Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Xie | 1176 | 17.96% | 1 | 0.64% |
Hawking Zhang | 1028 | 15.70% | 10 | 6.37% |
David Panariti | 830 | 12.67% | 1 | 0.64% |
Christian König | 722 | 11.02% | 31 | 19.75% |
Alex Deucher | 547 | 8.35% | 17 | 10.83% |
xinhui pan | 511 | 7.80% | 6 | 3.82% |
Tao Zhou | 410 | 6.26% | 8 | 5.10% |
Le Ma | 337 | 5.15% | 10 | 6.37% |
Evan Quan | 203 | 3.10% | 2 | 1.27% |
Yong Zhao | 109 | 1.66% | 3 | 1.91% |
Huang Rui | 85 | 1.30% | 7 | 4.46% |
Emily Deng | 68 | 1.04% | 2 | 1.27% |
Chunming Zhou | 66 | 1.01% | 5 | 3.18% |
Andrey Grodzovsky | 66 | 1.01% | 5 | 3.18% |
Monk Liu | 48 | 0.73% | 8 | 5.10% |
Oak Zeng | 47 | 0.72% | 3 | 1.91% |
Tiecheng Zhou | 38 | 0.58% | 1 | 0.64% |
Shaoyun Liu | 37 | 0.56% | 3 | 1.91% |
Xiaojie Yuan | 32 | 0.49% | 1 | 0.64% |
Trigger Huang | 26 | 0.40% | 2 | 1.27% |
wentalou | 24 | 0.37% | 1 | 0.64% |
Tom St Denis | 21 | 0.32% | 5 | 3.18% |
Felix Kuhling | 21 | 0.32% | 2 | 1.27% |
Feifei Xu | 18 | 0.27% | 8 | 5.10% |
Shirish S | 16 | 0.24% | 1 | 0.64% |
Roger He | 14 | 0.21% | 2 | 1.27% |
Frank Min | 9 | 0.14% | 1 | 0.64% |
Dave Airlie | 8 | 0.12% | 1 | 0.64% |
Christoph Hellwig | 6 | 0.09% | 1 | 0.64% |
tianci yin | 6 | 0.09% | 1 | 0.64% |
Junwei (Martin) Zhang | 5 | 0.08% | 2 | 1.27% |
Chengming Gui | 5 | 0.08% | 1 | 0.64% |
Flora Cui | 4 | 0.06% | 3 | 1.91% |
Michael D Labriola | 3 | 0.05% | 1 | 0.64% |
Sam Ravnborg | 3 | 0.05% | 1 | 0.64% |
Total | 6549 | 157 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/firmware.h> #include <linux/pci.h> #include <drm/drm_cache.h> #include "amdgpu.h" #include "gmc_v9_0.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_gem.h" #include "hdp/hdp_4_0_offset.h" #include "hdp/hdp_4_0_sh_mask.h" #include "gc/gc_9_0_sh_mask.h" #include "dce/dce_12_0_offset.h" #include "dce/dce_12_0_sh_mask.h" #include "vega10_enum.h" #include "mmhub/mmhub_1_0_offset.h" #include "athub/athub_1_0_offset.h" #include "oss/osssys_4_0_offset.h" #include "soc15.h" #include "soc15_common.h" #include "umc/umc_6_0_sh_mask.h" #include "gfxhub_v1_0.h" #include "mmhub_v1_0.h" #include "athub_v1_0.h" #include "gfxhub_v1_1.h" #include "mmhub_v9_4.h" #include "umc_v6_1.h" #include "ivsrcid/vmc/irqsrcs_vmc_1_0.h" #include "amdgpu_ras.h" /* add these here since we already include dce12 headers and these are for DCN */ #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION 0x055d #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION_BASE_IDX 2 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH__SHIFT 0x0 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT__SHIFT 0x10 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH_MASK 0x00003FFFL #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT_MASK 0x3FFF0000L /* XXX Move this macro to VEGA10 header file, which is like vid.h for VI.*/ #define AMDGPU_NUM_OF_VMIDS 8 static const u32 golden_settings_vega10_hdp[] = { 0xf64, 0x0fffffff, 0x00000000, 0xf65, 0x0fffffff, 0x00000000, 0xf66, 0x0fffffff, 0x00000000, 0xf67, 0x0fffffff, 0x00000000, 0xf68, 0x0fffffff, 0x00000000, 0xf6a, 0x0fffffff, 0x00000000, 0xf6b, 0x0fffffff, 0x00000000, 0xf6c, 0x0fffffff, 0x00000000, 0xf6d, 0x0fffffff, 0x00000000, 0xf6e, 0x0fffffff, 0x00000000, }; static const struct soc15_reg_golden golden_settings_mmhub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmDAGB1_WRCLI2, 0x00000007, 0xfe5fe0fa), SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmMMEA1_DRAM_WR_CLI2GRP_MAP0, 0x00000030, 0x55555565) }; static const struct soc15_reg_golden golden_settings_athub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL, 0x0000ff00, 0x00000800), SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL2, 0x00ff00ff, 0x00080008) }; static const uint32_t ecc_umc_mcumc_ctrl_addrs[] = { (0x000143c0 + 0x00000000), (0x000143c0 + 0x00000800), (0x000143c0 + 0x00001000), (0x000143c0 + 0x00001800), (0x000543c0 + 0x00000000), (0x000543c0 + 0x00000800), (0x000543c0 + 0x00001000), (0x000543c0 + 0x00001800), (0x000943c0 + 0x00000000), (0x000943c0 + 0x00000800), (0x000943c0 + 0x00001000), (0x000943c0 + 0x00001800), (0x000d43c0 + 0x00000000), (0x000d43c0 + 0x00000800), (0x000d43c0 + 0x00001000), (0x000d43c0 + 0x00001800), (0x001143c0 + 0x00000000), (0x001143c0 + 0x00000800), (0x001143c0 + 0x00001000), (0x001143c0 + 0x00001800), (0x001543c0 + 0x00000000), (0x001543c0 + 0x00000800), (0x001543c0 + 0x00001000), (0x001543c0 + 0x00001800), (0x001943c0 + 0x00000000), (0x001943c0 + 0x00000800), (0x001943c0 + 0x00001000), (0x001943c0 + 0x00001800), (0x001d43c0 + 0x00000000), (0x001d43c0 + 0x00000800), (0x001d43c0 + 0x00001000), (0x001d43c0 + 0x00001800), }; static const uint32_t ecc_umc_mcumc_ctrl_mask_addrs[] = { (0x000143e0 + 0x00000000), (0x000143e0 + 0x00000800), (0x000143e0 + 0x00001000), (0x000143e0 + 0x00001800), (0x000543e0 + 0x00000000), (0x000543e0 + 0x00000800), (0x000543e0 + 0x00001000), (0x000543e0 + 0x00001800), (0x000943e0 + 0x00000000), (0x000943e0 + 0x00000800), (0x000943e0 + 0x00001000), (0x000943e0 + 0x00001800), (0x000d43e0 + 0x00000000), (0x000d43e0 + 0x00000800), (0x000d43e0 + 0x00001000), (0x000d43e0 + 0x00001800), (0x001143e0 + 0x00000000), (0x001143e0 + 0x00000800), (0x001143e0 + 0x00001000), (0x001143e0 + 0x00001800), (0x001543e0 + 0x00000000), (0x001543e0 + 0x00000800), (0x001543e0 + 0x00001000), (0x001543e0 + 0x00001800), (0x001943e0 + 0x00000000), (0x001943e0 + 0x00000800), (0x001943e0 + 0x00001000), (0x001943e0 + 0x00001800), (0x001d43e0 + 0x00000000), (0x001d43e0 + 0x00000800), (0x001d43e0 + 0x00001000), (0x001d43e0 + 0x00001800), }; static const uint32_t ecc_umc_mcumc_status_addrs[] = { (0x000143c2 + 0x00000000), (0x000143c2 + 0x00000800), (0x000143c2 + 0x00001000), (0x000143c2 + 0x00001800), (0x000543c2 + 0x00000000), (0x000543c2 + 0x00000800), (0x000543c2 + 0x00001000), (0x000543c2 + 0x00001800), (0x000943c2 + 0x00000000), (0x000943c2 + 0x00000800), (0x000943c2 + 0x00001000), (0x000943c2 + 0x00001800), (0x000d43c2 + 0x00000000), (0x000d43c2 + 0x00000800), (0x000d43c2 + 0x00001000), (0x000d43c2 + 0x00001800), (0x001143c2 + 0x00000000), (0x001143c2 + 0x00000800), (0x001143c2 + 0x00001000), (0x001143c2 + 0x00001800), (0x001543c2 + 0x00000000), (0x001543c2 + 0x00000800), (0x001543c2 + 0x00001000), (0x001543c2 + 0x00001800), (0x001943c2 + 0x00000000), (0x001943c2 + 0x00000800), (0x001943c2 + 0x00001000), (0x001943c2 + 0x00001800), (0x001d43c2 + 0x00000000), (0x001d43c2 + 0x00000800), (0x001d43c2 + 0x00001000), (0x001d43c2 + 0x00001800), }; static int gmc_v9_0_ecc_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 bits, i, tmp, reg; bits = 0x7f; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_addrs); i++) { reg = ecc_umc_mcumc_ctrl_addrs[i]; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_mask_addrs); i++) { reg = ecc_umc_mcumc_ctrl_mask_addrs[i]; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } break; case AMDGPU_IRQ_STATE_ENABLE: for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_addrs); i++) { reg = ecc_umc_mcumc_ctrl_addrs[i]; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } for (i = 0; i < ARRAY_SIZE(ecc_umc_mcumc_ctrl_mask_addrs); i++) { reg = ecc_umc_mcumc_ctrl_mask_addrs[i]; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } break; default: break; } return 0; } static int gmc_v9_0_process_ras_data_cb(struct amdgpu_device *adev, struct ras_err_data *err_data, struct amdgpu_iv_entry *entry) { kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); if (adev->umc.funcs->query_ras_error_count) adev->umc.funcs->query_ras_error_count(adev, err_data); /* umc query_ras_error_address is also responsible for clearing * error status */ if (adev->umc.funcs->query_ras_error_address) adev->umc.funcs->query_ras_error_address(adev, err_data); /* only uncorrectable error needs gpu reset */ if (err_data->ue_count) amdgpu_ras_reset_gpu(adev, 0); return AMDGPU_RAS_SUCCESS; } static int gmc_v9_0_process_ecc_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct ras_common_if *ras_if = adev->gmc.umc_ras_if; struct ras_dispatch_if ih_data = { .entry = entry, }; if (!ras_if) return 0; ih_data.head = *ras_if; amdgpu_ras_interrupt_dispatch(adev, &ih_data); return 0; } static int gmc_v9_0_vm_fault_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { struct amdgpu_vmhub *hub; u32 tmp, reg, bits, i, j; bits = VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: for (j = 0; j < adev->num_vmhubs; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } } break; case AMDGPU_IRQ_STATE_ENABLE: for (j = 0; j < adev->num_vmhubs; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } } default: break; } return 0; } static int gmc_v9_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct amdgpu_vmhub *hub; bool retry_fault = !!