Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 2776 | 58.54% | 21 | 40.38% |
Oded Gabbay | 921 | 19.42% | 5 | 9.62% |
Kent Russell | 435 | 9.17% | 3 | 5.77% |
Jason Gunthorpe | 153 | 3.23% | 2 | 3.85% |
Ben Goz | 95 | 2.00% | 3 | 5.77% |
Yong Zhao | 88 | 1.86% | 5 | 9.62% |
Andrew Lewycky | 76 | 1.60% | 1 | 1.92% |
Yair Shachar | 60 | 1.27% | 1 | 1.92% |
Alexey Skidanov | 60 | 1.27% | 2 | 3.85% |
Oak Zeng | 22 | 0.46% | 2 | 3.85% |
Amber Lin | 18 | 0.38% | 1 | 1.92% |
welu | 12 | 0.25% | 1 | 1.92% |
Harish Kasiviswanathan | 10 | 0.21% | 1 | 1.92% |
Dan Carpenter | 6 | 0.13% | 1 | 1.92% |
Bhaktipriya Shridhar | 5 | 0.11% | 1 | 1.92% |
Ingo Molnar | 3 | 0.06% | 1 | 1.92% |
Geert Uytterhoeven | 2 | 0.04% | 1 | 1.92% |
Total | 4742 | 52 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/mutex.h> #include <linux/log2.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/slab.h> #include <linux/amd-iommu.h> #include <linux/notifier.h> #include <linux/compat.h> #include <linux/mman.h> #include <linux/file.h> #include "amdgpu_amdkfd.h" struct mm_struct; #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_dbgmgr.h" #include "kfd_iommu.h" /* * List of struct kfd_process (field kfd_process). * Unique/indexed by mm_struct* */ DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); static DEFINE_MUTEX(kfd_processes_mutex); DEFINE_SRCU(kfd_processes_srcu); /* For process termination handling */ static struct workqueue_struct *kfd_process_wq; /* Ordered, single-threaded workqueue for restoring evicted * processes. Restoring multiple processes concurrently under memory * pressure can lead to processes blocking each other from validating * their BOs and result in a live-lock situation where processes * remain evicted indefinitely. */ static struct workqueue_struct *kfd_restore_wq; static struct kfd_process *find_process(const struct task_struct *thread); static void kfd_process_ref_release(struct kref *ref); static struct kfd_process *create_process(const struct task_struct *thread); static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); static void evict_process_worker(struct work_struct *work); static void restore_process_worker(struct work_struct *work); struct kfd_procfs_tree { struct kobject *kobj; }; static struct kfd_procfs_tree procfs; static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, char *buffer) { int val = 0; if (strcmp(attr->name, "pasid") == 0) { struct kfd_process *p = container_of(attr, struct kfd_process, attr_pasid); val = p->pasid; } else { pr_err("Invalid attribute"); return -EINVAL; } return snprintf(buffer, PAGE_SIZE, "%d\n", val); } static void kfd_procfs_kobj_release(struct kobject *kobj) { kfree(kobj); } static const struct sysfs_ops kfd_procfs_ops = { .show = kfd_procfs_show, }; static struct kobj_type procfs_type = { .release = kfd_procfs_kobj_release, .sysfs_ops = &kfd_procfs_ops, }; void kfd_procfs_init(void) { int ret = 0; procfs.kobj = kfd_alloc_struct(procfs.kobj); if (!procfs.kobj) return; ret = kobject_init_and_add(procfs.kobj, &procfs_type, &kfd_device->kobj, "proc"); if (ret) { pr_warn("Could not create procfs proc folder"); /* If we fail to create the procfs, clean up */ kfd_procfs_shutdown(); } } void kfd_procfs_shutdown(void) { if (procfs.kobj) { kobject_del(procfs.kobj); kobject_put(procfs.kobj); procfs.kobj = NULL; } } int kfd_process_create_wq(void) { if (!kfd_process_wq) kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); if (!kfd_restore_wq) kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); if (!kfd_process_wq || !kfd_restore_wq) { kfd_process_destroy_wq(); return -ENOMEM; } return 0; } void kfd_process_destroy_wq(void) { if (kfd_process_wq) { destroy_workqueue(kfd_process_wq); kfd_process_wq = NULL; } if (kfd_restore_wq) { destroy_workqueue(kfd_restore_wq); kfd_restore_wq = NULL; } } static void kfd_process_free_gpuvm(struct kgd_mem *mem, struct kfd_process_device *pdd) { struct kfd_dev *dev = pdd->dev; amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm); amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem); } /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process * This function should be only called right after the process * is created and when kfd_processes_mutex is still being held * to avoid concurrency. Because of that exclusiveness, we do * not need to take p->mutex. */ static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, uint64_t gpu_va, uint32_t size, uint32_t flags, void **kptr) { struct kfd_dev *kdev = pdd->dev; struct kgd_mem *mem = NULL; int handle; int err; err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, pdd->vm, &mem, NULL, flags); if (err) goto err_alloc_mem; err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm); if (err) goto err_map_mem; err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); if (err) { pr_debug("Sync memory failed, wait interrupted by user signal\n"); goto sync_memory_failed; } /* Create an obj handle so kfd_process_device_remove_obj_handle * will take care of the bo removal when the process finishes. * We do not need to take p->mutex, because the process is just * created and the ioctls have not had the chance to run. */ handle = kfd_process_device_create_obj_handle(pdd, mem); if (handle < 0) { err = handle; goto free_gpuvm; } if (kptr) { err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, (struct kgd_mem *)mem, kptr, NULL); if (err) { pr_debug("Map GTT BO to kernel failed\n"); goto free_obj_handle; } } return err; free_obj_handle: kfd_process_device_remove_obj_handle(pdd, handle); free_gpuvm: sync_memory_failed: kfd_process_free_gpuvm(mem, pdd); return err; err_map_mem: amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem); err_alloc_mem: *kptr = NULL; return err; } /* kfd_process_device_reserve_ib_mem - Reserve memory inside the * process for IB usage The memory reserved is for KFD to submit * IB to AMDGPU from kernel. If the memory is reserved * successfully, ib_kaddr will have the CPU/kernel * address. Check ib_kaddr before accessing the memory. */ static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) { struct qcm_process_device *qpd = &pdd->qpd; uint32_t flags = ALLOC_MEM_FLAGS_GTT | ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_WRITABLE | ALLOC_MEM_FLAGS_EXECUTABLE; void *kaddr; int ret; if (qpd->ib_kaddr || !qpd->ib_base) return 0; /* ib_base is only set for dGPU */ ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, &kaddr); if (ret) return ret; qpd->ib_kaddr = kaddr; return 0; } struct kfd_process *kfd_create_process(struct file *filep) { struct kfd_process *process; struct task_struct *thread = current; int ret; if (!thread->mm) return ERR_PTR(-EINVAL); /* Only the pthreads threading model is supported. */ if (thread->group_leader->mm != thread->mm) return ERR_PTR(-EINVAL); /* * take kfd processes mutex before starting of process creation * so there won't be a case where two threads of the same process * create two kfd_process structures */ mutex_lock(&kfd_processes_mutex); /* A prior open of /dev/kfd could have already created the process. */ process = find_process(thread); if (process) { pr_debug("Process already found\n"); } else { process = create_process(thread); if (IS_ERR(process)) goto out; ret = kfd_process_init_cwsr_apu(process, filep); if (ret) { process = ERR_PTR(ret); goto out; } if (!procfs.kobj) goto out; process->kobj = kfd_alloc_struct(process->kobj); if (!process->kobj) { pr_warn("Creating procfs kobject failed"); goto out; } ret = kobject_init_and_add(process->kobj, &procfs_type, procfs.kobj, "%d", (int)process->lead_thread->pid); if (ret) { pr_warn("Creating procfs pid directory failed"); goto out; } process->attr_pasid.name = "pasid"; process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&process->attr_pasid); ret = sysfs_create_file(process->kobj, &process->attr_pasid); if (ret) pr_warn("Creating pasid for pid %d failed", (int)process->lead_thread->pid); } out: mutex_unlock(&kfd_processes_mutex); return process; } struct kfd_process *kfd_get_process(const struct task_struct *thread) { struct kfd_process *process; if (!thread->mm) return ERR_PTR(-EINVAL); /* Only the pthreads threading model is supported. */ if (thread->group_leader->mm != thread->mm) return ERR_PTR(-EINVAL); process = find_process(thread); if (!process) return ERR_PTR(-EINVAL); return process; } static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) { struct kfd_process *process; hash_for_each_possible_rcu(kfd_processes_table, process, kfd_processes, (uintptr_t)mm) if (process->mm == mm) return process; return NULL; } static struct kfd_process *find_process(const struct task_struct *thread) { struct kfd_process *p; int idx; idx = srcu_read_lock(&kfd_processes_srcu); p = find_process_by_mm(thread->mm); srcu_read_unlock(&kfd_processes_srcu, idx); return p; } void kfd_unref_process(struct kfd_process *p) { kref_put(&p->ref, kfd_process_ref_release); } static void kfd_process_device_free_bos(struct kfd_process_device *pdd) { struct kfd_process *p = pdd->process; void *mem; int id; /* * Remove all handles from idr and release appropriate * local memory object */ idr_for_each_entry(&pdd->alloc_idr, mem, id) { struct kfd_process_device *peer_pdd; list_for_each_entry(peer_pdd, &p->per_device_data, per_device_list) { if (!peer_pdd->vm) continue; amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( peer_pdd->dev->kgd, mem, peer_pdd->vm); } amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem); kfd_process_device_remove_obj_handle(pdd, id); } } static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) { struct kfd_process_device *pdd; list_for_each_entry(pdd, &p->per_device_data, per_device_list) kfd_process_device_free_bos(pdd); } static void kfd_process_destroy_pdds(struct kfd_process *p) { struct kfd_process_device *pdd, *temp; list_for_each_entry_safe(pdd, temp, &p->per_device_data, per_device_list) { pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n", pdd->dev->id, p->pasid); if (pdd->drm_file) { amdgpu_amdkfd_gpuvm_release_process_vm( pdd->dev->kgd, pdd->vm); fput(pdd->drm_file); } else if (pdd->vm) amdgpu_amdkfd_gpuvm_destroy_process_vm( pdd->dev->kgd, pdd->vm); list_del(&pdd->per_device_list); if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) free_pages((unsigned long)pdd->qpd.cwsr_kaddr, get_order(KFD_CWSR_TBA_TMA_SIZE)); kfree(pdd->qpd.doorbell_bitmap); idr_destroy(&pdd->alloc_idr); kfree(pdd); } } /* No process locking is needed in this function, because the process * is not findable any more. We must assume that no other thread is * using it any more, otherwise we couldn't safely free the process * structure in the end. */ static void kfd_process_wq_release(struct work_struct *work) { struct kfd_process *p = container_of(work, struct kfd_process, release_work); /* Remove the procfs files */ if (p->kobj) { sysfs_remove_file(p->kobj, &p->attr_pasid); kobject_del(p->kobj); kobject_put(p->kobj); p->kobj = NULL; } kfd_iommu_unbind_process(p); kfd_process_free_outstanding_kfd_bos(p); kfd_process_destroy_pdds(p); dma_fence_put(p->ef); kfd_event_free_process(p); kfd_pasid_free(p->pasid); kfd_free_process_doorbells(p); mutex_destroy(&p->mutex); put_task_struct(p->lead_thread); kfree(p); } static void kfd_process_ref_release(struct kref *ref) { struct kfd_process *p = container_of(ref, struct kfd_process, ref); INIT_WORK(&p->release_work, kfd_process_wq_release); queue_work(kfd_process_wq, &p->release_work); } static void kfd_process_free_notifier(struct mmu_notifier *mn) { kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); } static void kfd_process_notifier_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct kfd_process *p; struct kfd_process_device *pdd = NULL; /* * The kfd_process structure can not be free because the * mmu_notifier srcu is read locked */ p = container_of(mn, struct kfd_process, mmu_notifier); if (WARN_ON(p->mm != mm)) return; mutex_lock(&kfd_processes_mutex); hash_del_rcu(&p->kfd_processes); mutex_unlock(&kfd_processes_mutex); synchronize_srcu(&kfd_processes_srcu); cancel_delayed_work_sync(&p->eviction_work); cancel_delayed_work_sync(&p->restore_work); mutex_lock(&p->mutex); /* Iterate over all process device data structures and if the * pdd is in debug mode, we should first force unregistration, * then we will be able to destroy the queues */ list_for_each_entry(pdd, &p->per_device_data, per_device_list) { struct kfd_dev *dev = pdd->dev; mutex_lock(kfd_get_dbgmgr_mutex()); if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { kfd_dbgmgr_destroy(dev->dbgmgr); dev->dbgmgr = NULL; } } mutex_unlock(kfd_get_dbgmgr_mutex()); } kfd_process_dequeue_from_all_devices(p); pqm_uninit(&p->pqm); /* Indicate to other users that MM is no longer valid */ p->mm = NULL; mutex_unlock(&p->mutex); mmu_notifier_put(&p->mmu_notifier); } static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { .release = kfd_process_notifier_release, .free_notifier = kfd_process_free_notifier, }; static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) { unsigned long offset; struct kfd_process_device *pdd; list_for_each_entry(pdd, &p->per_device_data, per_device_list) { struct kfd_dev *dev = pdd->dev; struct qcm_process_device *qpd = &pdd->qpd; if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) continue; offset = (KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id)) << PAGE_SHIFT; qpd->tba_addr = (int64_t)vm_mmap(filep, 0, KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, MAP_SHARED, offset); if (IS_ERR_VALUE(qpd->tba_addr)) { int err = qpd->tba_addr; pr_err("Failure to set tba address. error %d.\n", err); qpd->tba_addr = 0; qpd->cwsr_kaddr = NULL; return err; } memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); } return 0; } static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) { struct kfd_dev *dev = pdd->dev; struct qcm_process_device *qpd = &pdd->qpd; uint32_t flags = ALLOC_MEM_FLAGS_GTT | ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE; void *kaddr; int ret; if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) return 0; /* cwsr_base is only set for dGPU */ ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); if (ret) return ret; qpd->cwsr_kaddr = kaddr; qpd->tba_addr = qpd->cwsr_base; memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); return 0; } /* * On return the kfd_process is fully operational and will be freed when the * mm is released */ static struct kfd_process *create_process(const struct task_struct *thread) { struct kfd_process *process; int err = -ENOMEM; process = kzalloc(sizeof(*process), GFP_KERNEL); if (!process) goto err_alloc_process; kref_init(&process->ref); mutex_init(&process->mutex); process->mm = thread->mm; process->lead_thread = thread->group_leader; INIT_LIST_HEAD(&process->per_device_data); INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); process->last_restore_timestamp = get_jiffies_64(); kfd_event_init_process(process); process->is_32bit_user_mode = in_compat_syscall(); process->pasid = kfd_pasid_alloc(); if (process->pasid == 0) goto err_alloc_pasid; if (kfd_alloc_process_doorbells(process) < 0) goto err_alloc_doorbells; err = pqm_init(&process->pqm, process); if (err != 0) goto err_process_pqm_init; /* init process apertures*/ err = kfd_init_apertures(process); if (err != 0) goto err_init_apertures; /* Must be last, have to use release destruction after this */ process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops; err = mmu_notifier_register(&process->mmu_notifier, process->mm); if (err) goto err_register_notifier; get_task_struct(process->lead_thread); hash_add_rcu(kfd_processes_table, &process->kfd_processes, (uintptr_t)process->mm); return process; err_register_notifier: kfd_process_free_outstanding_kfd_bos(process); kfd_process_destroy_pdds(process); err_init_apertures: pqm_uninit(&process->pqm); err_process_pqm_init: kfd_free_process_doorbells(process); err_alloc_doorbells: kfd_pasid_free(process->pasid); err_alloc_pasid: mutex_destroy(&process->mutex); kfree(process); err_alloc_process: return ERR_PTR(err); } static int init_doorbell_bitmap(struct qcm_process_device *qpd, struct kfd_dev *dev) { unsigned int i; if (!KFD_IS_SOC15(dev->device_info->asic_family)) return 0; qpd->doorbell_bitmap = kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, BITS_PER_BYTE), GFP_KERNEL); if (!qpd->doorbell_bitmap) return -ENOMEM; /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { if (i >= dev->shared_resources.non_cp_doorbells_start && i <= dev->shared_resources.non_cp_doorbells_end) { set_bit(i, qpd->doorbell_bitmap); set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, qpd->doorbell_bitmap); pr_debug("reserved doorbell 0x%03x and 0x%03x\n", i, i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); } } return 0; } struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, struct kfd_process *p) { struct kfd_process_device *pdd = NULL; list_for_each_entry(pdd, &p->per_device_data, per_device_list) if (pdd->dev == dev) return pdd; return NULL; } struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, struct kfd_process *p) { struct kfd_process_device *pdd = NULL; pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); if (!pdd) return NULL; if (init_doorbell_bitmap(&pdd->qpd, dev)) { pr_err("Failed to init doorbell for process\n"); kfree(pdd); return NULL; } pdd->dev = dev; INIT_LIST_HEAD(&pdd->qpd.queues_list); INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); pdd->qpd.dqm = dev->dqm; pdd->qpd.pqm = &p->pqm; pdd->qpd.evicted = 0; pdd->process = p; pdd->bound = PDD_UNBOUND; pdd->already_dequeued = false; list_add(&pdd->per_device_list, &p->per_device_data); /* Init idr used for memory handle translation */ idr_init(&pdd->alloc_idr); return pdd; } /** * kfd_process_device_init_vm - Initialize a VM for a process-device * * @pdd: The process-device * @drm_file: Optional pointer to a DRM file descriptor * * If @drm_file is specified, it will be used to acquire the VM from * that file descriptor. If successful, the @pdd takes ownership of * the file descriptor. * * If @drm_file is NULL, a new VM is created. * * Returns 0 on success, -errno on failure. */ int kfd_process_device_init_vm(struct kfd_process_device *pdd, struct file *drm_file) { struct kfd_process *p; struct kfd_dev *dev; int ret; if (pdd->vm) return drm_file ? -EBUSY : 0; p = pdd->process; dev = pdd->dev; if (drm_file) ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( dev->kgd, drm_file, p->pasid, &pdd->vm, &p->kgd_process_info, &p->ef); else ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid, &pdd->vm, &p->kgd_process_info, &p->ef); if (ret) { pr_err("Failed to create process VM object\n"); return ret; } amdgpu_vm_set_task_info(pdd->vm); ret = kfd_process_device_reserve_ib_mem(pdd); if (ret) goto err_reserve_ib_mem; ret = kfd_process_device_init_cwsr_dgpu(pdd); if (ret) goto err_init_cwsr; pdd->drm_file = drm_file; return 0; err_init_cwsr: err_reserve_ib_mem: kfd_process_device_free_bos(pdd); if (!drm_file) amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm); pdd->vm = NULL; return ret; } /* * Direct the IOMMU to bind the process (specifically the pasid->mm) * to the device. * Unbinding occurs when the process dies or the device is removed. * * Assumes that the process lock is held. */ struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, struct kfd_process *p) { struct kfd_process_device *pdd; int err; pdd = kfd_get_process_device_data(dev, p); if (!pdd) { pr_err("Process device data doesn't exist\n"); return ERR_PTR(-ENOMEM); } err = kfd_iommu_bind_process_to_device(pdd); if (err) return ERR_PTR(err); err = kfd_process_device_init_vm(pdd, NULL); if (err) return ERR_PTR(err); return pdd; } struct kfd_process_device *kfd_get_first_process_device_data( struct kfd_process *p) { return list_first_entry(&p->per_device_data, struct kfd_process_device, per_device_list); } struct kfd_process_device *kfd_get_next_process_device_data( struct kfd_process *p, struct kfd_process_device *pdd) { if (list_is_last(&pdd->per_device_list, &p->per_device_data)) return NULL; return list_next_entry(pdd, per_device_list); } bool kfd_has_process_device_data(struct kfd_process *p) { return !