Contributors: 34
Author Tokens Token Proportion Commits Commit Proportion
Linus Torvalds (pre-git) 13674 88.31% 9 13.64%
Chas Williams 1264 8.16% 15 22.73%
David S. Miller 228 1.47% 1 1.52%
Mark Asselstine 68 0.44% 1 1.52%
SF Markus Elfring 25 0.16% 5 7.58%
Arnaldo Carvalho de Melo 25 0.16% 2 3.03%
Tejun Heo 21 0.14% 2 3.03%
Rusty Russell 16 0.10% 1 1.52%
Christophe Jaillet 16 0.10% 1 1.52%
Arnd Bergmann 16 0.10% 1 1.52%
Kåre Särs 13 0.08% 1 1.52%
David Howells 13 0.08% 1 1.52%
Kees Cook 13 0.08% 2 3.03%
Christoph Hellwig 10 0.06% 1 1.52%
Jeff Garzik 10 0.06% 1 1.52%
Andy Shevchenko 9 0.06% 2 3.03%
Linus Torvalds 7 0.05% 3 4.55%
Dan J Williams 7 0.05% 1 1.52%
Randy Dunlap 6 0.04% 1 1.52%
Al Viro 5 0.03% 1 1.52%
Peter Hüwe 5 0.03% 1 1.52%
Andrew Morton 5 0.03% 1 1.52%
Patrick McHardy 5 0.03% 1 1.52%
DaeSeok Youn 4 0.03% 1 1.52%
Ding Tianhong 4 0.03% 1 1.52%
Lance Roy 4 0.03% 1 1.52%
Alan Cox 3 0.02% 1 1.52%
Matthew Wilcox 2 0.01% 1 1.52%
Arvind Yadav 1 0.01% 1 1.52%
H Hartley Sweeten 1 0.01% 1 1.52%
Arun Sharma 1 0.01% 1 1.52%
Thomas Gleixner 1 0.01% 1 1.52%
Harvey Harrison 1 0.01% 1 1.52%
Bhumika Goyal 1 0.01% 1 1.52%
Total 15484 66


// SPDX-License-Identifier: GPL-2.0-only
/*
 * nicstar.c
 *
 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
 *
 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
 *            It was taken from the frle-0.22 device driver.
 *            As the file doesn't have a copyright notice, in the file
 *            nicstarmac.copyright I put the copyright notice from the
 *            frle-0.22 device driver.
 *            Some code is based on the nicstar driver by M. Welsh.
 *
 * Author: Rui Prior (rprior@inescn.pt)
 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
 *
 *
 * (C) INESC 1999
 */

/*
 * IMPORTANT INFORMATION
 *
 * There are currently three types of spinlocks:
 *
 * 1 - Per card interrupt spinlock (to protect structures and such)
 * 2 - Per SCQ scq spinlock
 * 3 - Per card resource spinlock (to access registers, etc.)
 *
 * These must NEVER be grabbed in reverse order.
 *
 */

/* Header files */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/atmdev.h>
#include <linux/atm.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <linux/etherdevice.h>
#include "nicstar.h"
#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
#include "suni.h"
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
#include "idt77105.h"
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */

/* Additional code */

#include "nicstarmac.c"

/* Configurable parameters */

#undef PHY_LOOPBACK
#undef TX_DEBUG
#undef RX_DEBUG
#undef GENERAL_DEBUG
#undef EXTRA_DEBUG

/* Do not touch these */

#ifdef TX_DEBUG
#define TXPRINTK(args...) printk(args)
#else
#define TXPRINTK(args...)
#endif /* TX_DEBUG */

#ifdef RX_DEBUG
#define RXPRINTK(args...) printk(args)
#else
#define RXPRINTK(args...)
#endif /* RX_DEBUG */

#ifdef GENERAL_DEBUG
#define PRINTK(args...) printk(args)
#else
#define PRINTK(args...)
#endif /* GENERAL_DEBUG */

#ifdef EXTRA_DEBUG
#define XPRINTK(args...) printk(args)
#else
#define XPRINTK(args...)
#endif /* EXTRA_DEBUG */

/* Macros */

#define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)

#define NS_DELAY mdelay(1)

#define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))

#ifndef ATM_SKB
#define ATM_SKB(s) (&(s)->atm)
#endif

#define scq_virt_to_bus(scq, p) \
		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))

/* Function declarations */

static u32 ns_read_sram(ns_dev * card, u32 sram_address);
static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
			  int count);
static int ns_init_card(int i, struct pci_dev *pcidev);
static void ns_init_card_error(ns_dev * card, int error);
static scq_info *get_scq(ns_dev *card, int size, u32 scd);
static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
static void push_rxbufs(ns_dev *, struct sk_buff *);
static irqreturn_t ns_irq_handler(int irq, void *dev_id);
static int ns_open(struct atm_vcc *vcc);
static void ns_close(struct atm_vcc *vcc);
static void fill_tst(ns_dev * card, int n, vc_map * vc);
static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
		     struct sk_buff *skb);
static void process_tsq(ns_dev * card);
static void drain_scq(ns_dev * card, scq_info * scq, int pos);
static void process_rsq(ns_dev * card);
static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
#ifdef EXTRA_DEBUG
static void which_list(ns_dev * card, struct sk_buff *skb);
#endif
static void ns_poll(struct timer_list *unused);
static void ns_phy_put(struct atm_dev *dev, unsigned char value,
		       unsigned long addr);
static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);

/* Global variables */

static struct ns_dev *cards[NS_MAX_CARDS];
static unsigned num_cards;
static const struct atmdev_ops atm_ops = {
	.open = ns_open,
	.close = ns_close,
	.ioctl = ns_ioctl,
	.send = ns_send,
	.phy_put = ns_phy_put,
	.phy_get = ns_phy_get,
	.proc_read = ns_proc_read,
	.owner = THIS_MODULE,
};

static struct timer_list ns_timer;
static char *mac[NS_MAX_CARDS];
module_param_array(mac, charp, NULL, 0);
MODULE_LICENSE("GPL");

/* Functions */

static int nicstar_init_one(struct pci_dev *pcidev,
			    const struct pci_device_id *ent)
{
	static int index = -1;
	unsigned int error;

	index++;
	cards[index] = NULL;

	error = ns_init_card(index, pcidev);
	if (error) {
		cards[index--] = NULL;	/* don't increment index */
		goto err_out;
	}

	return 0;
err_out:
	return -ENODEV;
}

static void nicstar_remove_one(struct pci_dev *pcidev)
{
	int i, j;
	ns_dev *card = pci_get_drvdata(pcidev);
	struct sk_buff *hb;
	struct sk_buff *iovb;
	struct sk_buff *lb;
	struct sk_buff *sb;

	i = card->index;

	if (cards[i] == NULL)
		return;

	if (card->atmdev->phy && card->atmdev->phy->stop)
		card->atmdev->phy->stop(card->atmdev);

	/* Stop everything */
	writel(0x00000000, card->membase + CFG);

	/* De-register device */
	atm_dev_deregister(card->atmdev);

	/* Disable PCI device */
	pci_disable_device(pcidev);

	/* Free up resources */
	j = 0;
	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
		dev_kfree_skb_any(hb);
		j++;
	}
	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
	j = 0;
	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
	       card->iovpool.count);
	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
		dev_kfree_skb_any(iovb);
		j++;
	}
	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
		dev_kfree_skb_any(lb);
	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
		dev_kfree_skb_any(sb);
	free_scq(card, card->scq0, NULL);
	for (j = 0; j < NS_FRSCD_NUM; j++) {
		if (card->scd2vc[j] != NULL)
			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
	}
	idr_destroy(&card->idr);
	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
			  card->rsq.org, card->rsq.dma);
	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
			  card->tsq.org, card->tsq.dma);
	free_irq(card->pcidev->irq, card);
	iounmap(card->membase);
	kfree(card);
}

static const struct pci_device_id nicstar_pci_tbl[] = {
	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
	{0,}			/* terminate list */
};

MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);

static struct pci_driver nicstar_driver = {
	.name = "nicstar",
	.id_table = nicstar_pci_tbl,
	.probe = nicstar_init_one,
	.remove = nicstar_remove_one,
};

static int __init nicstar_init(void)
{
	unsigned error = 0;	/* Initialized to remove compile warning */

	XPRINTK("nicstar: nicstar_init() called.\n");

	error = pci_register_driver(&nicstar_driver);

	TXPRINTK("nicstar: TX debug enabled.\n");
	RXPRINTK("nicstar: RX debug enabled.\n");
	PRINTK("nicstar: General debug enabled.\n");
#ifdef PHY_LOOPBACK
	printk("nicstar: using PHY loopback.\n");
#endif /* PHY_LOOPBACK */
	XPRINTK("nicstar: nicstar_init() returned.\n");

	if (!error) {
		timer_setup(&ns_timer, ns_poll, 0);
		ns_timer.expires = jiffies + NS_POLL_PERIOD;
		add_timer(&ns_timer);
	}

	return error;
}

static void __exit nicstar_cleanup(void)
{
	XPRINTK("nicstar: nicstar_cleanup() called.\n");

	del_timer(&ns_timer);

	pci_unregister_driver(&nicstar_driver);