(entry->src_data[1] & 0x80); uint32_t status = 0; u64 addr; char hub_name[10]; addr = (u64)entry->src_data[0] << 12; addr |= ((u64)entry->src_data[1] & 0xf) << 44; if (retry_fault && amdgpu_gmc_filter_faults(adev, addr, entry->pasid, entry->timestamp)) return 1; /* This also prevents sending it to KFD */ if (entry->client_id == SOC15_IH_CLIENTID_VMC) { snprintf(hub_name, sizeof(hub_name), "mmhub0"); hub = &adev->vmhub[AMDGPU_MMHUB_0]; } else if (entry->client_id == SOC15_IH_CLIENTID_VMC1) { snprintf(hub_name, sizeof(hub_name), "mmhub1"); hub = &adev->vmhub[AMDGPU_MMHUB_1]; } else { snprintf(hub_name, sizeof(hub_name), "gfxhub0"); hub = &adev->vmhub[AMDGPU_GFXHUB_0]; } /* If it's the first fault for this address, process it normally */ if (!amdgpu_sriov_vf(adev)) { /* * Issue a dummy read to wait for the status register to * be updated to avoid reading an incorrect value due to * the new fast GRBM interface. */ if (entry->vmid_src == AMDGPU_GFXHUB_0) RREG32(hub->vm_l2_pro_fault_status); status = RREG32(hub->vm_l2_pro_fault_status); WREG32_P(hub->vm_l2_pro_fault_cntl, 1, ~1); } if (printk_ratelimit()) { struct amdgpu_task_info task_info; memset(&task_info, 0, sizeof(struct amdgpu_task_info)); amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); dev_err(adev->dev, "[%s] %s page fault (src_id:%u ring:%u vmid:%u " "pasid:%u, for process %s pid %d thread %s pid %d)\n", hub_name, retry_fault ? "retry" : "no-retry", entry->src_id, entry->ring_id, entry->vmid, entry->pasid, task_info.process_name, task_info.tgid, task_info.task_name, task_info.pid); dev_err(adev->dev, " in page starting at address 0x%016llx from client %d\n", addr, entry->client_id); if (!amdgpu_sriov_vf(adev)) { dev_err(adev->dev, "VM_L2_PROTECTION_FAULT_STATUS:0x%08X\n", status); dev_err(adev->dev, "\t MORE_FAULTS: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, MORE_FAULTS)); dev_err(adev->dev, "\t WALKER_ERROR: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, WALKER_ERROR)); dev_err(adev->dev, "\t PERMISSION_FAULTS: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, PERMISSION_FAULTS)); dev_err(adev->dev, "\t MAPPING_ERROR: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, MAPPING_ERROR)); dev_err(adev->dev, "\t RW: 0x%lx\n", REG_GET_FIELD(status, VM_L2_PROTECTION_FAULT_STATUS, RW)); } } return 0; } static const struct amdgpu_irq_src_funcs gmc_v9_0_irq_funcs = { .set = gmc_v9_0_vm_fault_interrupt_state, .process = gmc_v9_0_process_interrupt, }; static const struct amdgpu_irq_src_funcs gmc_v9_0_ecc_funcs = { .set = gmc_v9_0_ecc_interrupt_state, .process = gmc_v9_0_process_ecc_irq, }; static void gmc_v9_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gmc.vm_fault.num_types = 1; adev->gmc.vm_fault.funcs = &gmc_v9_0_irq_funcs; adev->gmc.ecc_irq.num_types = 1; adev->gmc.ecc_irq.funcs = &gmc_v9_0_ecc_funcs; } static uint32_t gmc_v9_0_get_invalidate_req(unsigned int vmid, uint32_t flush_type) { u32 req = 0; req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, PER_VMID_INVALIDATE_REQ, 1 << vmid); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, FLUSH_TYPE, flush_type); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE0, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE1, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE2, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L1_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, CLEAR_PROTECTION_FAULT_STATUS_ADDR, 0); return req; } /* * GART * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gmc_v9_0_flush_gpu_tlb - tlb flush with certain type * * @adev: amdgpu_device pointer * @vmid: vm instance to flush * @flush_type: the flush type * * Flush the TLB for the requested page table using certain type. */ static void gmc_v9_0_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, uint32_t vmhub, uint32_t flush_type) { const unsigned eng = 17; u32 j, tmp; struct amdgpu_vmhub *hub; BUG_ON(vmhub >= adev->num_vmhubs); hub = &adev->vmhub[vmhub]; tmp = gmc_v9_0_get_invalidate_req(vmid, flush_type); /* This is necessary for a HW workaround under SRIOV as well * as GFXOFF under bare metal */ if (adev->gfx.kiq.ring.sched.ready && (amdgpu_sriov_runtime(adev) || !amdgpu_sriov_vf(adev)) && !adev->in_gpu_reset) { uint32_t req = hub->vm_inv_eng0_req + eng; uint32_t ack = hub->vm_inv_eng0_ack + eng; amdgpu_virt_kiq_reg_write_reg_wait(adev, req, ack, tmp, 1 << vmid); return; } spin_lock(&adev->gmc.invalidate_lock); WREG32_NO_KIQ(hub->vm_inv_eng0_req + eng, tmp); /* * Issue a dummy read to wait for the ACK register to be cleared * to avoid a false ACK due to the new fast GRBM interface. */ if (vmhub == AMDGPU_GFXHUB_0) RREG32_NO_KIQ(hub->vm_inv_eng0_req + eng); for (j = 0; j < adev->usec_timeout; j++) { tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_ack + eng); if (tmp & (1 << vmid)) break; udelay(1); } spin_unlock(&adev->gmc.invalidate_lock); if (j < adev->usec_timeout) return; DRM_ERROR("Timeout waiting for VM flush ACK!