Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 6336 | 62.61% | 2 | 4.17% |
Martin Leung | 2213 | 21.87% | 1 | 2.08% |
Dmytro Laktyushkin | 490 | 4.84% | 9 | 18.75% |
Charlene Liu | 149 | 1.47% | 4 | 8.33% |
Wenjing Liu | 127 | 1.26% | 3 | 6.25% |
Julian Parkin | 118 | 1.17% | 1 | 2.08% |
Jun Lei | 104 | 1.03% | 4 | 8.33% |
Joshua Aberback | 85 | 0.84% | 3 | 6.25% |
Nicholas Kazlauskas | 80 | 0.79% | 1 | 2.08% |
Su Sung Chung | 72 | 0.71% | 1 | 2.08% |
Tony Cheng | 68 | 0.67% | 1 | 2.08% |
Leo (Sunpeng) Li | 67 | 0.66% | 2 | 4.17% |
Nikola Cornij | 51 | 0.50% | 2 | 4.17% |
Hersen Wu | 34 | 0.34% | 1 | 2.08% |
Aric Cyr | 31 | 0.31% | 1 | 2.08% |
Bayan Zabihiyan | 20 | 0.20% | 1 | 2.08% |
Zi Yu Liao | 20 | 0.20% | 2 | 4.17% |
Yue haibing | 15 | 0.15% | 1 | 2.08% |
Vitaly Prosyak | 10 | 0.10% | 1 | 2.08% |
Jaehyun Chung | 8 | 0.08% | 1 | 2.08% |
Ilya Bakoulin | 6 | 0.06% | 1 | 2.08% |
Thomas Lim | 6 | 0.06% | 1 | 2.08% |
Eryk Brol | 3 | 0.03% | 1 | 2.08% |
Arnd Bergmann | 3 | 0.03% | 1 | 2.08% |
Alex Deucher | 2 | 0.02% | 1 | 2.08% |
Wesley Chalmers | 1 | 0.01% | 1 | 2.08% |
Total | 10119 | 48 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/delay.h> #include "dm_services.h" #include "dm_helpers.h" #include "core_types.h" #include "resource.h" #include "dcn20/dcn20_resource.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn10/dcn10_hw_sequencer.h" #include "dcn20_hwseq.h" #include "dce/dce_hwseq.h" #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT #include "dcn20/dcn20_dsc.h" #endif #include "abm.h" #include "clk_mgr.h" #include "dmcu.h" #include "hubp.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "mcif_wb.h" #include "reg_helper.h" #include "dcn10/dcn10_cm_common.h" #include "dcn10/dcn10_hubbub.h" #include "dcn10/dcn10_optc.h" #include "dc_link_dp.h" #include "vm_helper.h" #include "dccg.h" #define DC_LOGGER_INIT(logger) #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name static void dcn20_enable_power_gating_plane( struct dce_hwseq *hws, bool enable) { bool force_on = 1; /* disable power gating */ if (enable) force_on = 0; /* DCHUBP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on); if (REG(DOMAIN8_PG_CONFIG)) REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); if (REG(DOMAIN10_PG_CONFIG)) REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); /* DPP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on); if (REG(DOMAIN9_PG_CONFIG)) REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); if (REG(DOMAIN11_PG_CONFIG)) REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); /* DCS0/1/2/3/4/5 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on); if (REG(DOMAIN19_PG_CONFIG)) REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on); if (REG(DOMAIN20_PG_CONFIG)) REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on); if (REG(DOMAIN21_PG_CONFIG)) REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on); } void dcn20_dccg_init(struct dce_hwseq *hws) { /* * set MICROSECOND_TIME_BASE_DIV * 100Mhz refclk -> 0x120264 * 27Mhz refclk -> 0x12021b * 48Mhz refclk -> 0x120230 * */ REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264); /* * set MILLISECOND_TIME_BASE_DIV * 100Mhz refclk -> 0x1186a0 * 27Mhz refclk -> 0x106978 * 48Mhz refclk -> 0x10bb80 * */ REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0); /* This value is dependent on the hardware pipeline delay so set once per SOC */ REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c); } void dcn20_display_init(struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; /* RBBMIF * disable RBBMIF timeout detection for all clients * Ensure RBBMIF does not drop register accesses due to the per-client timeout */ REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF); REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF); /* DCCG */ dcn20_dccg_init(hws); REG_UPDATE(DC_MEM_GLOBAL_PWR_REQ_CNTL, DC_MEM_GLOBAL_PWR_REQ_DIS, 0); /* DCHUB/MMHUBBUB * set global timer refclk divider * 100Mhz refclk -> 2 * 27Mhz refclk -> 1 * 48Mhz refclk -> 1 */ REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); REG_WRITE(REFCLK_CNTL, 0); /* OPTC * OTG_CONTROL.OTG_DISABLE_POINT_CNTL = 0x3; will be set during optc2_enable_crtc */ /* AZ * default value is 0x64 for 100Mhz ref clock, if the ref clock is 100Mhz, no need to program this regiser, * if not, it should be programmed according to the ref clock */ REG_UPDATE(AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, 0x64); /* Enable controller clock gating */ REG_WRITE(AZALIA_CONTROLLER_CLOCK_GATING, 0x1); } void dcn20_disable_vga( struct dce_hwseq *hws) { REG_WRITE(D1VGA_CONTROL, 0); REG_WRITE(D2VGA_CONTROL, 0); REG_WRITE(D3VGA_CONTROL, 0); REG_WRITE(D4VGA_CONTROL, 0); REG_WRITE(D5VGA_CONTROL, 0); REG_WRITE(D6VGA_CONTROL, 0); } void dcn20_program_tripleBuffer( const struct dc *dc, struct pipe_ctx *pipe_ctx, bool enableTripleBuffer) { if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) { pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer( pipe_ctx->plane_res.hubp, enableTripleBuffer); } } /* Blank pixel data during initialization */ void dcn20_init_blank( struct dc *dc, struct timing_generator *tg) { enum dc_color_space color_space; struct tg_color black_color = {0}; struct output_pixel_processor *opp = NULL; struct output_pixel_processor *bottom_opp = NULL; uint32_t num_opps, opp_id_src0, opp_id_src1; uint32_t otg_active_width, otg_active_height; /* program opp dpg blank color */ color_space = COLOR_SPACE_SRGB; color_space_to_black_color(dc, color_space, &black_color); /* get the OTG active size */ tg->funcs->get_otg_active_size(tg, &otg_active_width, &otg_active_height); /* get the OPTC source */ tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp); opp = dc->res_pool->opps[opp_id_src0]; if (num_opps == 2) { otg_active_width = otg_active_width / 2; ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp); bottom_opp = dc->res_pool->opps[opp_id_src1]; } opp->funcs->opp_set_disp_pattern_generator( opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height); if (num_opps == 2) { bottom_opp->funcs->opp_set_disp_pattern_generator( bottom_opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height); } dcn20_hwss_wait_for_blank_complete(opp); } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT static void dcn20_dsc_pg_control( struct dce_hwseq *hws, unsigned int dsc_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; uint32_t org_ip_request_cntl = 0; if (hws->ctx->dc->debug.disable_dsc_power_gate) return; if (REG(DOMAIN16_PG_CONFIG) == 0) return; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); switch (dsc_inst) { case 0: /* DSC0 