	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
}

static u32 ns_read_sram(ns_dev * card, u32 sram_address)
{
	unsigned long flags;
	u32 data;
	sram_address <<= 2;
	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
	sram_address |= 0x50000000;	/* SRAM read command */
	spin_lock_irqsave(&card->res_lock, flags);
	while (CMD_BUSY(card)) ;
	writel(sram_address, card->membase + CMD);
	while (CMD_BUSY(card)) ;
	data = readl(card->membase + DR0);
	spin_unlock_irqrestore(&card->res_lock, flags);
	return data;
}

static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
			  int count)
{
	unsigned long flags;
	int i, c;
	count--;		/* count range now is 0..3 instead of 1..4 */
	c = count;
	c <<= 2;		/* to use increments of 4 */
	spin_lock_irqsave(&card->res_lock, flags);
	while (CMD_BUSY(card)) ;
	for (i = 0; i <= c; i += 4)
		writel(*(value++), card->membase + i);
	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
	   so card->membase + DR0 == card->membase */
	sram_address <<= 2;
	sram_address &= 0x0007FFFC;
	sram_address |= (0x40000000 | count);
	writel(sram_address, card->membase + CMD);
	spin_unlock_irqrestore(&card->res_lock, flags);
}

static int ns_init_card(int i, struct pci_dev *pcidev)
{
	int j;
	struct ns_dev *card = NULL;
	unsigned char pci_latency;
	unsigned error;
	u32 data;
	u32 u32d[4];
	u32 ns_cfg_rctsize;
	int bcount;
	unsigned long membase;

	error = 0;

	if (pci_enable_device(pcidev)) {
		printk("nicstar%d: can't enable PCI device\n", i);
		error = 2;
		ns_init_card_error(card, error);
		return error;
	}
        if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
                printk(KERN_WARNING
		       "nicstar%d: No suitable DMA available.\n", i);
		error = 2;
		ns_init_card_error(card, error);
		return error;
        }

	card = kmalloc(sizeof(*card), GFP_KERNEL);
	if (!card) {
		printk
		    ("nicstar%d: can't allocate memory for device structure.\n",
		     i);
		error = 2;
		ns_init_card_error(card, error);
		return error;
	}
	cards[i] = card;
	spin_lock_init(&card->int_lock);
	spin_lock_init(&card->res_lock);

	pci_set_drvdata(pcidev, card);

	card->index = i;
	card->atmdev = NULL;
	card->pcidev = pcidev;
	membase = pci_resource_start(pcidev, 1);
	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
	if (!card->membase) {
		printk("nicstar%d: can't ioremap() membase.\n", i);
		error = 3;
		ns_init_card_error(card, error);
		return error;
	}
	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);

	pci_set_master(pcidev);

	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
		printk("nicstar%d: can't read PCI latency timer.\n", i);
		error = 6;
		ns_init_card_error(card, error);
		return error;
	}
#ifdef NS_PCI_LATENCY
	if (pci_latency < NS_PCI_LATENCY) {
		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
		       NS_PCI_LATENCY);
		for (j = 1; j < 4; j++) {
			if (pci_write_config_byte
			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
				break;
		}
		if (j == 4) {
			printk
			    ("nicstar%d: can't set PCI latency timer to %d.\n",
			     i, NS_PCI_LATENCY);
			error = 7;
			ns_init_card_error(card, error);
			return error;
		}
	}
#endif /* NS_PCI_LATENCY */

	/* Clear timer overflow */
	data = readl(card->membase + STAT);
	if (data & NS_STAT_TMROF)
		writel(NS_STAT_TMROF, card->membase + STAT);

	/* Software reset */
	writel(NS_CFG_SWRST, card->membase + CFG);
	NS_DELAY;
	writel(0x00000000, card->membase + CFG);

	/* PHY reset */
	writel(0x00000008, card->membase + GP);
	NS_DELAY;
	writel(0x00000001, card->membase + GP);
	NS_DELAY;
	while (CMD_BUSY(card)) ;
	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
	NS_DELAY;

	/* Detect PHY type */
	while (CMD_BUSY(card)) ;
	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
	while (CMD_BUSY(card)) ;
	data = readl(card->membase + DR0);
	switch (data) {
	case 0x00000009:
		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
		card->max_pcr = ATM_25_PCR;
		while (CMD_BUSY(card)) ;
		writel(0x00000008, card->membase + DR0);
		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
		/* Clear an eventual pending interrupt */
		writel(NS_STAT_SFBQF, card->membase + STAT);
#ifdef PHY_LOOPBACK
		while (CMD_BUSY(card)) ;
		writel(0x00000022, card->membase + DR0);
		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
#endif /* PHY_LOOPBACK */
		break;
	case 0x00000030:
	case 0x00000031:
		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
		card->max_pcr = ATM_OC3_PCR;
#ifdef PHY_LOOPBACK
		while (CMD_BUSY(card)) ;
		writel(0x00000002, card->membase + DR0);
		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
#endif /* PHY_LOOPBACK */
		break;
	default:
		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
		error = 8;
		ns_init_card_error(card, error);
		return error;
	}
	writel(0x00000000, card->membase + GP);

	/* Determine SRAM size */
	data = 0x76543210;
	ns_write_sram(card, 0x1C003, &data, 1);
	data = 0x89ABCDEF;
	ns_write_sram(card, 0x14003, &data, 1);
	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
	    ns_read_sram(card, 0x1C003) == 0x76543210)
		card->sram_size = 128;
	else
		card->sram_size = 32;
	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);

	card->rct_size = NS_MAX_RCTSIZE;

#if (NS_MAX_RCTSIZE == 4096)
	if (card->sram_size == 128)
		printk
		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
		     i);
#elif (NS_MAX_RCTSIZE == 16384)
	if (card->sram_size == 32) {
		printk
		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
		     i);
		card->rct_size = 4096;
	}
#else
#error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
#endif

	card->vpibits = NS_VPIBITS;
	if (card->rct_size == 4096)
		card->vcibits = 12 - NS_VPIBITS;
	else			/* card->rct_size == 16384 */
		card->vcibits = 14 - NS_VPIBITS;

	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
	if (mac[i] == NULL)
		nicstar_init_eprom(card->membase);

	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
	writel(0x00000000, card->membase + VPM);

	/* Initialize TSQ */
	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
					   &card->tsq.dma, GFP_KERNEL);
	if (card->tsq.org == NULL) {
		printk("nicstar%d: can't allocate TSQ.\n", i);
		error = 10;
		ns_init_card_error(card, error);
		return error;
	}
	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
	card->tsq.next = card->tsq.base;
	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
		ns_tsi_init(card->tsq.base + j);
	writel(0x00000000, card->membase + TSQH);
	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);

	/* Initialize RSQ */
	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
					   &card->rsq.dma, GFP_KERNEL);
	if (card->rsq.org == NULL) {
		printk("nicstar%d: can't allocate RSQ.\n", i);
		error = 11;
		ns_init_card_error(card, error);
		return error;
	}
	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
	card->rsq.next = card->rsq.base;
	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
		ns_rsqe_init(card->rsq.base + j);
	writel(0x00000000, card->membase + RSQH);
	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);

	/* Initialize SCQ0, the only VBR SCQ used */
	card->scq1 = NULL;
	card->scq2 = NULL;
	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
	if (card->scq0 == NULL) {
		printk("nicstar%d: can't get SCQ0.\n", i);
		error = 12;
		ns_init_card_error(card, error);
		return error;
	}
	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
	u32d[1] = (u32) 0x00000000;
	u32d[2] = (u32) 0xffffffff;
	u32d[3] = (u32) 0x00000000;
	ns_write_sram(card, NS_VRSCD0, u32d, 4);
	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
	card->scq0->scd = NS_VRSCD0;
	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);

	/* Initialize TSTs */
	card->tst_addr = NS_TST0;
	card->tst_free_entries = NS_TST_NUM_ENTRIES;
	data = NS_TST_OPCODE_VARIABLE;
	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
		ns_write_sram(card, NS_TST0 + j, &data, 1);
	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
		ns_write_sram(card, NS_TST1 + j, &data, 1);
	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
		card->tste2vc[j] = NULL;
	writel(NS_TST0 << 2, card->membase + TSTB);

	/* Initialize RCT. AAL type is set on opening the VC. */
#ifdef RCQ_SUPPORT
	u32d[0] = NS_RCTE_RAWCELLINTEN;
#else
	u32d[0] = 0x00000000;
#endif /* RCQ_SUPPORT */
	u32d[1] = 0x00000000;
	u32d[2] = 0x00000000;
	u32d[3] = 0xFFFFFFFF;
	for (j = 0; j < card->rct_size; j++)
		ns_write_sram(card, j * 4, u32d, 4);

	memset(card->vcmap, 0, sizeof(card->vcmap));

	for (j = 0; j < NS_FRSCD_NUM; j++)
		card->scd2vc[j] = NULL;

	/* Initialize buffer levels */
	card->sbnr.min = MIN_SB;
	card->sbnr.init = NUM_SB;
	card->sbnr.max = MAX_SB;
	card->lbnr.min = MIN_LB;
	card->lbnr.init = NUM_LB;
	card->lbnr.max = MAX_LB;
	card->iovnr.min = MIN_IOVB;
	card->iovnr.init = NUM_IOVB;
	card->iovnr.max = MAX_IOVB;
	card->hbnr.min = MIN_HB;
	card->hbnr.init = NUM_HB;
	card->hbnr.max = MAX_HB;

	card->sm_handle = NULL;
	card->sm_addr = 0x00000000;
	card->lg_handle = NULL;
	card->lg_addr = 0x00000000;

	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */

	idr_init(&card->idr);

	/* Pre-allocate some huge buffers */
	skb_queue_head_init(&card->hbpool.queue);
	card->hbpool.count = 0;
	for (j = 0; j < NUM_HB; j++) {
		struct sk_buff *hb;
		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
		if (hb == NULL) {
			printk
			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
			     i, j, NUM_HB);
			error = 13;
			ns_init_card_error(card, error);
			return error;
		}
		NS_PRV_BUFTYPE(hb) = BUF_NONE;
		skb_queue_tail(&card->hbpool.queue, hb);
		card->hbpool.count++;
	}