\n"); } static uint64_t gmc_v9_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vmhub *hub = &adev->vmhub[ring->funcs->vmhub]; uint32_t req = gmc_v9_0_get_invalidate_req(vmid, 0); unsigned eng = ring->vm_inv_eng; amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + (2 * vmid), lower_32_bits(pd_addr)); amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + (2 * vmid), upper_32_bits(pd_addr)); amdgpu_ring_emit_reg_write_reg_wait(ring, hub->vm_inv_eng0_req + eng, hub->vm_inv_eng0_ack + eng, req, 1 << vmid); return pd_addr; } static void gmc_v9_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid, unsigned pasid) { struct amdgpu_device *adev = ring->adev; uint32_t reg; /* Do nothing because there's no lut register for mmhub1. */ if (ring->funcs->vmhub == AMDGPU_MMHUB_1) return; if (ring->funcs->vmhub == AMDGPU_GFXHUB_0) reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid; else reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid; amdgpu_ring_emit_wreg(ring, reg, pasid); } /* * PTE format on VEGA 10: * 63:59 reserved * 58:57 mtype * 56 F * 55 L * 54 P * 53 SW * 52 T * 50:48 reserved * 47:12 4k physical page base address * 11:7 fragment * 6 write * 5 read * 4 exe * 3 Z * 2 snooped * 1 system * 0 valid * * PDE format on VEGA 10: * 63:59 block fragment size * 58:55 reserved * 54 P * 53:48 reserved * 47:6 physical base address of PD or PTE * 5:3 reserved * 2 C * 1 system * 0 valid */ static uint64_t gmc_v9_0_get_vm_pte_flags(struct amdgpu_device *adev, uint32_t flags) { uint64_t pte_flag = 0; if (flags & AMDGPU_VM_PAGE_EXECUTABLE) pte_flag |= AMDGPU_PTE_EXECUTABLE; if (flags & AMDGPU_VM_PAGE_READABLE) pte_flag |= AMDGPU_PTE_READABLE; if (flags & AMDGPU_VM_PAGE_WRITEABLE) pte_flag |= AMDGPU_PTE_WRITEABLE; switch (flags & AMDGPU_VM_MTYPE_MASK) { case AMDGPU_VM_MTYPE_DEFAULT: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); break; case AMDGPU_VM_MTYPE_NC: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); break; case AMDGPU_VM_MTYPE_WC: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_WC); break; case AMDGPU_VM_MTYPE_CC: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_CC); break; case AMDGPU_VM_MTYPE_UC: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_UC); break; default: pte_flag |= AMDGPU_PTE_MTYPE_VG10(MTYPE_NC); break; } if (flags & AMDGPU_VM_PAGE_PRT) pte_flag |= AMDGPU_PTE_PRT; return pte_flag; } static void gmc_v9_0_get_vm_pde(struct amdgpu_device *adev, int level, uint64_t *addr, uint64_t *flags) { if (!(*flags & AMDGPU_PDE_PTE) && !(*flags & AMDGPU_PTE_SYSTEM)) *addr = adev->vm_manager.vram_base_offset + *addr - adev->gmc.vram_start; BUG_ON(*addr & 0xFFFF00000000003FULL); if (!adev->gmc.translate_further) return; if (level == AMDGPU_VM_PDB1) { /* Set the block fragment size */ if (!(*flags & AMDGPU_PDE_PTE)) *flags |= AMDGPU_PDE_BFS(0x9); } else if (level == AMDGPU_VM_PDB0) { if (*flags & AMDGPU_PDE_PTE) *flags &= ~AMDGPU_PDE_PTE; else *flags |= AMDGPU_PTE_TF; } } static const struct amdgpu_gmc_funcs gmc_v9_0_gmc_funcs = { .flush_gpu_tlb = gmc_v9_0_flush_gpu_tlb, .emit_flush_gpu_tlb = gmc_v9_0_emit_flush_gpu_tlb, .emit_pasid_mapping = gmc_v9_0_emit_pasid_mapping, .get_vm_pte_flags = gmc_v9_0_get_vm_pte_flags, .get_vm_pde = gmc_v9_0_get_vm_pde }; static void gmc_v9_0_set_gmc_funcs(struct amdgpu_device *adev) { adev->gmc.gmc_funcs = &gmc_v9_0_gmc_funcs; } static void gmc_v9_0_set_umc_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA20: adev->umc.max_ras_err_cnt_per_query = UMC_V6_1_TOTAL_CHANNEL_NUM; adev->umc.channel_inst_num = UMC_V6_1_CHANNEL_INSTANCE_NUM; adev->umc.umc_inst_num = UMC_V6_1_UMC_INSTANCE_NUM; adev->umc.channel_offs = UMC_V6_1_PER_CHANNEL_OFFSET; adev->umc.channel_idx_tbl = &umc_v6_1_channel_idx_tbl[0][0]; adev->umc.funcs = &umc_v6_1_funcs; break; default: break; } } static void gmc_v9_0_set_mmhub_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA20: adev->mmhub_funcs = &mmhub_v1_0_funcs; break; default: break; } } static int gmc_v9_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; gmc_v9_0_set_gmc_funcs(adev); gmc_v9_0_set_irq_funcs(adev); gmc_v9_0_set_umc_funcs(adev); gmc_v9_0_set_mmhub_funcs(adev); adev->gmc.shared_aperture_start = 0x2000000000000000ULL; adev->gmc.shared_aperture_end = adev->gmc.shared_aperture_start + (4ULL << 30) - 1; adev->gmc.private_aperture_start = 0x1000000000000000ULL; adev->gmc.private_aperture_end = adev->gmc.private_aperture_start + (4ULL << 30) - 1; return 0; } static bool gmc_v9_0_keep_stolen_memory(struct amdgpu_device *adev) { /* * TODO: * Currently there is a bug where some memory client outside * of the driver