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_GATE, power_gate); REG_WAIT(DOMAIN16_PG_STATUS, DOMAIN16_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DSC1 */ REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_GATE, power_gate); REG_WAIT(DOMAIN17_PG_STATUS, DOMAIN17_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DSC2 */ REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_GATE, power_gate); REG_WAIT(DOMAIN18_PG_STATUS, DOMAIN18_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DSC3 */ REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_GATE, power_gate); REG_WAIT(DOMAIN19_PG_STATUS, DOMAIN19_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DSC4 */ REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_GATE, power_gate); REG_WAIT(DOMAIN20_PG_STATUS, DOMAIN20_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DSC5 */ REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_GATE, power_gate); REG_WAIT(DOMAIN21_PG_STATUS, DOMAIN21_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } #endif static void dcn20_dpp_pg_control( struct dce_hwseq *hws, unsigned int dpp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; if (hws->ctx->dc->debug.disable_dpp_power_gate) return; if (REG(DOMAIN1_PG_CONFIG) == 0) return; switch (dpp_inst) { case 0: /* DPP0 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_GATE, power_gate); REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN1_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DPP1 */ REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_GATE, power_gate); REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN3_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DPP2 */ REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_GATE, power_gate); REG_WAIT(DOMAIN5_PG_STATUS, DOMAIN5_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DPP3 */ REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_GATE, power_gate); REG_WAIT(DOMAIN7_PG_STATUS, DOMAIN7_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DPP4 */ REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_GATE, power_gate); REG_WAIT(DOMAIN9_PG_STATUS, DOMAIN9_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DPP5 */ /* * Do not power gate DPP5, should be left at HW default, power on permanently. * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard * reset. * REG_UPDATE(DOMAIN11_PG_CONFIG, * DOMAIN11_POWER_GATE, power_gate); * * REG_WAIT(DOMAIN11_PG_STATUS, * DOMAIN11_PGFSM_PWR_STATUS, pwr_status, * 1, 1000); */ break; default: BREAK_TO_DEBUGGER(); break; } } static void dcn20_hubp_pg_control( struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; if (hws->ctx->dc->debug.disable_hubp_power_gate) return; if (REG(DOMAIN0_PG_CONFIG) == 0) return; switch (hubp_inst) { case 0: /* DCHUBP0 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_GATE, power_gate); REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN0_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DCHUBP1 */ REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_GATE, power_gate); REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN2_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DCHUBP2 */ REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_GATE, power_gate); REG_WAIT(DOMAIN4_PG_STATUS, DOMAIN4_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DCHUBP3 */ REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_GATE, power_gate); REG_WAIT(DOMAIN6_PG_STATUS, DOMAIN6_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DCHUBP4 */ REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_GATE, power_gate); REG_WAIT(DOMAIN8_PG_STATUS, DOMAIN8_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DCHUBP5 */ /* * Do not power gate DCHUB5, should be left at HW default, power on permanently. * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard * reset. * REG_UPDATE(DOMAIN10_PG_CONFIG, * DOMAIN10_POWER_GATE, power_gate); * * REG_WAIT(DOMAIN10_PG_STATUS, * DOMAIN10_PGFSM_PWR_STATUS, pwr_status, * 1, 1000); */ break; default: BREAK_TO_DEBUGGER(); break; } } /* disable HW used by plane. * note: cannot disable until disconnect is complete */ static void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); /* In flip immediate with pipe splitting case GSL is used for * synchronization so we must disable it when the plane is disabled. */ if (pipe_ctx->stream_res.gsl_group != 0) dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false); dc->hwss.set_flip_control_gsl(pipe_ctx, false); hubp->funcs->hubp_clk_cntl(hubp, false); dpp->funcs->dpp_dppclk_control(dpp, false, false); hubp->power_gated = true; dc->optimized_required = false; /* We're powering off, no need to optimize */ dc->hwss.plane_atomic_power_down(dc, pipe_ctx->plane_res.dpp, pipe_ctx->plane_res.hubp); pipe_ctx->stream = NULL; memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); pipe_ctx->top_pipe = NULL; pipe_ctx->bottom_pipe = NULL; pipe_ctx->plane_state = NULL; } void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) { DC_LOGGER_INIT(dc->ctx->logger); if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) return; dcn20_plane_atomic_disable(dc, pipe_ctx); DC_LOG_DC("Power down front end %d\n", pipe_ctx->pipe_idx); } enum dc_status dcn20_enable_stream_timing( struct pipe_ctx *pipe_ctx, struct dc_state *context, struct dc *dc) { struct dc_stream_state *stream = pipe_ctx->stream; struct drr_params params = {0}; unsigned int event_triggers = 0; struct pipe_ctx *odm_pipe; int opp_cnt = 1; int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; /* by upper caller loop, pipe0 is parent pipe and be called first. * back end is set up by for pipe0. Other children pipe share back end * with pipe 0. No program is needed. */ if (pipe_ctx->top_pipe != NULL) return DC_OK; /* TODO check if timing_changed, disable stream if timing changed */ for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; opp_cnt++; } if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, &pipe_ctx->stream->timing); /* HW program guide assume display already disable * by unplug sequence. OTG assume stop. */ pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true); if (false == pipe_ctx->clock_source->funcs->program_pix_clk( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } pipe_ctx->stream_res.tg->funcs->program_timing( pipe_ctx->stream_res.tg, &stream->timing, pipe_ctx->pipe_dlg_param.vready_offset, pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width, pipe_ctx->stream->signal, true); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( odm_pipe->stream_res.opp, true); pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); dc->hwss.blank_pixel_data(dc, pipe_ctx, true); /* VTG