	/* Allocate large buffers */
	skb_queue_head_init(&card->lbpool.queue);
	card->lbpool.count = 0;	/* Not used */
	for (j = 0; j < NUM_LB; j++) {
		struct sk_buff *lb;
		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
		if (lb == NULL) {
			printk
			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
			     i, j, NUM_LB);
			error = 14;
			ns_init_card_error(card, error);
			return error;
		}
		NS_PRV_BUFTYPE(lb) = BUF_LG;
		skb_queue_tail(&card->lbpool.queue, lb);
		skb_reserve(lb, NS_SMBUFSIZE);
		push_rxbufs(card, lb);
		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
		if (j == 1) {
			card->rcbuf = lb;
			card->rawcell = (struct ns_rcqe *) lb->data;
			card->rawch = NS_PRV_DMA(lb);
		}
	}
	/* Test for strange behaviour which leads to crashes */
	if ((bcount =
	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
		printk
		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
		     i, j, bcount);
		error = 14;
		ns_init_card_error(card, error);
		return error;
	}

	/* Allocate small buffers */
	skb_queue_head_init(&card->sbpool.queue);
	card->sbpool.count = 0;	/* Not used */
	for (j = 0; j < NUM_SB; j++) {
		struct sk_buff *sb;
		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
		if (sb == NULL) {
			printk
			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
			     i, j, NUM_SB);
			error = 15;
			ns_init_card_error(card, error);
			return error;
		}
		NS_PRV_BUFTYPE(sb) = BUF_SM;
		skb_queue_tail(&card->sbpool.queue, sb);
		skb_reserve(sb, NS_AAL0_HEADER);
		push_rxbufs(card, sb);
	}
	/* Test for strange behaviour which leads to crashes */
	if ((bcount =
	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
		printk
		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
		     i, j, bcount);
		error = 15;
		ns_init_card_error(card, error);
		return error;
	}

	/* Allocate iovec buffers */
	skb_queue_head_init(&card->iovpool.queue);
	card->iovpool.count = 0;
	for (j = 0; j < NUM_IOVB; j++) {
		struct sk_buff *iovb;
		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
		if (iovb == NULL) {
			printk
			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
			     i, j, NUM_IOVB);
			error = 16;
			ns_init_card_error(card, error);
			return error;
		}
		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
		skb_queue_tail(&card->iovpool.queue, iovb);
		card->iovpool.count++;
	}

	/* Configure NICStAR */
	if (card->rct_size == 4096)
		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
	else			/* (card->rct_size == 16384) */
		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;

	card->efbie = 1;

	card->intcnt = 0;
	if (request_irq
	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
		printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
		error = 9;
		ns_init_card_error(card, error);
		return error;
	}

	/* Register device */
	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
					-1, NULL);
	if (card->atmdev == NULL) {
		printk("nicstar%d: can't register device.\n", i);
		error = 17;
		ns_init_card_error(card, error);
		return error;
	}

	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
				   card->atmdev->esi, 6);
		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
			nicstar_read_eprom(card->membase,
					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
					   card->atmdev->esi, 6);
		}
	}

	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);

	card->atmdev->dev_data = card;
	card->atmdev->ci_range.vpi_bits = card->vpibits;
	card->atmdev->ci_range.vci_bits = card->vcibits;
	card->atmdev->link_rate = card->max_pcr;
	card->atmdev->phy = NULL;

#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
	if (card->max_pcr == ATM_OC3_PCR)
		suni_init(card->atmdev);
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */

#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
	if (card->max_pcr == ATM_25_PCR)
		idt77105_init(card->atmdev);
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */

	if (card->atmdev->phy && card->atmdev->phy->start)
		card->atmdev->phy->start(card->atmdev);

	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
	       NS_CFG_PHYIE, card->membase + CFG);

	num_cards++;

	return error;
}

static void ns_init_card_error(ns_dev *card, int error)
{
	if (error >= 17) {
		writel(0x00000000, card->membase + CFG);
	}
	if (error >= 16) {
		struct sk_buff *iovb;
		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
			dev_kfree_skb_any(iovb);
	}
	if (error >= 15) {
		struct sk_buff *sb;
		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
			dev_kfree_skb_any(sb);
		free_scq(card, card->scq0, NULL);
	}
	if (error >= 14) {
		struct sk_buff *lb;
		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
			dev_kfree_skb_any(lb);
	}
	if (error >= 13) {
		struct sk_buff *hb;
		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
			dev_kfree_skb_any(hb);
	}
	if (error >= 12) {
		kfree(card->rsq.org);
	}
	if (error >= 11) {
		kfree(card->tsq.org);
	}
	if (error >= 10) {
		free_irq(card->pcidev->irq, card);
	}
	if (error >= 4) {
		iounmap(card->membase);
	}
	if (error >= 3) {
		pci_disable_device(card->pcidev);
		kfree(card);
	}
}

static scq_info *get_scq(ns_dev *card, int size, u32 scd)
{
	scq_info *scq;
	int i;

	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
		return NULL;

	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
	if (!scq)
		return NULL;
        scq->org = dma_alloc_coherent(&card->pcidev->dev,
				      2 * size,  &scq->dma, GFP_KERNEL);
	if (!scq->org) {
		kfree(scq);
		return NULL;
	}
	scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
				 sizeof(*scq->skb),
				 GFP_KERNEL);
	if (!scq->skb) {
		dma_free_coherent(&card->pcidev->dev,
				  2 * size, scq->org, scq->dma);
		kfree(scq);
		return NULL;
	}
	scq->num_entries = size / NS_SCQE_SIZE;
	scq->base = PTR_ALIGN(scq->org, size);
	scq->next = scq->base;
	scq->last = scq->base + (scq->num_entries - 1);
	scq->tail = scq->last;
	scq->scd = scd;
	scq->num_entries = size / NS_SCQE_SIZE;
	scq->tbd_count = 0;
	init_waitqueue_head(&scq->scqfull_waitq);
	scq->full = 0;
	spin_lock_init(&scq->lock);

	for (i = 0; i < scq->num_entries; i++)
		scq->skb[i] = NULL;

	return scq;
}

/* For variable rate SCQ vcc must be NULL */
static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
{
	int i;

	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
		for (i = 0; i < scq->num_entries; i++) {
			if (scq->skb[i] != NULL) {
				vcc = ATM_SKB(scq->skb[i])->vcc;
				if (vcc->pop != NULL)
					vcc->pop(vcc, scq->skb[i]);
				else
					dev_kfree_skb_any(scq->skb[i]);
			}
	} else {		/* vcc must be != NULL */

		if (vcc == NULL) {
			printk
			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
			for (i = 0; i < scq->num_entries; i++)
				dev_kfree_skb_any(scq->skb[i]);
		} else
			for (i = 0; i < scq->num_entries; i++) {
				if (scq->skb[i] != NULL) {
					if (vcc->pop != NULL)
						vcc->pop(vcc, scq->skb[i]);
					else
						dev_kfree_skb_any(scq->skb[i]);
				}
			}
	}
	kfree(scq->skb);
	dma_free_coherent(&card->pcidev->dev,
			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
			       VBR_SCQSIZE : CBR_SCQSIZE),
			  scq->org, scq->dma);
	kfree(scq);
}

/* The handles passed must be pointers to the sk_buff containing the small
   or large buffer(s) cast to u32. */
static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
{
	struct sk_buff *handle1, *handle2;
	int id1, id2;
	u32 addr1, addr2;
	u32 stat;
	unsigned long flags;

	/* *BARF* */
	handle2 = NULL;
	addr2 = 0;
	handle1 = skb;
	addr1 = dma_map_single(&card->pcidev->dev,
			       skb->data,
			       (NS_PRV_BUFTYPE(skb) == BUF_SM
				? NS_SMSKBSIZE : NS_LGSKBSIZE),
			       DMA_TO_DEVICE);
	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */

#ifdef GENERAL_DEBUG
	if (!addr1)
		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
		       card->index);
#endif /* GENERAL_DEBUG */

	stat = readl(card->membase + STAT);
	card->sbfqc = ns_stat_sfbqc_get(stat);
	card->lbfqc = ns_stat_lfbqc_get(stat);
	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
		if (!addr2) {
			if (card->sm_addr) {
				addr2 = card->sm_addr;
				handle2 = card->sm_handle;
				card->sm_addr = 0x00000000;
				card->sm_handle = NULL;
			} else {	/* (!sm_addr) */

				card->sm_addr = addr1;
				card->sm_handle = handle1;
			}
		}
	} else {		/* buf_type == BUF_LG */

		if (!addr2) {
			if (card->lg_addr) {
				addr2 = card->lg_addr;
				handle2 = card->lg_handle;
				card->lg_addr = 0x00000000;
				card->lg_handle = NULL;
			} else {	/* (!lg_addr) */

				card->lg_addr = addr1;
				card->lg_handle = handle1;
			}
		}
	}

	if (addr2) {
		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
			if (card->sbfqc >= card->sbnr.max) {
				skb_unlink(handle1, &card->sbpool.queue);
				dev_kfree_skb_any(handle1);
				skb_unlink(handle2, &card->sbpool.queue);
				dev_kfree_skb_any(handle2);
				return;
			} else
				card->sbfqc += 2;
		} else {	/* (buf_type == BUF_LG) */

			if (card->lbfqc >= card->lbnr.max) {
				skb_unlink(handle1, &card->lbpool.queue);
				dev_kfree_skb_any(handle1);
				skb_unlink(handle2, &card->lbpool.queue);
				dev_kfree_skb_any(handle2);
				return;
			} else
				card->lbfqc += 2;
		}

		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
		if (id1 < 0)
			goto out;