writes to first 8M of VRAM on S3 resume, * this overrides GART which by default gets placed in first 8M and * causes VM_FAULTS once GTT is accessed. * Keep the stolen memory reservation until the while this is not solved. * Also check code in gmc_v9_0_get_vbios_fb_size and gmc_v9_0_late_init */ switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_RAVEN: case CHIP_ARCTURUS: case CHIP_RENOIR: return true; case CHIP_VEGA12: case CHIP_VEGA20: default: return false; } } static int gmc_v9_0_allocate_vm_inv_eng(struct amdgpu_device *adev) { struct amdgpu_ring *ring; unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP, GFXHUB_FREE_VM_INV_ENGS_BITMAP}; unsigned i; unsigned vmhub, inv_eng; for (i = 0; i < adev->num_rings; ++i) { ring = adev->rings[i]; vmhub = ring->funcs->vmhub; inv_eng = ffs(vm_inv_engs[vmhub]); if (!inv_eng) { dev_err(adev->dev, "no VM inv eng for ring %s\n", ring->name); return -EINVAL; } ring->vm_inv_eng = inv_eng - 1; vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", ring->name, ring->vm_inv_eng, ring->funcs->vmhub); } return 0; } static int gmc_v9_0_ecc_ras_block_late_init(void *handle, struct ras_fs_if *fs_info, struct ras_common_if *ras_block) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct ras_common_if **ras_if = NULL; struct ras_ih_if ih_info = { .cb = gmc_v9_0_process_ras_data_cb, }; int r; if (ras_block->block == AMDGPU_RAS_BLOCK__UMC) ras_if = &adev->gmc.umc_ras_if; else if (ras_block->block == AMDGPU_RAS_BLOCK__MMHUB) ras_if = &adev->gmc.mmhub_ras_if; else BUG(); if (!amdgpu_ras_is_supported(adev, ras_block->block)) { amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); return 0; } /* handle resume path. */ if (*ras_if) { /* resend ras TA enable cmd during resume. * prepare to handle failure. */ ih_info.head = **ras_if; r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1); if (r) { if (r == -EAGAIN) { /* request a gpu reset. will run again. */ amdgpu_ras_request_reset_on_boot(adev, ras_block->block); return 0; } /* fail to enable ras, cleanup all. */ goto irq; } /* enable successfully. continue. */ goto resume; } *ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL); if (!*ras_if) return -ENOMEM; **ras_if = *ras_block; r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1); if (r) { if (r == -EAGAIN) { amdgpu_ras_request_reset_on_boot(adev, ras_block->block); r = 0; } goto feature; } ih_info.head = **ras_if; fs_info->head = **ras_if; if (ras_block->block == AMDGPU_RAS_BLOCK__UMC) { r = amdgpu_ras_interrupt_add_handler(adev, &ih_info); if (r) goto interrupt; } amdgpu_ras_debugfs_create(adev, fs_info); r = amdgpu_ras_sysfs_create(adev, fs_info); if (r) goto sysfs; resume: if (ras_block->block == AMDGPU_RAS_BLOCK__UMC) { r = amdgpu_irq_get(adev, &adev->gmc.ecc_irq, 0); if (r) goto irq; } return 0; irq: amdgpu_ras_sysfs_remove(adev, *ras_if); sysfs: amdgpu_ras_debugfs_remove(adev, *ras_if); if (ras_block->block == AMDGPU_RAS_BLOCK__UMC) amdgpu_ras_interrupt_remove_handler(adev, &ih_info); interrupt: amdgpu_ras_feature_enable(adev, *ras_if, 0); feature: kfree(*ras_if); *ras_if = NULL; return r; } static int gmc_v9_0_ecc_late_init(void *handle) { int r; struct ras_fs_if umc_fs_info = { .sysfs_name = "umc_err_count", .debugfs_name = "umc_err_inject", }; struct ras_common_if umc_ras_block = { .block = AMDGPU_RAS_BLOCK__UMC, .type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, .sub_block_index = 0, .name = "umc", }; struct ras_fs_if mmhub_fs_info = { .sysfs_name = "mmhub_err_count", .debugfs_name = "mmhub_err_inject", }; struct ras_common_if mmhub_ras_block = { .block = AMDGPU_RAS_BLOCK__MMHUB, .type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, .sub_block_index = 0, .name = "mmhub", }; r = gmc_v9_0_ecc_ras_block_late_init(handle, &umc_fs_info, &umc_ras_block); if (r) return r; r = gmc_v9_0_ecc_ras_block_late_init(handle, &mmhub_fs_info, &mmhub_ras_block); return r; } static int gmc_v9_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool r; if (!gmc_v9_0_keep_stolen_memory(adev)) amdgpu_bo_late_init(adev); r = gmc_v9_0_allocate_vm_inv_eng(adev); if (r) return r; /* Check if ecc is available */ if (!amdgpu_sriov_vf(adev)) { switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_VEGA20: r = amdgpu_atomfirmware_mem_ecc_supported(adev); if (!r) { DRM_INFO("ECC is not present.\n"); if (adev->df_funcs->enable_ecc_force_par_wr_rmw) adev->df_funcs->enable_ecc_force_par_wr_rmw(adev, false); } else { DRM_INFO("ECC is active.\n"); } r = amdgpu_atomfirmware_sram_ecc_supported(adev); if (!r) { DRM_INFO("SRAM ECC is not present.