is within DCHUB command block. DCFCLK is always on */ if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } dcn20_hwss_wait_for_blank_complete(pipe_ctx->stream_res.opp); params.vertical_total_min = stream->adjust.v_total_min; params.vertical_total_max = stream->adjust.v_total_max; params.vertical_total_mid = stream->adjust.v_total_mid; params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num; if (pipe_ctx->stream_res.tg->funcs->set_drr) pipe_ctx->stream_res.tg->funcs->set_drr( pipe_ctx->stream_res.tg, ¶ms); // DRR should set trigger event to monitor surface update event if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0) event_triggers = 0x80; if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control) pipe_ctx->stream_res.tg->funcs->set_static_screen_control( pipe_ctx->stream_res.tg, event_triggers); /* TODO program crtc source select for non-virtual signal*/ /* TODO program FMT */ /* TODO setup link_enc */ /* TODO set stream attributes */ /* TODO program audio */ /* TODO enable stream if timing changed */ /* TODO unblank stream if DP */ return DC_OK; } void dcn20_program_output_csc(struct dc *dc, struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace, uint16_t *matrix, int opp_id) { struct mpc *mpc = dc->res_pool->mpc; enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A; int mpcc_id = pipe_ctx->plane_res.hubp->inst; if (mpc->funcs->power_on_mpc_mem_pwr) mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { if (mpc->funcs->set_output_csc != NULL) mpc->funcs->set_output_csc(mpc, opp_id, matrix, ocsc_mode); } else { if (mpc->funcs->set_ocsc_default != NULL) mpc->funcs->set_ocsc_default(mpc, opp_id, colorspace, ocsc_mode); } } bool dcn20_set_output_transfer_func(struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; struct pwl_params *params = NULL; /* * program OGAM only for the top pipe * if there is a pipe split then fix diagnostic is required: * how to pass OGAM parameter for stream. * if programming for all pipes is required then remove condition * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic. */ if (mpc->funcs->power_on_mpc_mem_pwr) mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); if (pipe_ctx->top_pipe == NULL && mpc->funcs->set_output_gamma && stream->out_transfer_func) { if (stream->out_transfer_func->type == TF_TYPE_HWPWL) params = &stream->out_transfer_func->pwl; else if (pipe_ctx->stream->out_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm_helper_translate_curve_to_hw_format( stream->out_transfer_func, &mpc->blender_params, false)) params = &mpc->blender_params; /* * there is no ROM */ if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) BREAK_TO_DEBUGGER(); } /* * if above if is not executed then 'params' equal to 0 and set in bypass */ mpc->funcs->set_output_gamma(mpc, mpcc_id, params); return true; } static bool dcn20_set_blend_lut( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; bool result = true; struct pwl_params *blend_lut = NULL; if (plane_state->blend_tf) { if (plane_state->blend_tf->type == TF_TYPE_HWPWL) blend_lut = &plane_state->blend_tf->pwl; else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format( plane_state->blend_tf, &dpp_base->regamma_params, false); blend_lut = &dpp_base->regamma_params; } } result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut); return result; } static bool dcn20_set_shaper_3dlut( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; bool result = true; struct pwl_params *shaper_lut = NULL; if (plane_state->in_shaper_func) { if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL) shaper_lut = &plane_state->in_shaper_func->pwl; else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format( plane_state->in_shaper_func, &dpp_base->shaper_params, true); shaper_lut = &dpp_base->shaper_params; } } result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut); if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1) result = dpp_base->funcs->dpp_program_3dlut(dpp_base, &plane_state->lut3d_func->lut_3d); else result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL); if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1 && plane_state->lut3d_func->hdr_multiplier != 0) dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, plane_state->lut3d_func->hdr_multiplier); else dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, 0x1f000); return result; } bool dcn20_set_input_transfer_func(struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; const struct dc_transfer_func *tf = NULL; bool result = true; bool use_degamma_ram = false; if (dpp_base == NULL || plane_state == NULL) return false; dcn20_set_shaper_3dlut(pipe_ctx, plane_state); dcn20_set_blend_lut(pipe_ctx, plane_state); if (plane_state->in_transfer_func) tf = plane_state->in_transfer_func; if (tf == NULL) { dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); return true; } if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS) use_degamma_ram = true; if (use_degamma_ram == true) { if (tf->type == TF_TYPE_HWPWL) dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &tf->pwl); else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); } return true; } /* handle here the optimized cases when de-gamma ROM could be used. * */ if (tf->type == TF_TYPE_PREDEFINED) { switch (tf->tf) { case TRANSFER_FUNCTION_SRGB: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB); break; case TRANSFER_FUNCTION_BT709: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC); break; case TRANSFER_FUNCTION_LINEAR: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); break; case TRANSFER_FUNCTION_PQ: default: result = false; break; } } else if (tf->type == TF_TYPE_BYPASS) dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); else { /* * if we are here, we did not handle correctly. * fix is required for this use case */ BREAK_TO_DEBUGGER(); dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); } return result; } static void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) { struct pipe_ctx *odm_pipe; int opp_cnt = 1; int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; opp_cnt++; } if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, &pipe_ctx->stream->timing); else pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); } void dcn20_blank_pixel_data( struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank) { struct tg_color black_color = {0}; struct stream_resource *stream_res = &pipe_ctx->stream_res; struct dc_stream_state *stream = pipe_ctx->stream; enum dc_color_space color_space = stream->output_color_space; enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR; struct pipe_ctx *odm_pipe; int odm_cnt = 