Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 1402 | 63.18% | 3 | 15.00% |
Sergei Shtylyov | 541 | 24.38% | 2 | 10.00% |
Geert Uytterhoeven | 159 | 7.17% | 6 | 30.00% |
Benoît Cousson | 97 | 4.37% | 1 | 5.00% |
Kuninori Morimoto | 8 | 0.36% | 2 | 10.00% |
Ben Dooks | 4 | 0.18% | 1 | 5.00% |
Stephen Boyd | 3 | 0.14% | 1 | 5.00% |
Rob Herring | 2 | 0.09% | 2 | 10.00% |
Kees Cook | 2 | 0.09% | 1 | 5.00% |
Simon Horman | 1 | 0.05% | 1 | 5.00% |
Total | 2219 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* * rcar_gen2 Core CPG Clocks * * Copyright (C) 2013 Ideas On Board SPRL * * Contact: Laurent Pinchart <laurent.pinchart@ideasonboard.com> */ #include <linux/clk-provider.h> #include <linux/clk/renesas.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/soc/renesas/rcar-rst.h> struct rcar_gen2_cpg { struct clk_onecell_data data; spinlock_t lock; void __iomem *reg; }; #define CPG_FRQCRB 0x00000004 #define CPG_FRQCRB_KICK BIT(31) #define CPG_SDCKCR 0x00000074 #define CPG_PLL0CR 0x000000d8 #define CPG_FRQCRC 0x000000e0 #define CPG_FRQCRC_ZFC_MASK (0x1f << 8) #define CPG_FRQCRC_ZFC_SHIFT 8 #define CPG_ADSPCKCR 0x0000025c #define CPG_RCANCKCR 0x00000270 /* ----------------------------------------------------------------------------- * Z Clock * * Traits of this clock: * prepare - clk_prepare only ensures that parents are prepared * enable - clk_enable only ensures that parents are enabled * rate - rate is adjustable. clk->rate = parent->rate * mult / 32 * parent - fixed parent. No clk_set_parent support */ struct cpg_z_clk { struct clk_hw hw; void __iomem *reg; void __iomem *kick_reg; }; #define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw) static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; unsigned int val; val = (readl(zclk->reg) & CPG_FRQCRC_ZFC_MASK) >> CPG_FRQCRC_ZFC_SHIFT; mult = 32 - val; return div_u64((u64)parent_rate * mult, 32); } static long cpg_z_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long prate = *parent_rate; unsigned int mult; if (!prate) prate = 1; mult = div_u64((u64)rate * 32, prate); mult = clamp(mult, 1U, 32U); return *parent_rate / 32 * mult; } static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; u32 val, kick; unsigned int i; mult = div_u64((u64)rate * 32, parent_rate); mult = clamp(mult, 1U, 32U); if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK) return -EBUSY; val = readl(zclk->reg); val &= ~CPG_FRQCRC_ZFC_MASK; val |= (32 - mult) << CPG_FRQCRC_ZFC_SHIFT; writel(val, zclk->reg); /* * Set KICK bit in FRQCRB to update hardware setting and wait for * clock change completion. */ kick = readl(zclk->kick_reg); kick |= CPG_FRQCRB_KICK; writel(kick, zclk->kick_reg); /* * Note: There is no HW information about the worst case latency. * * Using experimental measurements, it seems that no more than * ~10 iterations are needed, independently of the CPU rate. * Since this value might be dependent on external xtal rate, pll1 * rate or even the other emulation clocks rate, use 1000 as a * "super" safe value. */ for (i = 1000; i; i--) { if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK)) return 0; cpu_relax(); } return -ETIMEDOUT; } static const struct clk_ops cpg_z_clk_ops = { .recalc_rate = cpg_z_clk_recalc_rate, .round_rate = cpg_z_clk_round_rate, .set_rate = cpg_z_clk_set_rate, }; static struct clk * __init cpg_z_clk_register(struct rcar_gen2_cpg *cpg) { static const char *parent_name = "pll0"; struct clk_init_data init; struct cpg_z_clk *zclk; struct clk *clk; zclk = kzalloc(sizeof(*zclk), GFP_KERNEL); if (!zclk) return ERR_PTR(-ENOMEM); init.name = "z"; init.ops = &cpg_z_clk_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; zclk->reg = cpg->reg + CPG_FRQCRC; zclk->kick_reg = cpg->reg + CPG_FRQCRB; zclk->hw.init = &init; clk = clk_register(NULL, &zclk->hw); if (IS_ERR(clk)) kfree(zclk); return clk; } static struct clk * __init cpg_rcan_clk_register(struct rcar_gen2_cpg *cpg, struct device_node *np) { const char *parent_name = of_clk_get_parent_name(np, 1); struct clk_fixed_factor *fixed; struct clk_gate *gate; struct clk *clk; fixed = kzalloc(sizeof(*fixed), GFP_KERNEL); if (!fixed) return ERR_PTR(-ENOMEM); fixed->mult = 1; fixed->div = 6; gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) { kfree(fixed); return ERR_PTR(-ENOMEM); } gate->reg = cpg->reg + CPG_RCANCKCR; gate->bit_idx = 8; gate->flags = CLK_GATE_SET_TO_DISABLE; gate->lock = &cpg->lock; clk = clk_register_composite(NULL, "rcan", &parent_name, 1, NULL, NULL, &fixed->hw, &clk_fixed_factor_ops, &gate->hw, &clk_gate_ops, 0); if (IS_ERR(clk)) { kfree(gate); kfree(fixed); } return clk; } /* ADSP divisors */ static const struct clk_div_table cpg_adsp_div_table[] = { { 1, 3 }, { 2, 4 }, { 3, 6 }, { 4, 8 }, { 5, 12 }, { 6, 16 }, { 7, 18 }, { 8, 24 }, { 10, 36 }, { 11, 48 }, { 0, 0 }, }; static struct clk * __init cpg_adsp_clk_register(struct rcar_gen2_cpg *cpg) { const char *parent_name = "pll1"; struct clk_divider *div; struct clk_gate *gate; struct clk *clk; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return ERR_PTR(-ENOMEM); div->reg = cpg->reg + CPG_ADSPCKCR; div->width = 4; div->table = cpg_adsp_div_table; div->lock = &cpg->lock; gate = kzalloc(sizeof(*gate), GFP_KERNEL); if (!gate) { kfree(div); return ERR_PTR(-ENOMEM); } gate->reg = cpg->reg + CPG_ADSPCKCR; gate->bit_idx = 8; gate->flags = CLK_GATE_SET_TO_DISABLE; gate->lock = &cpg->lock; clk = clk_register_composite(NULL, "adsp", &parent_name, 1, NULL, NULL, &div->hw, &clk_divider_ops, &gate->hw, &clk_gate_ops, 0); if (IS_ERR(clk)) { kfree(gate); kfree(div); } return clk; } /* ----------------------------------------------------------------------------- * CPG Clock Data */ /* * MD EXTAL PLL0 PLL1 PLL3 * 14 13 19 (MHz) *1 *1 *--------------------------------------------------- * 0 0 0 15 x 1 x172/2 x208/2 x106 * 0 0 1 15 x 1 x172/2 x208/2 x88 * 0 1 0 20 x 1 x130/2 x156/2 x80 * 0 1 1 20 x 1 x130/2 x156/2 x66 * 1 0 0 26 / 2 x200/2 x240/2 x122 * 1 0 1 26 / 2 x200/2 x240/2 x102 * 1 1 0 30 / 2 x172/2 x208/2 x106 * 1 1 1 30 / 2 x172/2 x208/2 x88 * * *1 : Table 7.6 indicates VCO output (PLLx = VCO/2) */ #define CPG_PLL_CONFIG_INDEX(md) ((((md) & BIT(14)) >> 12) | \ (((md) & BIT(13)) >> 12) | \ (((md) & BIT(19)) >> 19)) struct cpg_pll_config { unsigned int extal_div; unsigned int pll1_mult; unsigned int pll3_mult; unsigned int pll0_mult; /* For R-Car V2H and E2 only */ }; static const struct cpg_pll_config cpg_pll_configs[8] __initconst = { { 1, 208, 106, 200 }, { 1, 208, 88, 200 }, { 1, 156, 80, 150 }, { 1, 156, 66, 150 }, { 2, 240, 122, 230 }, { 2, 240, 102, 230 }, { 2, 208, 106, 200 }, { 2, 208, 88, 200 }, }; /* SDHI divisors */ static const struct clk_div_table cpg_sdh_div_table[] = { { 0, 2 }, { 1, 3 }, { 2, 4 }, { 3, 6 }, { 4, 8 }, { 5, 12 }, { 6, 16 }, { 7, 18 }, { 8, 24 }, { 10, 36 }, { 11, 48 }, { 0, 0 }, }; static const struct clk_div_table cpg_sd01_div_table[] = { { 4, 8 }, { 5, 12 }, { 6, 16 }, { 7, 18 }, { 8, 24 }, { 10, 36 }, { 11, 48 }, { 12, 10 }, { 0, 0 }, }; /* ----------------------------------------------------------------------------- * Initialization */ static u32 cpg_mode __initdata; static const char * const pll0_mult_match[] = { "renesas,r8a7792-cpg-clocks", "renesas,r8a7794-cpg-clocks", NULL }; static struct clk * __init rcar_gen2_cpg_register_clock(struct device_node *np, struct rcar_gen2_cpg *cpg, const struct