\n"); } else { DRM_INFO("SRAM ECC is active.\n"); } break; default: break; } } r = gmc_v9_0_ecc_late_init(handle); if (r) return r; return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0); } static void gmc_v9_0_vram_gtt_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { u64 base = 0; if (adev->asic_type == CHIP_ARCTURUS) base = mmhub_v9_4_get_fb_location(adev); else if (!amdgpu_sriov_vf(adev)) base = mmhub_v1_0_get_fb_location(adev); /* add the xgmi offset of the physical node */ base += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; amdgpu_gmc_vram_location(adev, mc, base); amdgpu_gmc_gart_location(adev, mc); amdgpu_gmc_agp_location(adev, mc); /* base offset of vram pages */ adev->vm_manager.vram_base_offset = gfxhub_v1_0_get_mc_fb_offset(adev); /* XXX: add the xgmi offset of the physical node? */ adev->vm_manager.vram_base_offset += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; } /** * gmc_v9_0_mc_init - initialize the memory controller driver params * * @adev: amdgpu_device pointer * * Look up the amount of vram, vram width, and decide how to place * vram and gart within the GPU's physical address space. * Returns 0 for success. */ static int gmc_v9_0_mc_init(struct amdgpu_device *adev) { int chansize, numchan; int r; if (amdgpu_sriov_vf(adev)) { /* For Vega10 SR-IOV, vram_width can't be read from ATOM as RAVEN, * and DF related registers is not readable, seems hardcord is the * only way to set the correct vram_width */ adev->gmc.vram_width = 2048; } else if (amdgpu_emu_mode != 1) { adev->gmc.vram_width = amdgpu_atomfirmware_get_vram_width(adev); } if (!adev->gmc.vram_width) { /* hbm memory channel size */ if (adev->flags & AMD_IS_APU) chansize = 64; else chansize = 128; numchan = adev->df_funcs->get_hbm_channel_number(adev); adev->gmc.vram_width = numchan * chansize; } /* size in MB on si */ adev->gmc.mc_vram_size = adev->nbio_funcs->get_memsize(adev) * 1024ULL * 1024ULL; adev->gmc.real_vram_size = adev->gmc.mc_vram_size; if (!(adev->flags & AMD_IS_APU)) { r = amdgpu_device_resize_fb_bar(adev); if (r) return r; } adev->gmc.aper_base = pci_resource_start(adev->pdev, 0); adev->gmc.aper_size = pci_resource_len(adev->pdev, 0); #ifdef CONFIG_X86_64 if (adev->flags & AMD_IS_APU) { adev->gmc.aper_base = gfxhub_v1_0_get_mc_fb_offset(adev); adev->gmc.aper_size = adev->gmc.real_vram_size; } #endif /* In case the PCI BAR is larger than the actual amount of vram */ adev->gmc.visible_vram_size = adev->gmc.aper_size; if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size) adev->gmc.visible_vram_size = adev->gmc.real_vram_size; /* set the gart size */ if (amdgpu_gart_size == -1) { switch (adev->asic_type) { case CHIP_VEGA10: /* all engines support GPUVM */ case CHIP_VEGA12: /* all engines support GPUVM */ case CHIP_VEGA20: case CHIP_ARCTURUS: default: adev->gmc.gart_size = 512ULL << 20; break; case CHIP_RAVEN: /* DCE SG support */ case CHIP_RENOIR: adev->gmc.gart_size = 1024ULL << 20; break; } } else { adev->gmc.gart_size = (u64)amdgpu_gart_size << 20; } gmc_v9_0_vram_gtt_location(adev, &adev->gmc); return 0; } static int gmc_v9_0_gart_init(struct amdgpu_device *adev) { int r; if (adev->gart.bo) { WARN(1, "VEGA10 PCIE GART already initialized\n"); return 0; } /* Initialize common gart structure */ r = amdgpu_gart_init(adev); if (r) return r; adev->gart.table_size = adev->gart.num_gpu_pages * 8; adev->gart.gart_pte_flags = AMDGPU_PTE_MTYPE_VG10(MTYPE_UC) | AMDGPU_PTE_EXECUTABLE; return amdgpu_gart_table_vram_alloc(adev); } static unsigned gmc_v9_0_get_vbios_fb_size(struct amdgpu_device *adev) { u32 d1vga_control; unsigned size; /* * TODO Remove once GART corruption is resolved * Check related code in gmc_v9_0_sw_fini * */ if (gmc_v9_0_keep_stolen_memory(adev)) return 9 * 1024 * 1024; d1vga_control = RREG32_SOC15(DCE, 0, mmD1VGA_CONTROL); if (REG_GET_FIELD(d1vga_control, D1VGA_CONTROL, D1VGA_MODE_ENABLE)) { size = 9 * 1024 * 1024; /* reserve 8MB for vga emulator and 1 MB for FB */ } else { u32 viewport; switch (adev->asic_type) { case CHIP_RAVEN: case CHIP_RENOIR: viewport = RREG32_SOC15(DCE, 0, mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION); size = (REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_WIDTH) * 4); break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: default: viewport = RREG32_SOC15(DCE, 0, mmSCL0_VIEWPORT_SIZE); size = (REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_WIDTH) * 4); break; } } /* return 0 if the pre-OS buffer uses up most of vram */ if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) return 0; return