1; int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right; int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top; /* get opp dpg blank color */ color_space_to_black_color(dc, color_space, &black_color); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) odm_cnt++; width = width / odm_cnt; if (blank) { if (stream_res->abm) stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm); if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES; } else { test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE; } stream_res->opp->funcs->opp_set_disp_pattern_generator( stream_res->opp, test_pattern, stream->timing.display_color_depth, &black_color, width, height); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator( odm_pipe->stream_res.opp, dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ? CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern, stream->timing.display_color_depth, &black_color, width, height); } if (!blank) if (stream_res->abm) { stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1); stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level); } } static void dcn20_power_on_plane( struct dce_hwseq *hws, struct pipe_ctx *pipe_ctx) { DC_LOGGER_INIT(hws->ctx->logger); if (REG(DC_IP_REQUEST_CNTL)) { REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true); dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); DC_LOG_DEBUG( "Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst); } } void dcn20_enable_plane( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { //if (dc->debug.sanity_checks) { // dcn10_verify_allow_pstate_change_high(dc); //} dcn20_power_on_plane(dc->hwseq, pipe_ctx); /* enable DCFCLK current DCHUB */ pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); /* initialize HUBP on power up */ pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp); /* make sure OPP_PIPE_CLOCK_EN = 1 */ pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); /* TODO: enable/disable in dm as per update type. if (plane_state) { DC_LOG_DC(dc->ctx->logger, "Pipe:%d 0x%x: addr hi:0x%x, " "addr low:0x%x, " "src: %d, %d, %d," " %d; dst: %d, %d, %d, %d;\n", pipe_ctx->pipe_idx, plane_state, plane_state->address.grph.addr.high_part, plane_state->address.grph.addr.low_part, plane_state->src_rect.x, plane_state->src_rect.y, plane_state->src_rect.width, plane_state->src_rect.height, plane_state->dst_rect.x, plane_state->dst_rect.y, plane_state->dst_rect.width, plane_state->dst_rect.height); DC_LOG_DC(dc->ctx->logger, "Pipe %d: width, height, x, y format:%d\n" "viewport:%d, %d, %d, %d\n" "recout: %d, %d, %d, %d\n", pipe_ctx->pipe_idx, plane_state->format, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, pipe_ctx->plane_res.scl_data.recout.width, pipe_ctx->plane_res.scl_data.recout.height, pipe_ctx->plane_res.scl_data.recout.x, pipe_ctx->plane_res.scl_data.recout.y); print_rq_dlg_ttu(dc, pipe_ctx); } */ if (dc->vm_pa_config.valid) { struct vm_system_aperture_param apt; apt.sys_default.quad_part = 0; apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr; apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr; // Program system aperture settings pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt); } // if (dc->debug.sanity_checks) { // dcn10_verify_allow_pstate_change_high(dc); // } } static void dcn20_program_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { pipe_ctx->plane_state->update_flags.bits.full_update = context->commit_hints.full_update_needed ? 1 : pipe_ctx->plane_state->update_flags.bits.full_update; if (pipe_ctx->plane_state->update_flags.bits.full_update) dcn20_enable_plane(dc, pipe_ctx, context); update_dchubp_dpp(dc, pipe_ctx, context); set_hdr_multiplier(pipe_ctx); if (pipe_ctx->plane_state->update_flags.bits.full_update || pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || pipe_ctx->plane_state->update_flags.bits.gamma_change) dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state); /* dcn10_translate_regamma_to_hw_format takes 750us to finish * only do gamma programming for full update. * TODO: This can be further optimized/cleaned up * Always call this for now since it does memcmp inside before * doing heavy calculation and programming */ if (pipe_ctx->plane_state->update_flags.bits.full_update) dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream); } static void dcn20_program_all_pipe_in_tree( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { if (pipe_ctx->top_pipe == NULL && !pipe_ctx->prev_odm_pipe) { bool blank = !is_pipe_tree_visible(pipe_ctx); pipe_ctx->stream_res.tg->funcs->program_global_sync( pipe_ctx->stream_res.tg, pipe_ctx->pipe_dlg_param.vready_offset, pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width); pipe_ctx->stream_res.tg->funcs->set_vtg_params( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); dc->hwss.blank_pixel_data(dc, pipe_ctx, blank); if (dc->hwss.update_odm) dc->hwss.update_odm(dc, context, pipe_ctx); } if (pipe_ctx->plane_state != NULL) dcn20_program_pipe(dc, pipe_ctx, context); if (pipe_ctx->bottom_pipe != NULL) { ASSERT(pipe_ctx->bottom_pipe != pipe_ctx); dcn20_program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context); } else if (pipe_ctx->next_odm_pipe != NULL) { ASSERT(pipe_ctx->next_odm_pipe != pipe_ctx); dcn20_program_all_pipe_in_tree(dc, pipe_ctx->next_odm_pipe, context); } } void dcn20_pipe_control_lock_global( struct dc *dc, struct pipe_ctx *pipe, bool lock) { if (lock) { pipe->stream_res.tg->funcs->lock_doublebuffer_enable( pipe->stream_res.tg); pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); } else { pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK); pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE); pipe->stream_res.tg->funcs->lock_doublebuffer_disable( pipe->stream_res.tg); } } void dcn20_pipe_control_lock( struct dc *dc, struct pipe_ctx *pipe, bool lock) { bool flip_immediate = false; /* use TG master update lock to lock everything on the TG * therefore only top pipe need to lock */ if (pipe->top_pipe) return; if (pipe->plane_state != NULL) flip_immediate = pipe->plane_state->flip_immediate; /* In flip immediate and pipe splitting case, we need to use GSL * for synchronization. Only do setup on locking and on flip type change. */ if (lock && pipe->bottom_pipe != NULL) if ((flip_immediate && pipe->stream_res.gsl_group == 0) || (!flip_immediate && pipe->stream_res.gsl_group > 0)) dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate); if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) { if (lock) pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg); } else { if (lock) pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); } } static void dcn20_apply_ctx_for_surface( struct dc *dc, const struct dc_stream_state *stream, int num_planes, struct dc_state *context) { const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100; int i; struct timing_generator *tg; bool removed_pipe[6] = { false }; bool interdependent_update = false; struct pipe_ctx *top_pipe_to_program = find_top_pipe_for_stream(dc, context, stream); struct pipe_ctx *prev_top_pipe_to_program = find_top_pipe_for_stream(dc, dc->current_state, stream); DC_LOGGER_INIT(dc->ctx->logger); if (!top_pipe_to_program) return; /* Carry over GSL groups in case the context is changing. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream == stream && pipe_ctx->stream == old_pipe_ctx->stream) pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group; } tg = top_pipe_to_program->stream_res.tg; interdependent_update = top_pipe_to_program->plane_state && top_pipe_to_program->plane_state->update_flags.bits.full_update; if (interdependent_update) lock_all_pipes(dc, context, true); else dcn20_pipe_control_lock(dc, top_pipe_to_program, true); if (num_planes == 0) { /* OTG blank before remove all front end */ dc->hwss.blank_pixel_data(dc, top_pipe_to_program, true); } /* Disconnect unused mpcc */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; /* * Powergate reused pipes that are not powergated * fairly hacky right now, using opp_id as indicator * TODO: After move dc_post to dc_update, this will * be removed. */ if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) { if (old_pipe_ctx->stream_res.tg == tg && old_pipe_ctx->plane_res.hubp && old_pipe_ctx->plane_res.hubp->opp_id != OPP_ID_INVALID) dc->hwss.disable_plane(dc, old_pipe_ctx); } if ((!pipe_ctx->plane_state || pipe_ctx->stream_res.tg != old_pipe_ctx->stream_res.tg) && old_pipe_ctx->plane_state && old_pipe_ctx->stream_res.tg == tg) { dc->hwss.plane_atomic_disconnect(dc, old_pipe_ctx); removed_pipe[i] = true; DC_LOG_DC("Reset mpcc for pipe %d\n", old_pipe_ctx->pipe_idx); } } if (num_planes > 0) dcn20_program_all_pipe_in_tree(dc, top_pipe_to_program, context); /* Program secondary blending tree and writeback pipes */ if ((stream->num_wb_info > 0) && (dc->hwss.program_all_writeback_pipes_in_tree)) dc->hwss.program_all_writeback_pipes_in_tree(dc, stream, context); if (interdependent_update) for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* Skip inactive pipes and ones already updated */ if (!pipe_ctx->stream || pipe_ctx->stream == stream || !pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg)) continue; pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent( pipe_ctx->plane_res.hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs); } if (interdependent_update) lock_all_pipes(dc, context, false); else dcn20_pipe_control_lock(dc, top_pipe_to_program, false); for (i = 0; i < dc->res_pool->pipe_count; i++) if (removed_pipe[i]) dcn20_disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]); /* * If we are enabling a pipe, we need to wait for pending clear as this is a critical * part of the enable operation otherwise, DM may request an immediate flip which * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which * is unsupported on DCN. */ i = 0; if (num_planes > 0 && top_pipe_to_program && (prev_top_pipe_to_program == NULL || prev_top_pipe_to_program->plane_state == NULL)) { while (i < TIMEOUT_FOR_PIPE_ENABLE_MS && top_pipe_to_program->plane_res.hubp->funcs->hubp_is_flip_pending(top_pipe_to_program->plane_res.hubp)) { i += 1; msleep(1); } } } void dcn20_prepare_bandwidth( struct dc *dc, struct dc_state *context) { struct hubbub *hubbub = dc->res_pool->hubbub; dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, false); /* program dchubbub watermarks */ hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, false); } void dcn20_optimize_bandwidth( struct dc *dc, struct dc_state *context) { struct hubbub *hubbub = dc->res_pool->hubbub; /* program dchubbub watermarks */ hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, true); dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, true); } bool dcn20_update_bandwidth( struct dc *dc, struct dc_state *context) { int i; /* recalculate DML parameters */ if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) return false; /* apply updated bandwidth parameters */ dc->hwss.prepare_bandwidth(dc, context); /* update hubp configs for all pipes */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->plane_state == NULL) continue; if (pipe_ctx->top_pipe == NULL) { bool blank = !is_pipe_tree_visible(pipe_ctx); pipe_ctx->stream_res.tg->funcs->program_global_sync( pipe_ctx->stream_res.tg, pipe_ctx->pipe_dlg_param.vready_offset, pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width); pipe_ctx->stream_res.tg->funcs->set_vtg_params( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); if (pipe_ctx->prev_odm_pipe == NULL) dc->hwss.blank_pixel_data(dc, pipe_ctx, blank); } pipe_ctx->plane_res.hubp->funcs->hubp_setup( pipe_ctx->plane_res.hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs, &pipe_ctx->rq_regs, &pipe_ctx->pipe_dlg_param); } return true; } static void dcn20_enable_writeback( struct dc *dc, const struct dc_stream_status *stream_status, struct dc_writeback_info *wb_info) { struct dwbc *dwb; struct mcif_wb *mcif_wb; struct timing_generator *optc; ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES); ASSERT(wb_info->wb_enabled); dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; /* set the OPTC source mux */ ASSERT(stream_status->primary_otg_inst < MAX_PIPES); optc = dc->res_pool->timing_generators[stream_status->primary_otg_inst]; optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst); /* set MCIF_WB buffer and arbitration configuration */ mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height); mcif_wb->funcs->config_mcif_arb(mcif_wb, &dc->current_state->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]); /* Enable MCIF_WB */ mcif_wb->funcs->enable_mcif(mcif_wb); /* Enable DWB */ dwb->funcs->enable(dwb, &wb_info->dwb_params); /* TODO: add sequence to enable/disable warmup */ } void dcn20_disable_writeback( struct dc *dc, unsigned int dwb_pipe_inst) { struct dwbc *dwb; struct mcif_wb *mcif_wb; ASSERT(dwb_pipe_inst < MAX_DWB_PIPES); dwb = dc->res_pool->dwbc[dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst]; dwb->funcs->disable(dwb); mcif_wb->funcs->disable_mcif(mcif_wb); } bool dcn20_hwss_wait_for_blank_complete( struct output_pixel_processor *opp) { int counter; for (counter = 0; counter < 1000; counter++) { if (opp->funcs->dpg_is_blanked(opp)) break; udelay(100); } if (counter == 1000) { dm_error("DC: failed to blank crtc!