cpg_pll_config *config, const char *name) { const struct clk_div_table *table = NULL; const char *parent_name; unsigned int shift; unsigned int mult = 1; unsigned int div = 1; if (!strcmp(name, "main")) { parent_name = of_clk_get_parent_name(np, 0); div = config->extal_div; } else if (!strcmp(name, "pll0")) { /* PLL0 is a configurable multiplier clock. Register it as a * fixed factor clock for now as there's no generic multiplier * clock implementation and we currently have no need to change * the multiplier value. */ if (of_device_compatible_match(np, pll0_mult_match)) { /* R-Car V2H and E2 do not have PLL0CR */ mult = config->pll0_mult; div = 3; } else { u32 value = readl(cpg->reg + CPG_PLL0CR); mult = ((value >> 24) & ((1 << 7) - 1)) + 1; } parent_name = "main"; } else if (!strcmp(name, "pll1")) { parent_name = "main"; mult = config->pll1_mult / 2; } else if (!strcmp(name, "pll3")) { parent_name = "main"; mult = config->pll3_mult; } else if (!strcmp(name, "lb")) { parent_name = "pll1"; div = cpg_mode & BIT(18) ? 36 : 24; } else if (!strcmp(name, "qspi")) { parent_name = "pll1_div2"; div = (cpg_mode & (BIT(3) | BIT(2) | BIT(1))) == BIT(2) ? 8 : 10; } else if (!strcmp(name, "sdh")) { parent_name = "pll1"; table = cpg_sdh_div_table; shift = 8; } else if (!strcmp(name, "sd0")) { parent_name = "pll1"; table = cpg_sd01_div_table; shift = 4; } else if (!strcmp(name, "sd1")) { parent_name = "pll1"; table = cpg_sd01_div_table; shift = 0; } else if (!strcmp(name, "z")) { return cpg_z_clk_register(cpg); } else if (!strcmp(name, "rcan")) { return cpg_rcan_clk_register(cpg, np); } else if (!strcmp(name, "adsp")) { return cpg_adsp_clk_register(cpg); } else { return ERR_PTR(-EINVAL); } if (!table) return clk_register_fixed_factor(NULL, name, parent_name, 0, mult, div); else return clk_register_divider_table(NULL, name, parent_name, 0, cpg->reg + CPG_SDCKCR, shift, 4, 0, table, &cpg->lock); } /* * Reset register definitions. */ #define MODEMR 0xe6160060 static u32 __init rcar_gen2_read_mode_pins(void) { void __iomem *modemr = ioremap_nocache(MODEMR, 4); u32 mode; BUG_ON(!modemr); mode = ioread32(modemr); iounmap(modemr); return mode; } static void __init rcar_gen2_cpg_clocks_init(struct device_node *np) { const struct cpg_pll_config *config; struct rcar_gen2_cpg *cpg; struct clk **clks; unsigned int i; int num_clks; if (rcar_rst_read_mode_pins(&cpg_mode)) { /* Backward-compatibility with old DT */ pr_warn("%pOF: failed to obtain mode pins from RST\n", np); cpg_mode = rcar_gen2_read_mode_pins(); } num_clks = of_property_count_strings(np, "clock-output-names"); if (num_clks < 0) { pr_err("%s: failed to count clocks\n", __func__); return; } cpg = kzalloc(sizeof(*cpg), GFP_KERNEL); clks = kcalloc(num_clks, sizeof(*clks), GFP_KERNEL); if (cpg == NULL || clks == NULL) { /* We're leaking memory on purpose, there's no point in cleaning * up as the system won't boot anyway. */ return; } spin_lock_init(&cpg->lock); cpg->data.clks = clks; cpg->data.clk_num = num_clks; cpg->reg = of_iomap(np, 0); if (WARN_ON(cpg->reg == NULL)) return; config = &cpg_pll_configs[CPG_PLL_CONFIG_INDEX(cpg_mode)]; for (i = 0; i < num_clks; ++i) { const char *name; struct clk *clk; of_property_read_string_index(np, "clock-output-names", i, &name); clk = rcar_gen2_cpg_register_clock(np, cpg, config, name); if (IS_ERR(clk)) pr_err("%s: failed to register %pOFn %s clock (%ld)\n", __func__, np, name, PTR_ERR(clk)); else cpg->data.clks[i] = clk; } of_clk_add_provider(np, of_clk_src_onecell_get, &cpg->data); cpg_mstp_add_clk_domain(np); } CLK_OF_DECLARE(rcar_gen2_cpg_clks, "renesas,rcar-gen2-cpg-clocks", rcar_gen2_cpg_clocks_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1