, rs1); break; } freg = (insn & 0x1f); switch ((type >> 3) & 0x3) { /* same again for rs2 */ case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *pfsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *pfsr |= (6 << 14); return 0; } } rs2 = (argp)&fregs[freg]; switch ((type >> 3) & 0x7) { case 7: FP_UNPACK_QP (QB, rs2); break; case 6: FP_UNPACK_DP (DB, rs2); break; case 5: FP_UNPACK_SP (SB, rs2); break; } freg = ((insn >> 25) & 0x1f); switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */ case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ if (freg) { /* V8 has only one set of condition codes, so */ /* anything but 0 in the rd field is an error */ *pfsr |= (6 << 14); /* (should probably flag as invalid opcode */ return 0; /* but SIGFPE will do :-> ) */ } break; case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *pfsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *pfsr |= (6 << 14); return 0; } /* fall through */ case 1: rd = (void *)&fregs[freg]; break; } #ifdef DEBUG_MATHEMU printk("executing insn...\n"); #endif /* do the Right Thing */ switch ((insn >> 5) & 0x1ff) { /* + */ case FADDS: FP_ADD_S (SR, SA, SB); break; case FADDD: FP_ADD_D (DR, DA, DB); break; case FADDQ: FP_ADD_Q (QR, QA, QB); break; /* - */ case FSUBS: FP_SUB_S (SR, SA, SB); break; case FSUBD: FP_SUB_D (DR, DA, DB); break; case FSUBQ: FP_SUB_Q (QR, QA, QB); break; /* * */ case FMULS: FP_MUL_S (SR, SA, SB); break; case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); FP_CONV (D, S, 2, 1, DB, SB); case FMULD: FP_MUL_D (DR, DA, DB); break; case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); FP_CONV (Q, D, 4, 2, QB, DB); case FMULQ: FP_MUL_Q (QR, QA, QB); break; /* / */ case FDIVS: FP_DIV_S (SR, SA, SB); break; case FDIVD: FP_DIV_D (DR, DA, DB); break; case FDIVQ: FP_DIV_Q (QR, QA, QB); break; /* sqrt */ case FSQRTS: FP_SQRT_S (SR, SB); break; case FSQRTD: FP_SQRT_D (DR, DB); break; case FSQRTQ: FP_SQRT_Q (QR, QB); break; /* mov */ case FMOVS: rd->s = rs2->s; break; case FABSS: rd->s = rs2->s & 0x7fffffff; break; case FNEGS: rd->s = rs2->s ^ 0x80000000; break; /* float to int */ case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; /* int to float */ case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; /* float to float */ case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; /* comparison */ case FCMPS: case FCMPES: FP_CMP_S(IR, SB, SA, 3); if (IR == 3 && (((insn >> 5) & 0x1ff) == FCMPES || FP_ISSIGNAN_S(SA) || FP_ISSIGNAN_S(SB))) FP_SET_EXCEPTION (FP_EX_INVALID); break; case FCMPD: case FCMPED: FP_CMP_D(IR, DB, DA, 3); if (IR == 3 && (((insn >> 5) & 0x1ff) == FCMPED || FP_ISSIGNAN_D(DA) || FP_ISSIGNAN_D(DB))) FP_SET_EXCEPTION (FP_EX_INVALID); break; case FCMPQ: case FCMPEQ: FP_CMP_Q(IR, QB, QA, 3); if (IR == 3 && (((insn >> 5) & 0x1ff) == FCMPEQ || FP_ISSIGNAN_Q(QA) || FP_ISSIGNAN_Q(QB))) FP_SET_EXCEPTION (FP_EX_INVALID); } if (!FP_INHIBIT_RESULTS) { switch ((type >> 6) & 0x7) { case 0: fsr = *pfsr; if (IR == -1) IR = 2; /* fcc is always fcc0 */ fsr &= ~0xc00; fsr |= (IR << 10); *pfsr = fsr; break; case 1: rd->s = IR; break; case 5: FP_PACK_SP (rd, SR); break; case 6: FP_PACK_DP (rd, DR); break; case 7: FP_PACK_QP (rd, QR); break; } } if (_fex == 0) return 1; /* success! */ return record_exception(pfsr, _fex); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1