		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
		if (id2 < 0)
			goto out;

		spin_lock_irqsave(&card->res_lock, flags);
		while (CMD_BUSY(card)) ;
		writel(addr2, card->membase + DR3);
		writel(id2, card->membase + DR2);
		writel(addr1, card->membase + DR1);
		writel(id1, card->membase + DR0);
		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
		       card->membase + CMD);
		spin_unlock_irqrestore(&card->res_lock, flags);

		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
			card->index,
			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
			addr1, addr2);
	}

	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
	    card->lbfqc >= card->lbnr.min) {
		card->efbie = 1;
		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
		       card->membase + CFG);
	}

out:
	return;
}

static irqreturn_t ns_irq_handler(int irq, void *dev_id)
{
	u32 stat_r;
	ns_dev *card;
	struct atm_dev *dev;
	unsigned long flags;

	card = (ns_dev *) dev_id;
	dev = card->atmdev;
	card->intcnt++;

	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);

	spin_lock_irqsave(&card->int_lock, flags);

	stat_r = readl(card->membase + STAT);

	/* Transmit Status Indicator has been written to T. S. Queue */
	if (stat_r & NS_STAT_TSIF) {
		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
		process_tsq(card);
		writel(NS_STAT_TSIF, card->membase + STAT);
	}

	/* Incomplete CS-PDU has been transmitted */
	if (stat_r & NS_STAT_TXICP) {
		writel(NS_STAT_TXICP, card->membase + STAT);
		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
			 card->index);
	}

	/* Transmit Status Queue 7/8 full */
	if (stat_r & NS_STAT_TSQF) {
		writel(NS_STAT_TSQF, card->membase + STAT);
		PRINTK("nicstar%d: TSQ full.\n", card->index);
		process_tsq(card);
	}

	/* Timer overflow */
	if (stat_r & NS_STAT_TMROF) {
		writel(NS_STAT_TMROF, card->membase + STAT);
		PRINTK("nicstar%d: Timer overflow.\n", card->index);
	}

	/* PHY device interrupt signal active */
	if (stat_r & NS_STAT_PHYI) {
		writel(NS_STAT_PHYI, card->membase + STAT);
		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
		if (dev->phy && dev->phy->interrupt) {
			dev->phy->interrupt(dev);
		}
	}

	/* Small Buffer Queue is full */
	if (stat_r & NS_STAT_SFBQF) {
		writel(NS_STAT_SFBQF, card->membase + STAT);
		printk("nicstar%d: Small free buffer queue is full.\n",
		       card->index);
	}

	/* Large Buffer Queue is full */
	if (stat_r & NS_STAT_LFBQF) {
		writel(NS_STAT_LFBQF, card->membase + STAT);
		printk("nicstar%d: Large free buffer queue is full.\n",
		       card->index);
	}

	/* Receive Status Queue is full */
	if (stat_r & NS_STAT_RSQF) {
		writel(NS_STAT_RSQF, card->membase + STAT);
		printk("nicstar%d: RSQ full.\n", card->index);
		process_rsq(card);
	}

	/* Complete CS-PDU received */
	if (stat_r & NS_STAT_EOPDU) {
		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
		process_rsq(card);
		writel(NS_STAT_EOPDU, card->membase + STAT);
	}

	/* Raw cell received */
	if (stat_r & NS_STAT_RAWCF) {
		writel(NS_STAT_RAWCF, card->membase + STAT);
#ifndef RCQ_SUPPORT
		printk("nicstar%d: Raw cell received and no support yet...\n",
		       card->index);
#endif /* RCQ_SUPPORT */
		/* NOTE: the following procedure may keep a raw cell pending until the
		   next interrupt. As this preliminary support is only meant to
		   avoid buffer leakage, this is not an issue. */
		while (readl(card->membase + RAWCT) != card->rawch) {

			if (ns_rcqe_islast(card->rawcell)) {
				struct sk_buff *oldbuf;

				oldbuf = card->rcbuf;
				card->rcbuf = idr_find(&card->idr,
						       ns_rcqe_nextbufhandle(card->rawcell));
				card->rawch = NS_PRV_DMA(card->rcbuf);
				card->rawcell = (struct ns_rcqe *)
						card->rcbuf->data;
				recycle_rx_buf(card, oldbuf);
			} else {
				card->rawch += NS_RCQE_SIZE;
				card->rawcell++;
			}
		}
	}

	/* Small buffer queue is empty */
	if (stat_r & NS_STAT_SFBQE) {
		int i;
		struct sk_buff *sb;

		writel(NS_STAT_SFBQE, card->membase + STAT);
		printk("nicstar%d: Small free buffer queue empty.\n",
		       card->index);
		for (i = 0; i < card->sbnr.min; i++) {
			sb = dev_alloc_skb(NS_SMSKBSIZE);
			if (sb == NULL) {
				writel(readl(card->membase + CFG) &
				       ~NS_CFG_EFBIE, card->membase + CFG);
				card->efbie = 0;
				break;
			}
			NS_PRV_BUFTYPE(sb) = BUF_SM;
			skb_queue_tail(&card->sbpool.queue, sb);
			skb_reserve(sb, NS_AAL0_HEADER);
			push_rxbufs(card, sb);
		}
		card->sbfqc = i;
		process_rsq(card);
	}

	/* Large buffer queue empty */
	if (stat_r & NS_STAT_LFBQE) {
		int i;
		struct sk_buff *lb;

		writel(NS_STAT_LFBQE, card->membase + STAT);
		printk("nicstar%d: Large free buffer queue empty.\n",
		       card->index);
		for (i = 0; i < card->lbnr.min; i++) {
			lb = dev_alloc_skb(NS_LGSKBSIZE);
			if (lb == NULL) {
				writel(readl(card->membase + CFG) &
				       ~NS_CFG_EFBIE, card->membase + CFG);
				card->efbie = 0;
				break;
			}
			NS_PRV_BUFTYPE(lb) = BUF_LG;
			skb_queue_tail(&card->lbpool.queue, lb);
			skb_reserve(lb, NS_SMBUFSIZE);
			push_rxbufs(card, lb);
		}
		card->lbfqc = i;
		process_rsq(card);
	}

	/* Receive Status Queue is 7/8 full */
	if (stat_r & NS_STAT_RSQAF) {
		writel(NS_STAT_RSQAF, card->membase + STAT);
		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
		process_rsq(card);
	}

	spin_unlock_irqrestore(&card->int_lock, flags);
	PRINTK("nicstar%d: end of interrupt service\n", card->index);
	return IRQ_HANDLED;
}

static int ns_open(struct atm_vcc *vcc)
{
	ns_dev *card;
	vc_map *vc;
	unsigned long tmpl, modl;
	int tcr, tcra;		/* target cell rate, and absolute value */
	int n = 0;		/* Number of entries in the TST. Initialized to remove
				   the compiler warning. */
	u32 u32d[4];
	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
				   warning. How I wish compilers were clever enough to
				   tell which variables can truly be used
				   uninitialized... */
	int inuse;		/* tx or rx vc already in use by another vcc */
	short vpi = vcc->vpi;
	int vci = vcc->vci;

	card = (ns_dev *) vcc->dev->dev_data;
	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
	       vci);
	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
		return -EINVAL;
	}

	vc = &(card->vcmap[vpi << card->vcibits | vci]);
	vcc->dev_data = vc;

	inuse = 0;
	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
		inuse = 1;
	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
		inuse += 2;
	if (inuse) {
		printk("nicstar%d: %s vci already in use.\n", card->index,
		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
		return -EINVAL;
	}

	set_bit(ATM_VF_ADDR, &vcc->flags);

	/* NOTE: You are not allowed to modify an open connection's QOS. To change
	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
	   needed to do that. */
	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
		scq_info *scq;

		set_bit(ATM_VF_PARTIAL, &vcc->flags);
		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
			/* Check requested cell rate and availability of SCD */
			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
			    && vcc->qos.txtp.min_pcr == 0) {
				PRINTK
				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
				     card->index);
				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
				clear_bit(ATM_VF_ADDR, &vcc->flags);
				return -EINVAL;
			}

			tcr = atm_pcr_goal(&(vcc->qos.txtp));
			tcra = tcr >= 0 ? tcr : -tcr;

			PRINTK("nicstar%d: target cell rate = %d.\n",
			       card->index, vcc->qos.txtp.max_pcr);

			tmpl =
			    (unsigned long)tcra *(unsigned long)
			    NS_TST_NUM_ENTRIES;
			modl = tmpl % card->max_pcr;

			n = (int)(tmpl / card->max_pcr);
			if (tcr > 0) {
				if (modl > 0)
					n++;
			} else if (tcr == 0) {
				if ((n =
				     (card->tst_free_entries -
				      NS_TST_RESERVED)) <= 0) {
					PRINTK
					    ("nicstar%d: no CBR bandwidth free.\n",
					     card->index);
					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
					clear_bit(ATM_VF_ADDR, &vcc->flags);
					return -EINVAL;
				}
			}

			if (n == 0) {
				printk
				    ("nicstar%d: selected bandwidth < granularity.\n",
				     card->index);
				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
				clear_bit(ATM_VF_ADDR, &vcc->flags);
				return -EINVAL;
			}

			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
				PRINTK
				    ("nicstar%d: not enough free CBR bandwidth.\n",
				     card->index);
				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
				clear_bit(ATM_VF_ADDR, &vcc->flags);
				return -EINVAL;
			} else
				card->tst_free_entries -= n;

			XPRINTK("nicstar%d: writing %d tst entries.\n",
				card->index, n);
			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
				if (card->scd2vc[frscdi] == NULL) {
					card->scd2vc[frscdi] = vc;
					break;
				}
			}
			if (frscdi == NS_FRSCD_NUM) {
				PRINTK
				    ("nicstar%d: no SCD available for CBR channel.\n",
				     card->index);
				card->tst_free_entries += n;
				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
				clear_bit(ATM_VF_ADDR, &vcc->flags);
				return -EBUSY;
			}