(list_empty(&p->per_device_data)); } /* Create specific handle mapped to mem from process local memory idr * Assumes that the process lock is held. */ int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, void *mem) { return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); } /* Translate specific handle from process local memory idr * Assumes that the process lock is held. */ void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, int handle) { if (handle < 0) return NULL; return idr_find(&pdd->alloc_idr, handle); } /* Remove specific handle from process local memory idr * Assumes that the process lock is held. */ void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, int handle) { if (handle >= 0) idr_remove(&pdd->alloc_idr, handle); } /* This increments the process->ref counter. */ struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid) { struct kfd_process *p, *ret_p = NULL; unsigned int temp; int idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { if (p->pasid == pasid) { kref_get(&p->ref); ret_p = p; break; } } srcu_read_unlock(&kfd_processes_srcu, idx); return ret_p; } /* This increments the process->ref counter. */ struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) { struct kfd_process *p; int idx = srcu_read_lock(&kfd_processes_srcu); p = find_process_by_mm(mm); if (p) kref_get(&p->ref); srcu_read_unlock(&kfd_processes_srcu, idx); return p; } /* process_evict_queues - Evict all user queues of a process * * Eviction is reference-counted per process-device. This means multiple * evictions from different sources can be nested safely. */ int kfd_process_evict_queues(struct kfd_process *p) { struct kfd_process_device *pdd; int r = 0; unsigned int n_evicted = 0; list_for_each_entry(pdd, &p->per_device_data, per_device_list) { r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, &pdd->qpd); if (r) { pr_err("Failed to evict process queues\n"); goto fail; } n_evicted++; } return r; fail: /* To keep state consistent, roll back partial eviction by * restoring queues */ list_for_each_entry(pdd, &p->per_device_data, per_device_list) { if (n_evicted == 0) break; if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, &pdd->qpd)) pr_err("Failed to restore queues\n"); n_evicted--; } return r; } /* process_restore_queues - Restore all user queues of a process */ int kfd_process_restore_queues(struct kfd_process *p) { struct kfd_process_device *pdd; int r, ret = 0; list_for_each_entry(pdd, &p->per_device_data, per_device_list) { r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, &pdd->qpd); if (r) { pr_err("Failed to restore process queues\n"); if (!ret) ret = r; } } return ret; } static void evict_process_worker(struct work_struct *work) { int ret; struct kfd_process *p; struct delayed_work *dwork; dwork = to_delayed_work(work); /* Process termination destroys this worker thread. So during the * lifetime of this thread, kfd_process p will be valid */ p = container_of(dwork, struct kfd_process, eviction_work); WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, "Eviction fence mismatch\n"); /* Narrow window of overlap between restore and evict work * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos * unreserves KFD BOs, it is possible to evicted again. But * restore has few more steps of finish. So lets wait for any * previous restore work to complete */ flush_delayed_work(&p->restore_work); pr_debug("Started evicting pasid %d\n", p->pasid); ret = kfd_process_evict_queues(p); if (!ret) { dma_fence_signal(p->ef); dma_fence_put(p->ef); p->ef = NULL; queue_delayed_work(kfd_restore_wq, &p->restore_work, msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); pr_debug("Finished evicting pasid %d\n", p->pasid); } else pr_err("Failed to evict queues of pasid %d\n", p->pasid); } static void restore_process_worker(struct work_struct *work) { struct delayed_work *dwork; struct kfd_process *p; int ret = 0; dwork = to_delayed_work(work); /* Process termination destroys this worker thread. So during the * lifetime of this thread, kfd_process p will be valid */ p = container_of(dwork, struct kfd_process, restore_work); pr_debug("Started restoring pasid %d\n", p->pasid); /* Setting last_restore_timestamp before successful restoration. * Otherwise this would have to be set by KGD (restore_process_bos) * before KFD BOs are unreserved. If not, the process can be evicted * again before the timestamp is set. * If restore fails, the timestamp will be set again in the next * attempt. This would mean that the minimum GPU quanta would be * PROCESS_ACTIVE_TIME_MS - (time to execute the following two * functions) */ p->last_restore_timestamp = get_jiffies_64(); ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, &p->ef); if (ret) { pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n", p->pasid, PROCESS_BACK_OFF_TIME_MS); ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); WARN(!ret, "reschedule restore work failed\n"); return; } ret = kfd_process_restore_queues(p); if (!ret) pr_debug("Finished restoring pasid %d\n", p->pasid); else pr_err("Failed to restore queues of pasid %d\n", p->pasid); } void kfd_suspend_all_processes(void) { struct kfd_process *p; unsigned int temp; int idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { cancel_delayed_work_sync(&p->eviction_work); cancel_delayed_work_sync(&p->restore_work); if (kfd_process_evict_queues(p)) pr_err("Failed to suspend process %d\n", p->pasid); dma_fence_signal(p->ef); dma_fence_put(p->ef); p->ef = NULL; } srcu_read_unlock(&kfd_processes_srcu, idx); } int kfd_resume_all_processes(void) { struct kfd_process *p; unsigned int temp; int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { pr_err("Restore process %d failed during resume\n", p->pasid); ret = -EFAULT; } } srcu_read_unlock(&kfd_processes_srcu, idx); return ret; } int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, struct vm_area_struct *vma) { struct kfd_process_device *pdd; struct qcm_process_device *qpd; if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { pr_err("Incorrect CWSR mapping size.\n"); return -EINVAL; } pdd = kfd_get_process_device_data(dev, process); if (!pdd) return -EINVAL; qpd = &pdd->qpd; qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(KFD_CWSR_TBA_TMA_SIZE)); if (!qpd->cwsr_kaddr) { pr_err("Error allocating per process CWSR buffer.\n"); return -ENOMEM; } vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; /* Mapping pages to user process */ return remap_pfn_range(vma, vma->vm_start, PFN_DOWN(__pa(qpd->cwsr_kaddr)), KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); } void kfd_flush_tlb(struct kfd_process_device *pdd) { struct kfd_dev *dev = pdd->dev; const struct kfd2kgd_calls *f2g = dev->kfd2kgd; if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { /* Nothing to flush until a VMID is assigned, which * only happens when the first queue is created. */ if (pdd->qpd.vmid) f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid); } else { f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid); } } #if defined(CONFIG_DEBUG_FS) int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) { struct kfd_process *p; unsigned int temp; int r = 0; int idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { seq_printf(m, "Process %d PASID %d:\n", p->lead_thread->tgid, p->pasid); mutex_lock(&p->mutex); r = pqm_debugfs_mqds(m, &p->pqm); mutex_unlock(&p->mutex); if (r) break; } srcu_read_unlock(&kfd_processes_srcu, idx); return r; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1