\n"); return false; } return true; } bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; if (!hubp) return false; return hubp->funcs->dmdata_status_done(hubp); } static void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) { #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT struct dce_hwseq *hws = dc->hwseq; if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true); while (odm_pipe) { dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true); odm_pipe = odm_pipe->next_odm_pipe; } } #endif } static void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) { #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT struct dce_hwseq *hws = dc->hwseq; if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false); while (odm_pipe) { dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false); odm_pipe = odm_pipe->next_odm_pipe; } } #endif } void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx) { struct dc_dmdata_attributes attr = { 0 }; struct hubp *hubp = pipe_ctx->plane_res.hubp; attr.dmdata_mode = DMDATA_HW_MODE; attr.dmdata_size = dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36; attr.address.quad_part = pipe_ctx->stream->dmdata_address.quad_part; attr.dmdata_dl_delta = 0; attr.dmdata_qos_mode = 0; attr.dmdata_qos_level = 0; attr.dmdata_repeat = 1; /* always repeat */ attr.dmdata_updated = 1; attr.dmdata_sw_data = NULL; hubp->funcs->dmdata_set_attributes(hubp, &attr); } void dcn20_disable_stream(struct pipe_ctx *pipe_ctx) { dce110_disable_stream(pipe_ctx); } static void dcn20_init_vm_ctx( struct dce_hwseq *hws, struct dc *dc, struct dc_virtual_addr_space_config *va_config, int vmid) { struct dcn_hubbub_virt_addr_config config; if (vmid == 0) { ASSERT(0); /* VMID cannot be 0 for vm context */ return; } config.page_table_start_addr = va_config->page_table_start_addr; config.page_table_end_addr = va_config->page_table_end_addr; config.page_table_block_size = va_config->page_table_block_size_in_bytes; config.page_table_depth = va_config->page_table_depth; config.page_table_base_addr = va_config->page_table_base_addr; dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid); } static int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config) { struct dcn_hubbub_phys_addr_config config; config.system_aperture.fb_top = pa_config->system_aperture.fb_top; config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset; config.system_aperture.fb_base = pa_config->system_aperture.fb_base; config.system_aperture.agp_top = pa_config->system_aperture.agp_top; config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot; config.system_aperture.agp_base = pa_config->system_aperture.agp_base; config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr; config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr; config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; config.page_table_default_page_addr = pa_config->page_table_default_page_addr; return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config); } static bool patch_address_for_sbs_tb_stereo( struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr) { struct dc_plane_state *plane_state = pipe_ctx->plane_state; bool sec_split = pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state; if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO && (pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE || pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)) { *addr = plane_state->address.grph_stereo.left_addr; plane_state->address.grph_stereo.left_addr = plane_state->address.grph_stereo.right_addr; return true; } if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE && plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) { plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO; plane_state->address.grph_stereo.right_addr = plane_state->address.grph_stereo.left_addr; } return false; } static void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx) { bool addr_patched = false; PHYSICAL_ADDRESS_LOC addr; struct dc_plane_state *plane_state = pipe_ctx->plane_state; if (plane_state == NULL) return; addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr); // Call Helper to track VMID use vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst); pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr( pipe_ctx->plane_res.hubp, &plane_state->address, plane_state->flip_immediate); plane_state->status.requested_address = plane_state->address; if (plane_state->flip_immediate) plane_state->status.current_address = plane_state->address; if (addr_patched) pipe_ctx->plane_state->address.grph_stereo.left_addr = addr; } void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx, struct dc_link_settings *link_settings) { struct encoder_unblank_param params = { { 0 } }; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct pipe_ctx *odm_pipe; params.opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { params.opp_cnt++; } /* only 3 items below are used by unblank */ params.timing = pipe_ctx->stream->timing; params.link_settings.link_rate = link_settings->link_rate; if (dc_is_dp_signal(pipe_ctx->stream->signal)) { if (optc1_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1) params.timing.pix_clk_100hz /= 2; pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1); pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, ¶ms); } if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { link->dc->hwss.edp_backlight_control(link, true); } } void dcn20_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx) { struct timing_generator *tg = pipe_ctx->stream_res.tg; int start_line = get_vupdate_offset_from_vsync(pipe_ctx); if (start_line < 0) start_line = 0; if (tg->funcs->setup_vertical_interrupt2) tg->funcs->setup_vertical_interrupt2(tg, start_line); } static void dcn20_reset_back_end_for_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { int i; DC_LOGGER_INIT(dc->ctx->logger); if (pipe_ctx->stream_res.stream_enc == NULL) { pipe_ctx->stream = NULL; return; } if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { /* DPMS may already disable */ if (!pipe_ctx->stream->dpms_off) core_link_disable_stream(pipe_ctx); else if (pipe_ctx->stream_res.audio) dc->hwss.disable_audio_stream(pipe_ctx); /* free acquired resources */ if (pipe_ctx->stream_res.audio) { /*disable az_endpoint*/ pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); /*free audio*/ if (dc->caps.dynamic_audio == true) { /*we have to dynamic arbitrate the audio endpoints*/ /*we free the resource, need reset is_audio_acquired*/ update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false); pipe_ctx->stream_res.audio = NULL; } } } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT else if (pipe_ctx->stream_res.dsc) { dp_set_dsc_enable(pipe_ctx, false); } #endif /* by upper caller loop, parent pipe: pipe0, will be reset last. * back end share by all pipes and will be disable only when disable * parent pipe. */ if (pipe_ctx->top_pipe == NULL) { pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass) pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); if (pipe_ctx->stream_res.tg->funcs->set_drr) pipe_ctx->stream_res.tg->funcs->set_drr( pipe_ctx->stream_res.tg, NULL); } for (i = 0; i < dc->res_pool->pipe_count; i++) if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) break; if (i == dc->res_pool->pipe_count) return; pipe_ctx->stream = NULL; DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n", pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); } static void dcn20_reset_hw_ctx_wrap( struct dc *dc, struct dc_state *context) { int i; /* Reset Back End*/ for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx_old->stream) continue; if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe) continue; if (!pipe_ctx->stream || pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) { struct clock_source *old_clk = pipe_ctx_old->clock_source; dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); if (dc->hwss.enable_stream_gating) dc->hwss.enable_stream_gating(dc, pipe_ctx); if (old_clk) old_clk->funcs->cs_power_down(old_clk); } } } static void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct mpcc_blnd_cfg blnd_cfg = { {0} }; bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha; int mpcc_id; struct mpcc *new_mpcc; struct mpc *mpc = dc->res_pool->mpc; struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params); // input to MPCC is always RGB, by default leave black_color at 0 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) { dcn10_get_hdr_visual_confirm_color( pipe_ctx, &blnd_cfg.black_color); } else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) { dcn10_get_surface_visual_confirm_color( pipe_ctx, &blnd_cfg.black_color); } if (per_pixel_alpha) blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA; else blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA; blnd_cfg.overlap_only = false; blnd_cfg.global_gain = 0xff; if (pipe_ctx->plane_state->global_alpha) blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value; else blnd_cfg.global_alpha = 0xff; blnd_cfg.background_color_bpc = 4; blnd_cfg.bottom_gain_mode = 0; blnd_cfg.top_gain = 0x1f000; blnd_cfg.bottom_inside_gain = 0x1f000; blnd_cfg.bottom_outside_gain = 0x1f000; blnd_cfg.pre_multiplied_alpha = per_pixel_alpha; /* * TODO: remove hack * Note: currently there is a bug in init_hw such that * on resume from hibernate, BIOS sets up MPCC0, and * we do mpcc_remove but the mpcc cannot go to idle * after remove. This cause us to pick mpcc1 here, * which causes a pstate hang for yet unknown reason. */ mpcc_id = hubp->inst; /* If there is no full update, don't need to touch MPC tree*/ if (!pipe_ctx->plane_state->update_flags.bits.full_update) { mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id); return; } /* check if this MPCC is already being used */ new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id); /* remove MPCC if being used */ if (new_mpcc != NULL) mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc); else if (dc->debug.sanity_checks) mpc->funcs->assert_mpcc_idle_before_connect( dc->res_pool->mpc, mpcc_id); /* Call MPC to insert new plane */ new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc, mpc_tree_params, &blnd_cfg, NULL, NULL, hubp->inst, mpcc_id); ASSERT(new_mpcc != NULL); hubp->opp_id = pipe_ctx->stream_res.opp->inst; hubp->mpcc_id = mpcc_id; } static int find_free_gsl_group(const struct dc *dc) { if (dc->res_pool->gsl_groups.gsl_0 == 0) return 1; if (dc->res_pool->gsl_groups.gsl_1 == 0) return 2; if (dc->res_pool->gsl_groups.gsl_2 == 0) return 3; return 0; } /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock) * This is only used to lock pipes in pipe splitting case with immediate flip * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate, * so we get tearing with freesync since we cannot flip multiple pipes * atomically. * We use GSL for this: * - immediate flip: find first available GSL group if not already assigned * program gsl with that group, set current OTG as master * and always us 0x4 = AND of flip_ready from all pipes * - vsync flip: disable GSL if used * * Groups in stream_res are stored as +1 from HW registers, i.e. * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1 * Using a magic value like -1 would require tracking all inits/resets */ void dcn20_setup_gsl_group_as_lock( const struct dc *dc, struct pipe_ctx *pipe_ctx, bool enable) { struct gsl_params gsl; int group_idx; memset(&gsl, 0, sizeof(struct gsl_params)); if (enable) { /* return if group already assigned since GSL was set up * for vsync flip, we would unassign so it can't be "left over" */ if (pipe_ctx->stream_res.gsl_group > 0) return; group_idx = find_free_gsl_group(dc); ASSERT(group_idx != 0); pipe_ctx->stream_res.gsl_group = group_idx; /* set gsl group reg field and mark resource used */ switch (group_idx) { case 1: gsl.gsl0_en = 1; dc->res_pool->gsl_groups.gsl_0 = 1; break; case 2: gsl.gsl1_en = 1; dc->res_pool->gsl_groups.gsl_1 = 1; break; case 3: gsl.gsl2_en = 1; dc->res_pool->gsl_groups.gsl_2 = 1; break; default: BREAK_TO_DEBUGGER(); return; // invalid case } gsl.gsl_master_en = 1; } else { group_idx = pipe_ctx->stream_res.gsl_group; if (group_idx == 0) return; // if not in use, just return pipe_ctx->stream_res.gsl_group = 0; /* unset gsl group reg field and mark resource free */ switch (group_idx) { case 1: gsl.gsl0_en = 0; dc->res_pool->gsl_groups.gsl_0 = 0; break; case 2: gsl.gsl1_en = 0; dc->res_pool->gsl_groups.gsl_1 = 0; break; case 3: gsl.gsl2_en = 0; dc->res_pool->gsl_groups.gsl_2 = 0; break; default: BREAK_TO_DEBUGGER(); return; } gsl.gsl_master_en = 0; } /* at this point we want to program whether it's to enable or disable */ if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL && pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) { pipe_ctx->stream_res.tg->funcs->set_gsl( pipe_ctx->stream_res.tg, &gsl); pipe_ctx->stream_res.tg->funcs->set_gsl_source_select( pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0); } else BREAK_TO_DEBUGGER(); } static void dcn20_set_flip_control_gsl( struct pipe_ctx *pipe_ctx, bool flip_immediate) { if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl) pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl( pipe_ctx->plane_res.hubp, flip_immediate); } static void dcn20_enable_stream(struct pipe_ctx *pipe_ctx) { enum dc_lane_count lane_count = pipe_ctx->stream->link->cur_link_settings.lane_count; struct dc_crtc_timing *timing = &pipe_ctx->stream->timing; struct dc_link *link = pipe_ctx->stream->link; uint32_t active_total_with_borders; uint32_t early_control = 0; struct timing_generator *tg = pipe_ctx->stream_res.tg; /* For MST, there are multiply stream go to only one link. * connect DIG back_end to front_end while enable_stream and * disconnect them during disable_stream * BY this, it is logic clean to separate stream and link */ link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc, pipe_ctx->stream_res.stream_enc->id, true); if (link->dc->hwss.program_dmdata_engine) link->dc->hwss.program_dmdata_engine(pipe_ctx); link->dc->hwss.update_info_frame(pipe_ctx); /* enable early control to avoid corruption on DP monitor*/ active_total_with_borders = timing->h_addressable + timing->h_border_left + timing->h_border_right; if (lane_count != 0) early_control = active_total_with_borders % lane_count; if (early_control == 0) early_control = lane_count; tg->funcs->set_early_control(tg, early_control); /* enable audio only within mode set */ if (pipe_ctx->stream_res.audio != NULL) { if (dc_is_dp_signal(pipe_ctx->stream->signal)) pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc); } } static void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct hubp *hubp = pipe_ctx->plane_res.hubp; bool enable = false; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal) ? dmdata_dp : dmdata_hdmi; /* if using dynamic meta, don't set up generic infopackets */ if (pipe_ctx->stream->dmdata_address.quad_part != 0) { pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false; enable = true; } if (!hubp) return; if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata) return; stream_enc->funcs->set_dynamic_metadata(stream_enc, enable, hubp->inst, mode); } static void dcn20_fpga_init_hw(struct dc *dc) { int i, j; struct dce_hwseq *hws = dc->hwseq; struct resource_pool *res_pool = dc->res_pool; struct dc_state *context = dc->current_state; if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); // Initialize the dccg if (res_pool->dccg->funcs->dccg_init) res_pool->dccg->funcs->dccg_init(res_pool->dccg); //Enable ability to power gate / don't force power on permanently dc->hwss.enable_power_gating_plane(hws, true); // Specific to FPGA dccg and registers REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF); REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF); dcn20_dccg_init(hws); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); REG_WRITE(REFCLK_CNTL, 0); // /* Blank pixel data with OPP DPG */ for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) dcn20_init_blank(dc, tg); } for (i = 0; i < res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) tg->funcs->lock(tg); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dpp *dpp = res_pool->dpps[i]; dpp->funcs->dpp_reset(dpp); } /* Reset all MPCC muxes */ res_pool->mpc->funcs->mpc_init(res_pool->mpc); /* initialize OPP mpc_tree parameter */ for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst; res_pool->opps[i]->mpc_tree_params.opp_list = NULL; for (j = 0; j < MAX_PIPES; j++) res_pool->opps[i]->mpcc_disconnect_pending[j] = false; } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = dc->res_pool->hubps[i]; struct dpp *dpp = dc->res_pool->dpps[i]; pipe_ctx->stream_res.tg = tg; pipe_ctx->pipe_idx = i; pipe_ctx->plane_res.hubp = hubp; pipe_ctx->plane_res.dpp = dpp; pipe_ctx->plane_res.mpcc_inst = dpp->inst; hubp->mpcc_id = dpp->inst; hubp->opp_id = OPP_ID_INVALID; hubp->power_gated = false; pipe_ctx->stream_res.opp = NULL; hubp->funcs->hubp_init(hubp); //dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; //dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; /*to do*/ hwss1_plane_atomic_disconnect(dc, pipe_ctx); } /* initialize DWB pointer to MCIF_WB */ for (i = 0; i < res_pool->res_cap->num_dwb; i++) res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i]; for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) tg->funcs->unlock(tg); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; dc->hwss.disable_plane(dc, pipe_ctx); pipe_ctx->stream_res.tg = NULL; pipe_ctx->plane_res.hubp = NULL; } for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; tg->funcs->tg_init(tg); } } void dcn20_hw_sequencer_construct(struct dc *dc) { dcn10_hw_sequencer_construct(dc); dc->hwss.unblank_stream = dcn20_unblank_stream; dc->hwss.update_plane_addr = dcn20_update_plane_addr; dc->hwss.enable_stream_timing = dcn20_enable_stream_timing; dc->hwss.program_triplebuffer = dcn20_program_tripleBuffer; dc->hwss.set_input_transfer_func = dcn20_set_input_transfer_func; dc->hwss.set_output_transfer_func = dcn20_set_output_transfer_func; dc->hwss.apply_ctx_for_surface = dcn20_apply_ctx_for_surface; dc->hwss.pipe_control_lock = dcn20_pipe_control_lock; dc->hwss.pipe_control_lock_global = dcn20_pipe_control_lock_global; dc->hwss.optimize_bandwidth = dcn20_optimize_bandwidth; dc->hwss.prepare_bandwidth = dcn20_prepare_bandwidth; dc->hwss.update_bandwidth = dcn20_update_bandwidth; dc->hwss.enable_writeback = dcn20_enable_writeback; dc->hwss.disable_writeback = dcn20_disable_writeback; dc->hwss.program_output_csc = dcn20_program_output_csc; dc->hwss.update_odm = dcn20_update_odm; dc->hwss.blank_pixel_data = dcn20_blank_pixel_data; dc->hwss.dmdata_status_done = dcn20_dmdata_status_done; dc->hwss.program_dmdata_engine = dcn20_program_dmdata_engine; dc->hwss.enable_stream = dcn20_enable_stream; dc->hwss.disable_stream = dcn20_disable_stream; dc->hwss.init_sys_ctx = dcn20_init_sys_ctx; dc->hwss.init_vm_ctx = dcn20_init_vm_ctx; dc->hwss.disable_stream_gating = dcn20_disable_stream_gating; dc->hwss.enable_stream_gating = dcn20_enable_stream_gating; dc->hwss.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt; dc->hwss.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap; dc->hwss.update_mpcc = dcn20_update_mpcc; dc->hwss.set_flip_control_gsl = dcn20_set_flip_control_gsl; dc->hwss.init_blank = dcn20_init_blank; dc->hwss.disable_plane = dcn20_disable_plane; dc->hwss.plane_atomic_disable = dcn20_plane_atomic_disable; dc->hwss.enable_power_gating_plane = dcn20_enable_power_gating_plane; dc->hwss.dpp_pg_control = dcn20_dpp_pg_control; dc->hwss.hubp_pg_control = dcn20_hubp_pg_control; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT dc->hwss.dsc_pg_control = dcn20_dsc_pg_control; #else dc->hwss.dsc_pg_control = NULL; #endif dc->hwss.disable_vga = dcn20_disable_vga; if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { dc->hwss.init_hw = dcn20_fpga_init_hw; dc->hwss.init_pipes = NULL; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1