Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1362 | 53.14% | 1 | 6.25% |
Jun Lei | 879 | 34.30% | 6 | 37.50% |
Charlene Liu | 160 | 6.24% | 3 | 18.75% |
Su Sung Chung | 65 | 2.54% | 1 | 6.25% |
Dmytro Laktyushkin | 41 | 1.60% | 1 | 6.25% |
Eric Yang | 38 | 1.48% | 1 | 6.25% |
Jaehyun Chung | 9 | 0.35% | 1 | 6.25% |
Alvin lee | 6 | 0.23% | 1 | 6.25% |
Tyler DiBattista | 3 | 0.12% | 1 | 6.25% |
Total | 2563 | 16 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dccg.h" #include "clk_mgr_internal.h" #include "dce100/dce_clk_mgr.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" #include "navi10_ip_offset.h" #include "dcn/dcn_2_0_0_offset.h" #include "dcn/dcn_2_0_0_sh_mask.h" #include "clk/clk_11_0_0_offset.h" #include "clk/clk_11_0_0_sh_mask.h" #undef FN #define FN(reg_name, field_name) \ clk_mgr->clk_mgr_shift->field_name, clk_mgr->clk_mgr_mask->field_name #define REG(reg) \ (clk_mgr->regs->reg) #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define CLK_BASE_INNER(seg) \ CLK_BASE__INST0_SEG ## seg static const struct clk_mgr_registers clk_mgr_regs = { CLK_REG_LIST_NV10() }; static const struct clk_mgr_shift clk_mgr_shift = { CLK_MASK_SH_LIST_NV10(__SHIFT) }; static const struct clk_mgr_mask clk_mgr_mask = { CLK_MASK_SH_LIST_NV10(_MASK) }; uint32_t dentist_get_did_from_divider(int divider) { uint32_t divider_id; /* we want to floor here to get higher clock than required rather than lower */ if (divider < DENTIST_DIVIDER_RANGE_2_START) { if (divider < DENTIST_DIVIDER_RANGE_1_START) divider_id = DENTIST_BASE_DID_1; else divider_id = DENTIST_BASE_DID_1 + (divider - DENTIST_DIVIDER_RANGE_1_START) / DENTIST_DIVIDER_RANGE_1_STEP; } else if (divider < DENTIST_DIVIDER_RANGE_3_START) { divider_id = DENTIST_BASE_DID_2 + (divider - DENTIST_DIVIDER_RANGE_2_START) / DENTIST_DIVIDER_RANGE_2_STEP; } else if (divider < DENTIST_DIVIDER_RANGE_4_START) { divider_id = DENTIST_BASE_DID_3 + (divider - DENTIST_DIVIDER_RANGE_3_START) / DENTIST_DIVIDER_RANGE_3_STEP; } else { divider_id = DENTIST_BASE_DID_4 + (divider - DENTIST_DIVIDER_RANGE_4_START) / DENTIST_DIVIDER_RANGE_4_STEP; if (divider_id > DENTIST_MAX_DID) divider_id = DENTIST_MAX_DID; } return divider_id; } void dcn20_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context) { int i; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst, dppclk_khz; if (!context->res_ctx.pipe_ctx[i].plane_state) continue; dpp_inst = context->res_ctx.pipe_ctx[i].plane_res.dpp->inst; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; clk_mgr->dccg->funcs->update_dpp_dto( clk_mgr->dccg, dpp_inst, dppclk_khz, false); } } static void update_global_dpp_clk(struct clk_mgr_internal *clk_mgr, unsigned int khz) { int dpp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->dentist_vco_freq_khz / khz; uint32_t dppclk_wdivider = dentist_get_did_from_divider(dpp_divider); REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_WDIVIDER, dppclk_wdivider); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_CHG_DONE, 1, 5, 100); } static void update_display_clk(struct clk_mgr_internal *clk_mgr, unsigned int khz) { int disp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->dentist_vco_freq_khz / khz; uint32_t dispclk_wdivider = dentist_get_did_from_divider(disp_divider); REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, dispclk_wdivider); } static void request_voltage_and_program_disp_clk(struct clk_mgr *clk_mgr_base, unsigned int khz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc *dc = clk_mgr_base->ctx->dc; struct pp_smu_funcs_nv *pp_smu = NULL; bool going_up = clk_mgr->base.clks.dispclk_khz < khz; if (dc->res_pool->pp_smu) pp_smu = &dc->res_pool->pp_smu->nv_funcs; clk_mgr->base.clks.dispclk_khz = khz; if (going_up && pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_DISPCLK, clk_mgr_base->clks.dispclk_khz / 1000); update_display_clk(clk_mgr, khz); if (!going_up && pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_DISPCLK, clk_mgr_base->clks.dispclk_khz / 1000); } static void request_voltage_and_program_global_dpp_clk(struct clk_mgr *clk_mgr_base, unsigned int khz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc *dc = clk_mgr_base->ctx->dc; struct pp_smu_funcs_nv *pp_smu = NULL; bool going_up = clk_mgr->base.clks.dppclk_khz < khz; if (dc->res_pool->pp_smu) pp_smu = &dc->res_pool->pp_smu->nv_funcs; clk_mgr->base.clks.dppclk_khz = khz; clk_mgr->dccg->ref_dppclk = khz; if (going_up && pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_PIXELCLK, clk_mgr_base->clks.dppclk_khz / 1000); update_global_dpp_clk(clk_mgr, khz); if (!going_up && pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_PIXELCLK, clk_mgr_base->clks.dppclk_khz / 1000); } void dcn2_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; struct pp_smu_funcs_nv *pp_smu = NULL; int display_count; bool update_dispclk = false; bool enter_display_off = false; struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu; bool force_reset = false; int i; if (dc->work_arounds.skip_clock_update) return; if (clk_mgr_base->clks.dispclk_khz == 0 || dc->debug.force_clock_mode & 0x1) { //this is from resume or boot up, if forced_clock cfg option used, we bypass program dispclk and DPPCLK, but need set them for S3. force_reset = true; //force_clock_mode 0x1: force reset the clock even it is the same clock as long as it is in Passive level. } display_count = clk_mgr_helper_get_active_display_cnt(dc, context); if (dc->res_pool->pp_smu) pp_smu = &dc->res_pool->pp_smu->nv_funcs; if (display_count == 0) enter_display_off = true; if (enter_display_off == safe_to_lower) { if (pp_smu && pp_smu->set_display_count) pp_smu->set_display_count(&pp_smu->pp_smu, display_count); } if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) { clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz; if (pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_PHYCLK, clk_mgr_base->clks.phyclk_khz / 1000); } if (dc->debug.force_min_dcfclk_mhz > 0) new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ? new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000); if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; if (pp_smu && pp_smu->set_hard_min_dcfclk_by_freq) pp_smu->set_hard_min_dcfclk_by_freq(&pp_smu->pp_smu, clk_mgr_base->clks.dcfclk_khz / 1000); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; if (pp_smu && pp_smu->set_min_deep_sleep_dcfclk) pp_smu->set_min_deep_sleep_dcfclk(&pp_smu->pp_smu, clk_mgr_base->clks.dcfclk_deep_sleep_khz / 1000); } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr_base->clks.socclk_khz)) { clk_mgr_base->clks.socclk_khz = new_clocks->socclk_khz; if (pp_smu && pp_smu->set_hard_min_socclk_by_freq) pp_smu->set_hard_min_socclk_by_freq(&pp_smu->pp_smu, clk_mgr_base->clks.socclk_khz / 1000); } if (should_update_pstate_support(safe_to_lower, new_clocks->p_state_change_support, clk_mgr_base->clks.p_state_change_support)) { clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support; clk_mgr_base->clks.p_state_change_support = new_clocks->p_state_change_support; if (pp_smu && pp_smu->set_pstate_handshake_support) pp_smu->set_pstate_handshake_support(&pp_smu->pp_smu, clk_mgr_base->clks.p_state_change_support); } clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support; if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr_base->clks.dramclk_khz)) { clk_mgr_base->clks.dramclk_khz = new_clocks->dramclk_khz; if (pp_smu && pp_smu->set_hard_min_uclk_by_freq) pp_smu->set_hard_min_uclk_by_freq(&pp_smu->pp_smu, clk_mgr_base->clks.dramclk_khz / 1000); } if (dc->config.forced_clocks == false) { // First update display clock if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) request_voltage_and_program_disp_clk(clk_mgr_base, new_clocks->dispclk_khz); // Updating DPP clock requires some more logic if (!safe_to_lower) { // For pre-programming, we need to make sure any DPP clock that will go up has to go up // First raise the global reference if needed if (new_clocks->dppclk_khz > clk_mgr_base->clks.dppclk_khz) request_voltage_and_program_global_dpp_clk(clk_mgr_base, new_clocks->dppclk_khz); // Then raise any dividers that need raising for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst, dppclk_khz; if (!context->res_ctx.pipe_ctx[i].plane_state) continue; dpp_inst = context->res_ctx.pipe_ctx[i].plane_res.dpp->inst; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; clk_mgr->dccg->funcs->update_dpp_dto(clk_mgr->dccg, dpp_inst, dppclk_khz, true); } } else { // For post-programming, we can lower ref clk if needed, and unconditionally set all the DTOs if (new_clocks->dppclk_khz < clk_mgr_base->clks.dppclk_khz) request_voltage_and_program_global_dpp_clk(clk_mgr_base, new_clocks->dppclk_khz); for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst, dppclk_khz; if (!context->res_ctx.pipe_ctx[i].plane_state) continue; dpp_inst = context->res_ctx.pipe_ctx[i].plane_res.dpp->inst; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; clk_mgr->dccg->funcs->update_dpp_dto(clk_mgr->dccg, dpp_inst, dppclk_khz, false); } } } if (update_dispclk && dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) { /*update dmcu for wait_loop count*/ dmcu->funcs->set_psr_wait_loop(dmcu, clk_mgr_base->clks.dispclk_khz / 1000 / 7); } } void dcn2_update_clocks_fpga(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; /* Min fclk = 1.2GHz since all the extra scemi logic seems to run off of it */ int fclk_adj = new_clocks->fclk_khz > 1200000 ? new_clocks->fclk_khz : 1200000; if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr->clks.phyclk_khz)) { clk_mgr->clks.phyclk_khz = new_clocks->phyclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr->clks.dcfclk_khz)) { clk_mgr->clks.dcfclk_khz = new_clocks->dcfclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr->clks.dcfclk_deep_sleep_khz)) { clk_mgr->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr->clks.socclk_khz)) { clk_mgr->clks.socclk_khz = new_clocks->socclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr->clks.dramclk_khz)) { clk_mgr->clks.dramclk_khz = new_clocks->dramclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->clks.dppclk_khz)) { clk_mgr->clks.dppclk_khz = new_clocks->dppclk_khz; } if (should_set_clock(safe_to_lower, fclk_adj, clk_mgr->clks.fclk_khz)) { clk_mgr->clks.fclk_khz = fclk_adj; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr->clks.dispclk_khz)) { clk_mgr->clks.dispclk_khz = new_clocks->dispclk_khz; } /* Both fclk and dppclk ref are run on the same scemi clock so we * need to keep the same value for both */ if (clk_mgr->clks.fclk_khz > clk_mgr->clks.dppclk_khz) clk_mgr->clks.dppclk_khz = clk_mgr->clks.fclk_khz; if (clk_mgr->clks.dppclk_khz > clk_mgr->clks.fclk_khz) clk_mgr->clks.fclk_khz = clk_mgr->clks.dppclk_khz; dm_set_dcn_clocks(clk_mgr->ctx, &clk_mgr->clks); } void dcn2_init_clocks(struct clk_mgr *clk_mgr) { memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks)); // Assumption is that boot state always supports pstate clk_mgr->clks.p_state_change_support = true; clk_mgr->clks.prev_p_state_change_support = true; } void dcn2_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct pp_smu_funcs_nv *pp_smu = NULL; if (clk_mgr->pp_smu) { pp_smu = &clk_mgr->pp_smu->nv_funcs; if (pp_smu->set_pme_wa_enable) pp_smu->set_pme_wa_enable(&pp_smu->pp_smu); } } void dcn2_get_clock(struct clk_mgr *clk_mgr, struct dc_state *context, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) { if (clock_type == DC_CLOCK_TYPE_DISPCLK) { clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz; clock_cfg->min_clock_khz = DCN_MINIMUM_DISPCLK_Khz; clock_cfg->current_clock_khz = clk_mgr->clks.dispclk_khz; clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dispclk_khz; } if (clock_type == DC_CLOCK_TYPE_DPPCLK) { clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz; clock_cfg->min_clock_khz = DCN_MINIMUM_DPPCLK_Khz; clock_cfg->current_clock_khz = clk_mgr->clks.dppclk_khz; clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dppclk_khz; } } static struct clk_mgr_funcs dcn2_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dcn2_update_clocks, .init_clocks = dcn2_init_clocks, .enable_pme_wa = dcn2_enable_pme_wa, .get_clock = dcn2_get_clock, }; void dcn20_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_internal *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { clk_mgr->base.ctx = ctx; clk_mgr->pp_smu = pp_smu; clk_mgr->base.funcs = &dcn2_funcs; clk_mgr->regs = &clk_mgr_regs; clk_mgr->clk_mgr_shift = &clk_mgr_shift; clk_mgr->clk_mgr_mask = &clk_mgr_mask; clk_mgr->dccg = dccg; clk_mgr->dfs_bypass_disp_clk = 0; clk_mgr->dprefclk_ss_percentage = 0; clk_mgr->dprefclk_ss_divider = 1000; clk_mgr->ss_on_dprefclk = false; clk_mgr->base.dprefclk_khz = 700000; // 700 MHz planned if VCO is 3.85 GHz, will be retrieved if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) { dcn2_funcs.update_clocks = dcn2_update_clocks_fpga; clk_mgr->dentist_vco_freq_khz = 3850000; } else { /* DFS Slice 2 should be used for DPREFCLK */ int dprefclk_did = REG_READ(CLK3_CLK2_DFS_CNTL); /* Convert DPREFCLK DFS Slice DID to actual divider*/ int target_div = dentist_get_divider_from_did(dprefclk_did); /* get FbMult value */ uint32_t pll_req_reg = REG_READ(CLK3_CLK_PLL_REQ); struct fixed31_32 pll_req; /* set up a fixed-point number * this works because the int part is on the right edge of the register * and the frac part is on the left edge */ pll_req = dc_fixpt_from_int(pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_int); pll_req.value |= pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_frac; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, 100000); /* integer part is now VCO frequency in kHz */ clk_mgr->dentist_vco_freq_khz = dc_fixpt_floor(pll_req); /* in case we don't get a value from the register, use default */ if (clk_mgr->dentist_vco_freq_khz == 0) clk_mgr->dentist_vco_freq_khz = 3850000; /* Calculate the DPREFCLK in kHz.*/ clk_mgr->base.dprefclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->dentist_vco_freq_khz) / target_div; } //Integrated_info table does not exist on dGPU projects so should not be referenced //anywhere in code for dGPUs. //Also there is no plan for now that DFS BYPASS will be used on NV10/12/14. clk_mgr->dfs_bypass_enabled = false; dce_clock_read_ss_info(clk_mgr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1