size; } static int gmc_v9_0_sw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gfxhub_v1_0_init(adev); if (adev->asic_type == CHIP_ARCTURUS) mmhub_v9_4_init(adev); else mmhub_v1_0_init(adev); spin_lock_init(&adev->gmc.invalidate_lock); adev->gmc.vram_type = amdgpu_atomfirmware_get_vram_type(adev); switch (adev->asic_type) { case CHIP_RAVEN: adev->num_vmhubs = 2; if (adev->rev_id == 0x0 || adev->rev_id == 0x1) { amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); } else { /* vm_size is 128TB + 512GB for legacy 3-level page support */ amdgpu_vm_adjust_size(adev, 128 * 1024 + 512, 9, 2, 48); adev->gmc.translate_further = adev->vm_manager.num_level > 1; } break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: case CHIP_RENOIR: adev->num_vmhubs = 2; /* * To fulfill 4-level page support, * vm size is 256TB (48bit), maximum size of Vega10, * block size 512 (9bit) */ /* sriov restrict max_pfn below AMDGPU_GMC_HOLE */ if (amdgpu_sriov_vf(adev)) amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 47); else amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); break; case CHIP_ARCTURUS: adev->num_vmhubs = 3; /* Keep the vm size same with Vega20 */ amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); break; default: break; } /* This interrupt is VMC page fault.*/ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC, VMC_1_0__SRCID__VM_FAULT, &adev->gmc.vm_fault); if (r) return r; if (adev->asic_type == CHIP_ARCTURUS) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC1, VMC_1_0__SRCID__VM_FAULT, &adev->gmc.vm_fault); if (r) return r; } r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_UTCL2, UTCL2_1_0__SRCID__FAULT, &adev->gmc.vm_fault); if (r) return r; /* interrupt sent to DF. */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DF, 0, &adev->gmc.ecc_irq); if (r) return r; /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ adev->gmc.mc_mask = 0xffffffffffffULL; /* 48 bit MC */ r = dma_set_mask_and_coherent(adev->dev, DMA_BIT_MASK(44)); if (r) { printk(KERN_WARNING "amdgpu: No suitable DMA available.\n"); return r; } adev->need_swiotlb = drm_need_swiotlb(44); if (adev->gmc.xgmi.supported) { r = gfxhub_v1_1_get_xgmi_info(adev); if (r) return r; } r = gmc_v9_0_mc_init(adev); if (r) return r; adev->gmc.stolen_size = gmc_v9_0_get_vbios_fb_size(adev); /* Memory manager */ r = amdgpu_bo_init(adev); if (r) return r; r = gmc_v9_0_gart_init(adev); if (r) return r; /* * number of VMs * VMID 0 is reserved for System * amdgpu graphics/compute will use VMIDs 1-7 * amdkfd will use VMIDs 8-15 */ adev->vm_manager.id_mgr[AMDGPU_GFXHUB_0].num_ids = AMDGPU_NUM_OF_VMIDS; adev->vm_manager.id_mgr[AMDGPU_MMHUB_0].num_ids = AMDGPU_NUM_OF_VMIDS; adev->vm_manager.id_mgr[AMDGPU_MMHUB_1].num_ids = AMDGPU_NUM_OF_VMIDS; amdgpu_vm_manager_init(adev); return 0; } static int gmc_v9_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; void *stolen_vga_buf; if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__UMC) && adev->gmc.umc_ras_if) { struct ras_common_if *ras_if = adev->gmc.umc_ras_if; struct ras_ih_if ih_info = { .head = *ras_if, }; /* remove fs first */ amdgpu_ras_debugfs_remove(adev, ras_if); amdgpu_ras_sysfs_remove(adev, ras_if); /* remove the IH */ amdgpu_ras_interrupt_remove_handler(adev, &ih_info); amdgpu_ras_feature_enable(adev, ras_if, 0); kfree(ras_if); } if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__MMHUB) && adev->gmc.mmhub_ras_if) { struct ras_common_if *ras_if = adev->gmc.mmhub_ras_if; /* remove fs and disable ras feature */ amdgpu_ras_debugfs_remove(adev, ras_if); amdgpu_ras_sysfs_remove(adev, ras_if); amdgpu_ras_feature_enable(adev, ras_if, 0); kfree(ras_if); } amdgpu_gem_force_release(adev); amdgpu_vm_manager_fini(adev); if (gmc_v9_0_keep_stolen_memory(adev)) amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); amdgpu_gart_table_vram_free(adev); amdgpu_bo_fini(adev); amdgpu_gart_fini(adev); return 0; } static void gmc_v9_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: if (amdgpu_sriov_vf(adev)) break; /* fall through */ case CHIP_VEGA20: soc15_program_register_sequence(adev, golden_settings_mmhub_1_0_0, ARRAY_SIZE(golden_settings_mmhub_1_0_0)); soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; case CHIP_VEGA12: break; case CHIP_RAVEN: /* TODO for renoir */ soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; default: break; } } /** * gmc_v9_0_gart_enable - gart enable * * @adev: amdgpu_device pointer */ static int gmc_v9_0_gart_enable(struct amdgpu_device *adev) { int r, i; bool value; u32 