			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;

			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
			if (scq == NULL) {
				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
				       card->index);
				card->scd2vc[frscdi] = NULL;
				card->tst_free_entries += n;
				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
				clear_bit(ATM_VF_ADDR, &vcc->flags);
				return -ENOMEM;
			}
			vc->scq = scq;
			u32d[0] = scq_virt_to_bus(scq, scq->base);
			u32d[1] = (u32) 0x00000000;
			u32d[2] = (u32) 0xffffffff;
			u32d[3] = (u32) 0x00000000;
			ns_write_sram(card, vc->cbr_scd, u32d, 4);

			fill_tst(card, n, vc);
		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
			vc->cbr_scd = 0x00000000;
			vc->scq = card->scq0;
		}

		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
			vc->tx = 1;
			vc->tx_vcc = vcc;
			vc->tbd_count = 0;
		}
		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
			u32 status;

			vc->rx = 1;
			vc->rx_vcc = vcc;
			vc->rx_iov = NULL;

			/* Open the connection in hardware */
			if (vcc->qos.aal == ATM_AAL5)
				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
			else	/* vcc->qos.aal == ATM_AAL0 */
				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
#ifdef RCQ_SUPPORT
			status |= NS_RCTE_RAWCELLINTEN;
#endif /* RCQ_SUPPORT */
			ns_write_sram(card,
				      NS_RCT +
				      (vpi << card->vcibits | vci) *
				      NS_RCT_ENTRY_SIZE, &status, 1);
		}

	}

	set_bit(ATM_VF_READY, &vcc->flags);
	return 0;
}

static void ns_close(struct atm_vcc *vcc)
{
	vc_map *vc;
	ns_dev *card;
	u32 data;
	int i;

	vc = vcc->dev_data;
	card = vcc->dev->dev_data;
	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
	       (int)vcc->vpi, vcc->vci);

	clear_bit(ATM_VF_READY, &vcc->flags);

	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
		u32 addr;
		unsigned long flags;

		addr =
		    NS_RCT +
		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
		spin_lock_irqsave(&card->res_lock, flags);
		while (CMD_BUSY(card)) ;
		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
		       card->membase + CMD);
		spin_unlock_irqrestore(&card->res_lock, flags);

		vc->rx = 0;
		if (vc->rx_iov != NULL) {
			struct sk_buff *iovb;
			u32 stat;

			stat = readl(card->membase + STAT);
			card->sbfqc = ns_stat_sfbqc_get(stat);
			card->lbfqc = ns_stat_lfbqc_get(stat);

			PRINTK
			    ("nicstar%d: closing a VC with pending rx buffers.\n",
			     card->index);
			iovb = vc->rx_iov;
			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
					      NS_PRV_IOVCNT(iovb));
			NS_PRV_IOVCNT(iovb) = 0;
			spin_lock_irqsave(&card->int_lock, flags);
			recycle_iov_buf(card, iovb);
			spin_unlock_irqrestore(&card->int_lock, flags);
			vc->rx_iov = NULL;
		}
	}

	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
		vc->tx = 0;
	}

	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
		unsigned long flags;
		ns_scqe *scqep;
		scq_info *scq;

		scq = vc->scq;

		for (;;) {
			spin_lock_irqsave(&scq->lock, flags);
			scqep = scq->next;
			if (scqep == scq->base)
				scqep = scq->last;
			else
				scqep--;
			if (scqep == scq->tail) {
				spin_unlock_irqrestore(&scq->lock, flags);
				break;
			}
			/* If the last entry is not a TSR, place one in the SCQ in order to
			   be able to completely drain it and then close. */
			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
				ns_scqe tsr;
				u32 scdi, scqi;
				u32 data;
				int index;

				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
				scqi = scq->next - scq->base;
				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
				tsr.word_3 = 0x00000000;
				tsr.word_4 = 0x00000000;
				*scq->next = tsr;
				index = (int)scqi;
				scq->skb[index] = NULL;
				if (scq->next == scq->last)
					scq->next = scq->base;
				else
					scq->next++;
				data = scq_virt_to_bus(scq, scq->next);
				ns_write_sram(card, scq->scd, &data, 1);
			}
			spin_unlock_irqrestore(&scq->lock, flags);
			schedule();
		}

		/* Free all TST entries */
		data = NS_TST_OPCODE_VARIABLE;
		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
			if (card->tste2vc[i] == vc) {
				ns_write_sram(card, card->tst_addr + i, &data,
					      1);
				card->tste2vc[i] = NULL;
				card->tst_free_entries++;
			}
		}

		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
		free_scq(card, vc->scq, vcc);
	}

	/* remove all references to vcc before deleting it */
	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
		unsigned long flags;
		scq_info *scq = card->scq0;

		spin_lock_irqsave(&scq->lock, flags);

		for (i = 0; i < scq->num_entries; i++) {
			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
				ATM_SKB(scq->skb[i])->vcc = NULL;
				atm_return(vcc, scq->skb[i]->truesize);
				PRINTK
				    ("nicstar: deleted pending vcc mapping\n");
			}
		}

		spin_unlock_irqrestore(&scq->lock, flags);
	}

	vcc->dev_data = NULL;
	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
	clear_bit(ATM_VF_ADDR, &vcc->flags);

#ifdef RX_DEBUG
	{
		u32 stat, cfg;
		stat = readl(card->membase + STAT);
		cfg = readl(card->membase + CFG);
		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
		printk
		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
		     card->tsq.base, card->tsq.next,
		     card->tsq.last, readl(card->membase + TSQT));
		printk
		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
		     card->rsq.base, card->rsq.next,
		     card->rsq.last, readl(card->membase + RSQT));
		printk("Empty free buffer queue interrupt %s \n",
		       card->efbie ? "enabled" : "disabled");
		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
		       ns_stat_sfbqc_get(stat), card->sbpool.count,
		       ns_stat_lfbqc_get(stat), card->lbpool.count);
		printk("hbpool.count = %d  iovpool.count = %d \n",
		       card->hbpool.count, card->iovpool.count);
	}
#endif /* RX_DEBUG */
}

static void fill_tst(ns_dev * card, int n, vc_map * vc)
{
	u32 new_tst;
	unsigned long cl;
	int e, r;
	u32 data;

	/* It would be very complicated to keep the two TSTs synchronized while
	   assuring that writes are only made to the inactive TST. So, for now I
	   will use only one TST. If problems occur, I will change this again */

	new_tst = card->tst_addr;

	/* Fill procedure */

	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
		if (card->tste2vc[e] == NULL)
			break;
	}
	if (e == NS_TST_NUM_ENTRIES) {
		printk("nicstar%d: No free TST entries found. \n", card->index);
		return;
	}

	r = n;
	cl = NS_TST_NUM_ENTRIES;
	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);

	while (r > 0) {
		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
			card->tste2vc[e] = vc;
			ns_write_sram(card, new_tst + e, &data, 1);
			cl -= NS_TST_NUM_ENTRIES;
			r--;
		}

		if (++e == NS_TST_NUM_ENTRIES) {
			e = 0;
		}
		cl += n;
	}

	/* End of fill procedure */

	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
	card->tst_addr = new_tst;
}

static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
	ns_dev *card;
	vc_map *vc;
	scq_info *scq;
	unsigned long buflen;
	ns_scqe scqe;
	u32 flags;		/* TBD flags, not CPU flags */

	card = vcc->dev->dev_data;
	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
		       card->index);
		atomic_inc(&vcc->stats->tx_err);
		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	if (!vc->tx) {
		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
		       card->index);
		atomic_inc(&vcc->stats->tx_err);
		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
		       card->index);
		atomic_inc(&vcc->stats->tx_err);
		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	if (skb_shinfo(skb)->nr_frags != 0) {
		printk("nicstar%d: No scatter-gather yet.\n", card->index);
		atomic_inc(&vcc->stats->tx_err);
		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	ATM_SKB(skb)->vcc = vcc;

	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
					 skb->len, DMA_TO_DEVICE);

	if (vcc->qos.aal == ATM_AAL5) {
		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
		flags = NS_TBD_AAL5;
		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
		scqe.word_3 = cpu_to_le32(skb->len);
		scqe.word_4 =
		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
				    ATM_SKB(skb)->
				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
		flags |= NS_TBD_EOPDU;
	} else {		/* (vcc->qos.aal == ATM_AAL0) */

		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
		flags = NS_TBD_AAL0;
		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
		scqe.word_3 = cpu_to_le32(0x00000000);
		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
			flags |= NS_TBD_EOPDU;
		scqe.word_4 =
		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
		/* Force the VPI/VCI to be the same as in VCC struct */
		scqe.word_4 |=
		    cpu_to_le32((((u32) vcc->
				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
							      vci) <<
				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
	}

	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
		scq = ((vc_map *) vcc->dev_data)->scq;
	} else {
		scqe.word_1 =
		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
		scq = card->scq0;
	}

	if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
		atomic_inc(&vcc->stats->tx_err);
		dev_kfree_skb_any(skb);
		return -EIO;
	}
	atomic_inc(&vcc->stats->tx);

	return 0;
}

static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
		     struct sk_buff *skb)
{
	unsigned long flags;
	ns_scqe tsr;
	u32 scdi, scqi;
	int scq_is_vbr;
	u32 data;
	int index;

	spin_lock_irqsave(&scq->lock, flags);
	while (scq->tail == scq->next) {
		if (in_interrupt()) {
			spin_unlock_irqrestore(&scq->lock, flags);
			printk("nicstar%d: Error pushing TBD.\n", card->index);
			return 1;
		}

		scq->full = 1;
		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
							  scq->tail != scq->next,
							  scq->lock,
							  SCQFULL_TIMEOUT);

		if (scq->full) {
			spin_unlock_irqrestore(&scq->lock, flags);
			printk("nicstar%d: Timeout pushing TBD.\n",
			       card->index);
			return 1;
		}
	}
	*scq->next = *tbd;
	index = (int)(scq->next - scq->base);
	scq->skb[index] = skb;
	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
		card->index, skb, index);
	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
		scq->next);
	if (scq->next == scq->last)
		scq->next = scq->base;
	else
		scq->next++;

	vc->tbd_count++;
	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
		scq->tbd_count++;
		scq_is_vbr = 1;
	} else
		scq_is_vbr = 0;

	if (vc->tbd_count >= MAX_TBD_PER_VC
	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
		int has_run = 0;

		while (scq->tail == scq->next) {
			if (in_interrupt()) {
				data = scq_virt_to_bus(scq, scq->next);
				ns_write_sram(card, scq->scd, &data, 1);
				spin_unlock_irqrestore(&scq->lock, flags);
				printk("nicstar%d: Error pushing TSR.\n",
				       card->index);
				return 0;
			}

			scq->full = 1;
			if (has_run++)
				break;
			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
								  scq->tail != scq->next,
								  scq->lock,
								  SCQFULL_TIMEOUT);
		}

		if (!scq->full) {
			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
			if (scq_is_vbr)
				scdi = NS_TSR_SCDISVBR;
			else
				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
			scqi = scq->next - scq->base;
			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
			tsr.word_3 = 0x00000000;
			tsr.word_4 = 0x00000000;

			*scq->next = tsr;
			index = (int)scqi;
			scq->skb[index] = NULL;
			XPRINTK
			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
			     card->index, le32_to_cpu(tsr.word_1),
			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
			     le32_to_cpu(tsr.word_4), scq->next);
			if (scq->next == scq->last)
				scq->next = scq->base;
			else
				scq->next++;
			vc->tbd_count = 0;
			scq->tbd_count = 0;
		} else
			PRINTK("nicstar%d: Timeout pushing TSR.\n",
			       card->index);
	}
	data = scq_virt_to_bus(scq, scq->next);
	ns_write_sram(card, scq->scd, &data, 1);

	spin_unlock_irqrestore(&scq->lock, flags);

	return 0;
}

static void process_tsq(ns_dev * card)
{
	u32 scdi;
	scq_info *scq;
	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
	int serviced_entries;	/* flag indicating at least on entry was serviced */

	serviced_entries = 0;

	if (card->tsq.next == card->tsq.last)
		one_ahead = card->tsq.base;
	else
		one_ahead = card->tsq.next + 1;

	if (one_ahead == card->tsq.last)
		two_ahead = card->tsq.base;
	else
		two_ahead = one_ahead + 1;

	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
	       !ns_tsi_isempty(two_ahead))
		/* At most two empty, as stated in the 77201 errata */
	{
		serviced_entries = 1;

		/* Skip the one or two possible empty entries */
		while (ns_tsi_isempty(card->tsq.next)) {
			if (card->tsq.next == card->tsq.last)
				card->tsq.next = card->tsq.base;
			else
				card->tsq.next++;
		}

		if (!ns_tsi_tmrof(card->tsq.next)) {
			scdi = ns_tsi_getscdindex(card->tsq.next);
			if (scdi == NS_TSI_SCDISVBR)
				scq = card->scq0;
			else {
				if (card->scd2vc[scdi] == NULL) {
					printk
					    ("nicstar%d: could not find VC from SCD index.\n",
					     card->index);
					ns_tsi_init(card->tsq.next);
					return;
				}
				scq = card->scd2vc[scdi]->scq;
			}
			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
			scq->full = 0;
			wake_up_interruptible(&(scq->scqfull_waitq));
		}

		ns_tsi_init(card->tsq.next);
		previous = card->tsq.next;
		if (card->tsq.next == card->tsq.last)
			card->tsq.next = card->tsq.base;
		else
			card->tsq.next++;

		if (card->tsq.next == card->tsq.last)
			one_ahead = card->tsq.base;
		else
			one_ahead = card->tsq.next + 1;

		if (one_ahead == card->tsq.last)
			two_ahead = card->tsq.base;
		else
			two_ahead = one_ahead + 1;
	}

	if (serviced_entries)
		writel(PTR_DIFF(previous, card->tsq.base),
		       card->membase + TSQH);
}

static void drain_scq(ns_dev * card, scq_info * scq, int pos)
{
	struct atm_vcc *vcc;
	struct sk_buff *skb;
	int i;
	unsigned long flags;

	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
		card->index, scq, pos);
	if (pos >= scq->num_entries) {
		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
		return;
	}

	spin_lock_irqsave(&scq->lock, flags);
	i = (int)(scq->tail - scq->base);
	if (++i == scq->num_entries)
		i = 0;
	while (i != pos) {
		skb = scq->skb[i];
		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
			card->index, skb, i);
		if (skb != NULL) {
			dma_unmap_single(&card->pcidev->dev,
					 NS_PRV_DMA(skb),
					 skb->len,
					 DMA_TO_DEVICE);
			vcc = ATM_SKB(skb)->vcc;
			if (vcc && vcc->pop != NULL) {
				vcc->pop(vcc, skb);
			} else {
				dev_kfree_skb_irq(skb);
			}
			scq->skb[i] = NULL;
		}
		if (++i == scq->num_entries)
			i = 0;
	}
	scq->tail = scq->base + pos;
	spin_unlock_irqrestore(&scq->lock, flags);
}

static void process_rsq(ns_dev * card)
{
	ns_rsqe *previous;

	if (!ns_rsqe_valid(card->rsq.next))
		return;
	do {
		dequeue_rx(card, card->rsq.next);
		ns_rsqe_init(card->rsq.next);
		previous = card->rsq.next;
		if (card->rsq.next == card->rsq.last)
			card->rsq.next = card->rsq.base;
		else
			card->rsq.next++;
	} while (ns_rsqe_valid(card->rsq.next));
	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
}

static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
{
	u32 vpi, vci;
	vc_map *vc;
	struct sk_buff *iovb;
	struct iovec *iov;
	struct atm_vcc *vcc;
	struct sk_buff *skb;
	unsigned short aal5_len;
	int len;
	u32 stat;
	u32 id;

	stat = readl(card->membase + STAT);
	card->sbfqc = ns_stat_sfbqc_get(stat);
	card->lbfqc = ns_stat_lfbqc_get(stat);

	id = le32_to_cpu(rsqe->buffer_handle);
	skb = idr_remove(&card->idr, id);
	if (!skb) {
		RXPRINTK(KERN_ERR
			 "nicstar%d: skb not found!\n", card->index);
		return;
	}
	dma_sync_single_for_cpu(&card->pcidev->dev,
				NS_PRV_DMA(skb),
				(NS_PRV_BUFTYPE(skb) == BUF_SM
				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
				DMA_FROM_DEVICE);
	dma_unmap_single(&card->pcidev->dev,
			 NS_PRV_DMA(skb),
			 (NS_PRV_BUFTYPE(skb) == BUF_SM
			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
			 DMA_FROM_DEVICE);
	vpi = ns_rsqe_vpi(rsqe);
	vci = ns_rsqe_vci(rsqe);
	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
		       card->index, vpi, vci);
		recycle_rx_buf(card, skb);
		return;
	}

	vc = &(card->vcmap[vpi << card->vcibits | vci]);
	if (!vc->rx) {
		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
			 card->index, vpi, vci);
		recycle_rx_buf(card, skb);
		return;
	}

	vcc = vc->rx_vcc;

	if (vcc->qos.aal == ATM_AAL0) {
		struct sk_buff *sb;
		unsigned char *cell;
		int i;

		cell = skb->data;
		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
			sb = dev_alloc_skb(NS_SMSKBSIZE);
			if (!sb) {
				printk
				    ("nicstar%d: Can't allocate buffers for aal0.\n",
				     card->index);
				atomic_add(i, &vcc->stats->rx_drop);
				break;
			}
			if (!atm_charge(vcc, sb->truesize)) {
				RXPRINTK
				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
				     card->index);
				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
				dev_kfree_skb_any(sb);
				break;
			}
			/* Rebuild the header */
			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
			if (i == 1 && ns_rsqe_eopdu(rsqe))
				*((u32 *) sb->data) |= 0x00000002;
			skb_put(sb, NS_AAL0_HEADER);
			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
			skb_put(sb, ATM_CELL_PAYLOAD);
			ATM_SKB(sb)->vcc = vcc;
			__net_timestamp(sb);
			vcc->push(vcc, sb);
			atomic_inc(&vcc->stats->rx);
			cell += ATM_CELL_PAYLOAD;
		}

		recycle_rx_buf(card, skb);
		return;
	}

	/* To reach this point, the AAL layer can only be AAL5 */

	if ((iovb = vc->rx_iov) == NULL) {
		iovb = skb_dequeue(&(card->iovpool.queue));
		if (iovb == NULL) {	/* No buffers in the queue */
			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
			if (iovb == NULL) {
				printk("nicstar%d: Out of iovec buffers.\n",
				       card->index);
				atomic_inc(&vcc->stats->rx_drop);
				recycle_rx_buf(card, skb);
				return;
			}
			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
		} else if (--card->iovpool.count < card->iovnr.min) {
			struct sk_buff *new_iovb;
			if ((new_iovb =
			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
				skb_queue_tail(&card->iovpool.queue, new_iovb);
				card->iovpool.count++;
			}
		}
		vc->rx_iov = iovb;
		NS_PRV_IOVCNT(iovb) = 0;
		iovb->len = 0;
		iovb->data = iovb->head;
		skb_reset_tail_pointer(iovb);
		/* IMPORTANT: a pointer to the sk_buff containing the small or large
		   buffer is stored as iovec base, NOT a pointer to the
		   small or large buffer itself. */
	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
		atomic_inc(&vcc->stats->rx_err);
		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
				      NS_MAX_IOVECS);
		NS_PRV_IOVCNT(iovb) = 0;
		iovb->len = 0;
		iovb->data = iovb->head;
		skb_reset_tail_pointer(iovb);
	}
	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
	iov->iov_base = (void *)skb;
	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
	iovb->len += iov->iov_len;