tmp; amdgpu_device_program_register_sequence(adev, golden_settings_vega10_hdp, ARRAY_SIZE(golden_settings_vega10_hdp)); if (adev->gart.bo == NULL) { dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = amdgpu_gart_table_vram_pin(adev); if (r) return r; switch (adev->asic_type) { case CHIP_RAVEN: /* TODO for renoir */ mmhub_v1_0_update_power_gating(adev, true); break; default: break; } r = gfxhub_v1_0_gart_enable(adev); if (r) return r; if (adev->asic_type == CHIP_ARCTURUS) r = mmhub_v9_4_gart_enable(adev); else r = mmhub_v1_0_gart_enable(adev); if (r) return r; WREG32_FIELD15(HDP, 0, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 1); tmp = RREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL); WREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL, tmp); WREG32_SOC15(HDP, 0, mmHDP_NONSURFACE_BASE, (adev->gmc.vram_start >> 8)); WREG32_SOC15(HDP, 0, mmHDP_NONSURFACE_BASE_HI, (adev->gmc.vram_start >> 40)); /* After HDP is initialized, flush HDP.*/ adev->nbio_funcs->hdp_flush(adev, NULL); if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) value = false; else value = true; gfxhub_v1_0_set_fault_enable_default(adev, value); if (adev->asic_type == CHIP_ARCTURUS) mmhub_v9_4_set_fault_enable_default(adev, value); else mmhub_v1_0_set_fault_enable_default(adev, value); for (i = 0; i < adev->num_vmhubs; ++i) gmc_v9_0_flush_gpu_tlb(adev, 0, i, 0); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(adev->gmc.gart_size >> 20), (unsigned long long)amdgpu_bo_gpu_offset(adev->gart.bo)); adev->gart.ready = true; return 0; } static int gmc_v9_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* The sequence of these two function calls matters.*/ gmc_v9_0_init_golden_registers(adev); if (adev->mode_info.num_crtc) { /* Lockout access through VGA aperture*/ WREG32_FIELD15(DCE, 0, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); /* disable VGA render */ WREG32_FIELD15(DCE, 0, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); } r = gmc_v9_0_gart_enable(adev); return r; } /** * gmc_v9_0_gart_disable - gart disable * * @adev: amdgpu_device pointer * * This disables all VM page table. */ static void gmc_v9_0_gart_disable(struct amdgpu_device *adev) { gfxhub_v1_0_gart_disable(adev); if (adev->asic_type == CHIP_ARCTURUS) mmhub_v9_4_gart_disable(adev); else mmhub_v1_0_gart_disable(adev); amdgpu_gart_table_vram_unpin(adev); } static int gmc_v9_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) { /* full access mode, so don't touch any GMC register */ DRM_DEBUG("For SRIOV client, shouldn't do anything.\n"); return 0; } amdgpu_irq_put(adev, &adev->gmc.ecc_irq, 0); amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0); gmc_v9_0_gart_disable(adev); return 0; } static int gmc_v9_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return gmc_v9_0_hw_fini(adev); } static int gmc_v9_0_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = gmc_v9_0_hw_init(adev); if (r) return r; amdgpu_vmid_reset_all(adev); return 0; } static bool gmc_v9_0_is_idle(void *handle) { /* MC is always ready in GMC v9.*/ return true; } static int gmc_v9_0_wait_for_idle(void *handle) { /* There is no need to wait for MC idle in GMC v9.*/ return 0; } static int gmc_v9_0_soft_reset(void *handle) { /* XXX for emulation.*/ return 0; } static int gmc_v9_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->asic_type == CHIP_ARCTURUS) mmhub_v9_4_set_clockgating(adev, state); else mmhub_v1_0_set_clockgating(adev, state); athub_v1_0_set_clockgating(adev, state); return 0; } static void gmc_v9_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->asic_type == CHIP_ARCTURUS) mmhub_v9_4_get_clockgating(adev, flags); else mmhub_v1_0_get_clockgating(adev, flags); athub_v1_0_get_clockgating(adev, flags); } static int gmc_v9_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } const struct amd_ip_funcs gmc_v9_0_ip_funcs = { .name = "gmc_v9_0", .early_init = gmc_v9_0_early_init, .late_init = gmc_v9_0_late_init, .sw_init = gmc_v9_0_sw_init, .sw_fini = gmc_v9_0_sw_fini, .hw_init = gmc_v9_0_hw_init, .hw_fini = gmc_v9_0_hw_fini, .suspend = gmc_v9_0_suspend, .resume = gmc_v9_0_resume, .is_idle = gmc_v9_0_is_idle, .wait_for_idle = gmc_v9_0_wait_for_idle, .soft_reset = gmc_v9_0_soft_reset, .set_clockgating_state = gmc_v9_0_set_clockgating_state, .set_powergating_state = gmc_v9_0_set_powergating_state, .get_clockgating_state = gmc_v9_0_get_clockgating_state, }; const struct amdgpu_ip_block_version gmc_v9_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 9, .minor = 0, .rev = 0, .funcs = &gmc_v9_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1