#ifdef EXTRA_DEBUG
	if (NS_PRV_IOVCNT(iovb) == 1) {
		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
			printk
			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
			     card->index);
			which_list(card, skb);
			atomic_inc(&vcc->stats->rx_err);
			recycle_rx_buf(card, skb);
			vc->rx_iov = NULL;
			recycle_iov_buf(card, iovb);
			return;
		}
	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */

		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
			printk
			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
			     card->index);
			which_list(card, skb);
			atomic_inc(&vcc->stats->rx_err);
			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
					      NS_PRV_IOVCNT(iovb));
			vc->rx_iov = NULL;
			recycle_iov_buf(card, iovb);
			return;
		}
	}
#endif /* EXTRA_DEBUG */

	if (ns_rsqe_eopdu(rsqe)) {
		/* This works correctly regardless of the endianness of the host */
		unsigned char *L1L2 = (unsigned char *)
						(skb->data + iov->iov_len - 6);
		aal5_len = L1L2[0] << 8 | L1L2[1];
		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
		if (ns_rsqe_crcerr(rsqe) ||
		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
			printk("nicstar%d: AAL5 CRC error", card->index);
			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
				printk(" - PDU size mismatch.\n");
			else
				printk(".\n");
			atomic_inc(&vcc->stats->rx_err);
			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
					      NS_PRV_IOVCNT(iovb));
			vc->rx_iov = NULL;
			recycle_iov_buf(card, iovb);
			return;
		}

		/* By this point we (hopefully) have a complete SDU without errors. */

		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
			/* skb points to a small buffer */
			if (!atm_charge(vcc, skb->truesize)) {
				push_rxbufs(card, skb);
				atomic_inc(&vcc->stats->rx_drop);
			} else {
				skb_put(skb, len);
				dequeue_sm_buf(card, skb);
				ATM_SKB(skb)->vcc = vcc;
				__net_timestamp(skb);
				vcc->push(vcc, skb);
				atomic_inc(&vcc->stats->rx);
			}
		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
			struct sk_buff *sb;

			sb = (struct sk_buff *)(iov - 1)->iov_base;
			/* skb points to a large buffer */

			if (len <= NS_SMBUFSIZE) {
				if (!atm_charge(vcc, sb->truesize)) {
					push_rxbufs(card, sb);
					atomic_inc(&vcc->stats->rx_drop);
				} else {
					skb_put(sb, len);
					dequeue_sm_buf(card, sb);
					ATM_SKB(sb)->vcc = vcc;
					__net_timestamp(sb);
					vcc->push(vcc, sb);
					atomic_inc(&vcc->stats->rx);
				}

				push_rxbufs(card, skb);

			} else {	/* len > NS_SMBUFSIZE, the usual case */

				if (!atm_charge(vcc, skb->truesize)) {
					push_rxbufs(card, skb);
					atomic_inc(&vcc->stats->rx_drop);
				} else {
					dequeue_lg_buf(card, skb);
					skb_push(skb, NS_SMBUFSIZE);
					skb_copy_from_linear_data(sb, skb->data,
								  NS_SMBUFSIZE);
					skb_put(skb, len - NS_SMBUFSIZE);
					ATM_SKB(skb)->vcc = vcc;
					__net_timestamp(skb);
					vcc->push(vcc, skb);
					atomic_inc(&vcc->stats->rx);
				}

				push_rxbufs(card, sb);

			}

		} else {	/* Must push a huge buffer */

			struct sk_buff *hb, *sb, *lb;
			int remaining, tocopy;
			int j;

			hb = skb_dequeue(&(card->hbpool.queue));
			if (hb == NULL) {	/* No buffers in the queue */

				hb = dev_alloc_skb(NS_HBUFSIZE);
				if (hb == NULL) {
					printk
					    ("nicstar%d: Out of huge buffers.\n",
					     card->index);
					atomic_inc(&vcc->stats->rx_drop);
					recycle_iovec_rx_bufs(card,
							      (struct iovec *)
							      iovb->data,
							      NS_PRV_IOVCNT(iovb));
					vc->rx_iov = NULL;
					recycle_iov_buf(card, iovb);
					return;
				} else if (card->hbpool.count < card->hbnr.min) {
					struct sk_buff *new_hb;
					if ((new_hb =
					     dev_alloc_skb(NS_HBUFSIZE)) !=
					    NULL) {
						skb_queue_tail(&card->hbpool.
							       queue, new_hb);
						card->hbpool.count++;
					}
				}
				NS_PRV_BUFTYPE(hb) = BUF_NONE;
			} else if (--card->hbpool.count < card->hbnr.min) {
				struct sk_buff *new_hb;
				if ((new_hb =
				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
					skb_queue_tail(&card->hbpool.queue,
						       new_hb);
					card->hbpool.count++;
				}
				if (card->hbpool.count < card->hbnr.min) {
					if ((new_hb =
					     dev_alloc_skb(NS_HBUFSIZE)) !=
					    NULL) {
						NS_PRV_BUFTYPE(new_hb) =
						    BUF_NONE;
						skb_queue_tail(&card->hbpool.
							       queue, new_hb);
						card->hbpool.count++;
					}
				}
			}

			iov = (struct iovec *)iovb->data;

			if (!atm_charge(vcc, hb->truesize)) {
				recycle_iovec_rx_bufs(card, iov,
						      NS_PRV_IOVCNT(iovb));
				if (card->hbpool.count < card->hbnr.max) {
					skb_queue_tail(&card->hbpool.queue, hb);
					card->hbpool.count++;
				} else
					dev_kfree_skb_any(hb);
				atomic_inc(&vcc->stats->rx_drop);
			} else {
				/* Copy the small buffer to the huge buffer */
				sb = (struct sk_buff *)iov->iov_base;
				skb_copy_from_linear_data(sb, hb->data,
							  iov->iov_len);
				skb_put(hb, iov->iov_len);
				remaining = len - iov->iov_len;
				iov++;
				/* Free the small buffer */
				push_rxbufs(card, sb);

				/* Copy all large buffers to the huge buffer and free them */
				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
					lb = (struct sk_buff *)iov->iov_base;
					tocopy =
					    min_t(int, remaining, iov->iov_len);
					skb_copy_from_linear_data(lb,
								  skb_tail_pointer
								  (hb), tocopy);
					skb_put(hb, tocopy);
					iov++;
					remaining -= tocopy;
					push_rxbufs(card, lb);
				}
#ifdef EXTRA_DEBUG
				if (remaining != 0 || hb->len != len)
					printk
					    ("nicstar%d: Huge buffer len mismatch.\n",
					     card->index);
#endif /* EXTRA_DEBUG */
				ATM_SKB(hb)->vcc = vcc;
				__net_timestamp(hb);
				vcc->push(vcc, hb);
				atomic_inc(&vcc->stats->rx);
			}
		}

		vc->rx_iov = NULL;
		recycle_iov_buf(card, iovb);
	}

}

static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
{
	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
		printk("nicstar%d: What kind of rx buffer is this?\n",
		       card->index);
		dev_kfree_skb_any(skb);
	} else
		push_rxbufs(card, skb);
}

static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
{
	while (count-- > 0)
		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
}

static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
{
	if (card->iovpool.count < card->iovnr.max) {
		skb_queue_tail(&card->iovpool.queue, iovb);
		card->iovpool.count++;
	} else
		dev_kfree_skb_any(iovb);
}

static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
{
	skb_unlink(sb, &card->sbpool.queue);
	if (card->sbfqc < card->sbnr.init) {
		struct sk_buff *new_sb;
		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
			skb_queue_tail(&card->sbpool.queue, new_sb);
			skb_reserve(new_sb, NS_AAL0_HEADER);
			push_rxbufs(card, new_sb);
		}
	}
	if (card->sbfqc < card->sbnr.init)
	{
		struct sk_buff *new_sb;
		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
			skb_queue_tail(&card->sbpool.queue, new_sb);
			skb_reserve(new_sb, NS_AAL0_HEADER);
			push_rxbufs(card, new_sb);
		}
	}
}

static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
{
	skb_unlink(lb, &card->lbpool.queue);
	if (card->lbfqc < card->lbnr.init) {
		struct sk_buff *new_lb;
		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
			skb_queue_tail(&card->lbpool.queue, new_lb);
			skb_reserve(new_lb, NS_SMBUFSIZE);
			push_rxbufs(card, new_lb);
		}
	}
	if (card->lbfqc < card->lbnr.init)
	{
		struct sk_buff *new_lb;
		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
			skb_queue_tail(&card->lbpool.queue, new_lb);
			skb_reserve(new_lb, NS_SMBUFSIZE);
			push_rxbufs(card, new_lb);
		}
	}
}

static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
{
	u32 stat;
	ns_dev *card;
	int left;

	left = (int)*pos;
	card = (ns_dev *) dev->dev_data;
	stat = readl(card->membase + STAT);
	if (!left--)
		return sprintf(page, "Pool   count    min   init    max \n");
	if (!left--)
		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
			       ns_stat_sfbqc_get(stat), card->sbnr.min,
			       card->sbnr.init, card->sbnr.max);
	if (!left--)
		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
			       ns_stat_lfbqc_get(stat), card->lbnr.min,
			       card->lbnr.init, card->lbnr.max);
	if (!left--)
		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
			       card->hbpool.count, card->hbnr.min,
			       card->hbnr.init, card->hbnr.max);
	if (!left--)
		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
			       card->iovpool.count, card->iovnr.min,
			       card->iovnr.init, card->iovnr.max);
	if (!left--) {
		int retval;
		retval =
		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
		card->intcnt = 0;
		return retval;
	}
#if 0
	/* Dump 25.6 Mbps PHY registers */
	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
	   here just in case it's needed for debugging. */
	if (card->max_pcr == ATM_25_PCR && !left--) {
		u32 phy_regs[4];
		u32 i;

		for (i = 0; i < 4; i++) {
			while (CMD_BUSY(card)) ;
			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
			       card->membase + CMD);
			while (CMD_BUSY(card)) ;
			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
		}

		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
			       phy_regs[0], phy_regs[1], phy_regs[2],
			       phy_regs[3]);
	}
#endif /* 0 - Dump 25.6 Mbps PHY registers */
#if 0
	/* Dump TST */
	if (left-- < NS_TST_NUM_ENTRIES) {
		if (card->tste2vc[left + 1] == NULL)
			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
		else
			return sprintf(page, "%5d - %d %d \n", left + 1,
				       card->tste2vc[left + 1]->tx_vcc->vpi,
				       card->tste2vc[left + 1]->tx_vcc->vci);
	}
#endif /* 0 */
	return 0;
}

static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
{
	ns_dev *card;
	pool_levels pl;
	long btype;
	unsigned long flags;

	card = dev->dev_data;
	switch (cmd) {
	case NS_GETPSTAT:
		if (get_user
		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
			return -EFAULT;
		switch (pl.buftype) {
		case NS_BUFTYPE_SMALL:
			pl.count =
			    ns_stat_sfbqc_get(readl(card->membase + STAT));
			pl.level.min = card->sbnr.min;
			pl.level.init = card->sbnr.init;
			pl.level.max = card->sbnr.max;
			break;

		case NS_BUFTYPE_LARGE:
			pl.count =
			    ns_stat_lfbqc_get(readl(card->membase + STAT));
			pl.level.min = card->lbnr.min;
			pl.level.init = card->lbnr.init;
			pl.level.max = card->lbnr.max;
			break;

		case NS_BUFTYPE_HUGE:
			pl.count = card->hbpool.count;
			pl.level.min = card->hbnr.min;
			pl.level.init = card->hbnr.init;
			pl.level.max = card->hbnr.max;
			break;

		case NS_BUFTYPE_IOVEC:
			pl.count = card->iovpool.count;
			pl.level.min = card->iovnr.min;
			pl.level.init = card->iovnr.init;
			pl.level.max = card->iovnr.max;
			break;

		default:
			return -ENOIOCTLCMD;

		}
		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
			return (sizeof(pl));
		else
			return -EFAULT;

	case NS_SETBUFLEV:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
			return -EFAULT;
		if (pl.level.min >= pl.level.init
		    || pl.level.init >= pl.level.max)
			return -EINVAL;
		if (pl.level.min == 0)
			return -EINVAL;
		switch (pl.buftype) {
		case NS_BUFTYPE_SMALL:
			if (pl.level.max > TOP_SB)
				return -EINVAL;
			card->sbnr.min = pl.level.min;
			card->sbnr.init = pl.level.init;
			card->sbnr.max = pl.level.max;
			break;

		case NS_BUFTYPE_LARGE:
			if (pl.level.max > TOP_LB)
				return -EINVAL;
			card->lbnr.min = pl.level.min;
			card->lbnr.init = pl.level.init;
			card->lbnr.max = pl.level.max;
			break;

		case NS_BUFTYPE_HUGE:
			if (pl.level.max > TOP_HB)
				return -EINVAL;
			card->hbnr.min = pl.level.min;
			card->hbnr.init = pl.level.init;
			card->hbnr.max = pl.level.max;
			break;

		case NS_BUFTYPE_IOVEC:
			if (pl.level.max > TOP_IOVB)
				return -EINVAL;
			card->iovnr.min = pl.level.min;
			card->iovnr.init = pl.level.init;
			card->iovnr.max = pl.level.max;
			break;

		default:
			return -EINVAL;

		}
		return 0;

	case NS_ADJBUFLEV:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
		switch (btype) {
		case NS_BUFTYPE_SMALL:
			while (card->sbfqc < card->sbnr.init) {
				struct sk_buff *sb;

				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
				if (sb == NULL)
					return -ENOMEM;
				NS_PRV_BUFTYPE(sb) = BUF_SM;
				skb_queue_tail(&card->sbpool.queue, sb);
				skb_reserve(sb, NS_AAL0_HEADER);
				push_rxbufs(card, sb);
			}
			break;

		case NS_BUFTYPE_LARGE:
			while (card->lbfqc < card->lbnr.init) {
				struct sk_buff *lb;

				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
				if (lb == NULL)
					return -ENOMEM;
				NS_PRV_BUFTYPE(lb) = BUF_LG;
				skb_queue_tail(&card->lbpool.queue, lb);
				skb_reserve(lb, NS_SMBUFSIZE);
				push_rxbufs(card, lb);
			}
			break;

		case NS_BUFTYPE_HUGE:
			while (card->hbpool.count > card->hbnr.init) {
				struct sk_buff *hb;

				spin_lock_irqsave(&card->int_lock, flags);
				hb = skb_dequeue(&card->hbpool.queue);
				card->hbpool.count--;
				spin_unlock_irqrestore(&card->int_lock, flags);
				if (hb == NULL)
					printk
					    ("nicstar%d: huge buffer count inconsistent.\n",
					     card->index);
				else
					dev_kfree_skb_any(hb);

			}
			while (card->hbpool.count < card->hbnr.init) {
				struct sk_buff *hb;

				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
				if (hb == NULL)
					return -ENOMEM;
				NS_PRV_BUFTYPE(hb) = BUF_NONE;
				spin_lock_irqsave(&card->int_lock, flags);
				skb_queue_tail(&card->hbpool.queue, hb);
				card->hbpool.count++;
				spin_unlock_irqrestore(&card->int_lock, flags);
			}
			break;

		case NS_BUFTYPE_IOVEC:
			while (card->iovpool.count > card->iovnr.init) {
				struct sk_buff *iovb;

				spin_lock_irqsave(&card->int_lock, flags);
				iovb = skb_dequeue(&card->iovpool.queue);
				card->iovpool.count--;
				spin_unlock_irqrestore(&card->int_lock, flags);
				if (iovb == NULL)
					printk
					    ("nicstar%d: iovec buffer count inconsistent.\n",
					     card->index);
				else
					dev_kfree_skb_any(iovb);

			}
			while (card->iovpool.count < card->iovnr.init) {
				struct sk_buff *iovb;

				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
				if (iovb == NULL)
					return -ENOMEM;
				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
				spin_lock_irqsave(&card->int_lock, flags);
				skb_queue_tail(&card->iovpool.queue, iovb);
				card->iovpool.count++;
				spin_unlock_irqrestore(&card->int_lock, flags);
			}
			break;

		default:
			return -EINVAL;

		}
		return 0;

	default:
		if (dev->phy && dev->phy->ioctl) {
			return dev->phy->ioctl(dev, cmd, arg);
		} else {
			printk("nicstar%d: %s == NULL \n", card->index,
			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
			return -ENOIOCTLCMD;
		}
	}
}

#ifdef EXTRA_DEBUG
static void which_list(ns_dev * card, struct sk_buff *skb)
{
	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
}
#endif /* EXTRA_DEBUG */

static void ns_poll(struct timer_list *unused)
{
	int i;
	ns_dev *card;
	unsigned long flags;
	u32 stat_r, stat_w;

	PRINTK("nicstar: Entering ns_poll().\n");
	for (i = 0; i < num_cards; i++) {
		card = cards[i];
		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
			/* Probably it isn't worth spinning */
			continue;
		}

		stat_w = 0;
		stat_r = readl(card->membase + STAT);
		if (stat_r & NS_STAT_TSIF)
			stat_w |= NS_STAT_TSIF;
		if (stat_r & NS_STAT_EOPDU)
			stat_w |= NS_STAT_EOPDU;

		process_tsq(card);
		process_rsq(card);

		writel(stat_w, card->membase + STAT);
		spin_unlock_irqrestore(&card->int_lock, flags);
	}
	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
	PRINTK("nicstar: Leaving ns_poll().\n");
}

static void ns_phy_put(struct atm_dev *dev, unsigned char value,
		       unsigned long addr)
{
	ns_dev *card;
	unsigned long flags;

	card = dev->dev_data;
	spin_lock_irqsave(&card->res_lock, flags);
	while (CMD_BUSY(card)) ;
	writel((u32) value, card->membase + DR0);
	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
	       card->membase + CMD);
	spin_unlock_irqrestore(&card->res_lock, flags);
}

static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
{
	ns_dev *card;
	unsigned long flags;
	u32 data;

	card = dev->dev_data;
	spin_lock_irqsave(&card->res_lock, flags);
	while (CMD_BUSY(card)) ;
	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
	       card->membase + CMD);
	while (CMD_BUSY(card)) ;
	data = readl(card->membase + DR0) & 0x000000FF;
	spin_unlock_irqrestore(&card->res_lock, flags);
	return (unsigned char)data;
}

module_init(nicstar_init);
module_exit(nicstar_cleanup);