Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kevin Wang | 4433 | 55.96% | 43 | 45.74% |
Huang Rui | 2315 | 29.22% | 11 | 11.70% |
Evan Quan | 447 | 5.64% | 10 | 10.64% |
Kenneth Feng | 333 | 4.20% | 11 | 11.70% |
Hersen Wu | 157 | 1.98% | 2 | 2.13% |
Tao Zhou | 126 | 1.59% | 3 | 3.19% |
Alex Deucher | 59 | 0.74% | 4 | 4.26% |
Jack Xiao | 30 | 0.38% | 3 | 3.19% |
tianci yin | 10 | 0.13% | 2 | 2.13% |
Xiaojie Yuan | 5 | 0.06% | 1 | 1.06% |
Hawking Zhang | 3 | 0.04% | 1 | 1.06% |
Nathan Chancellor | 3 | 0.04% | 2 | 2.13% |
Dan Carpenter | 1 | 0.01% | 1 | 1.06% |
Total | 7922 | 94 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/firmware.h> #include <linux/pci.h> #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "smu11_driver_if_navi10.h" #include "soc15_common.h" #include "atom.h" #include "navi10_ppt.h" #include "smu_v11_0_pptable.h" #include "smu_v11_0_ppsmc.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFX_PACE_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \ FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT)) #define MSG_MAP(msg, index) \ [SMU_MSG_##msg] = {1, (index)} static struct smu_11_0_cmn2aisc_mapping navi10_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable), MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable), MSG_MAP(RunBtc, PPSMC_MSG_RunBtc), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex), MSG_MAP(SetMemoryChannelConfig, PPSMC_MSG_SetMemoryChannelConfig), MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode), MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh), MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow), MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters), MSG_MAP(SetMinDeepSleepDcefclk, PPSMC_MSG_SetMinDeepSleepDcefclk), MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt), MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource), MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload), MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh), MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow), MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize), MSG_MAP(ConfigureGfxDidt, PPSMC_MSG_ConfigureGfxDidt), MSG_MAP(NumOfDisplays, PPSMC_MSG_NumOfDisplays), MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh), MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit), MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq), MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco), MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset), MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg), MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3), }; static struct smu_11_0_cmn2aisc_mapping navi10_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_SOCCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK), CLK_MAP(VCLK, PPCLK_VCLK), CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), CLK_MAP(DISPCLK, PPCLK_DISPCLK), CLK_MAP(PIXCLK, PPCLK_PIXCLK), CLK_MAP(PHYCLK, PPCLK_PHYCLK), }; static struct smu_11_0_cmn2aisc_mapping navi10_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_GFX_PACE), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCEFCLK), FEA_MAP(MEM_VDDCI_SCALING), FEA_MAP(MEM_MVDD_SCALING), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCEFCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), FEA_MAP(FW_DSTATE), FEA_MAP(GFXOFF), FEA_MAP(BACO), FEA_MAP(VCN_PG), FEA_MAP(JPEG_PG), FEA_MAP(USB_PG), FEA_MAP(RSMU_SMN_CG), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(GFX_EDC), FEA_MAP(APCC_PLUS), FEA_MAP(GTHR), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(THERMAL), FEA_MAP(GFX_DCS), FEA_MAP(RM), FEA_MAP(LED_DISPLAY), FEA_MAP(GFX_SS), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(TEMP_DEPENDENT_VMIN), FEA_MAP(MMHUB_PG), FEA_MAP(ATHUB_PG), }; static struct smu_11_0_cmn2aisc_mapping navi10_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), TAB_MAP(OVERDRIVE), TAB_MAP(I2C_COMMANDS), TAB_MAP(PACE), }; static struct smu_11_0_cmn2aisc_mapping navi10_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct smu_11_0_cmn2aisc_mapping navi10_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static int navi10_get_smu_msg_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_MSG_MAX_COUNT) return -EINVAL; mapping = navi10_message_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int navi10_get_smu_clk_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_CLK_COUNT) return -EINVAL; mapping = navi10_clk_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int navi10_get_smu_feature_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_FEATURE_COUNT) return -EINVAL; mapping = navi10_feature_mask_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int navi10_get_smu_table_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_TABLE_COUNT) return -EINVAL; mapping = navi10_table_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int navi10_get_pwr_src_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_POWER_SOURCE_COUNT) return -EINVAL; mapping = navi10_pwr_src_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int navi10_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile) { struct smu_11_0_cmn2aisc_mapping mapping; if (profile > PP_SMC_POWER_PROFILE_CUSTOM) return -EINVAL; mapping = navi10_workload_map[profile]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static bool is_asic_secure(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; bool is_secure = true; uint32_t mp0_fw_intf; mp0_fw_intf = RREG32_PCIE(MP0_Public | (smnMP0_FW_INTF & 0xffffffff)); if (!(mp0_fw_intf & (1 << 19))) is_secure = false; return is_secure; } static int navi10_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { struct amdgpu_device *adev = smu->adev; if (num > 2) return -EINVAL; memset(feature_mask, 0, sizeof(uint32_t) * num); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | FEATURE_MASK(FEATURE_DPM_LINK_BIT) | FEATURE_MASK(FEATURE_GFX_ULV_BIT) | FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT) | FEATURE_MASK(FEATURE_DS_SOCCLK_BIT) | FEATURE_MASK(FEATURE_PPT_BIT) | FEATURE_MASK(FEATURE_TDC_BIT) | FEATURE_MASK(FEATURE_GFX_EDC_BIT) | FEATURE_MASK(FEATURE_VR0HOT_BIT) | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) | FEATURE_MASK(FEATURE_THERMAL_BIT) | FEATURE_MASK(FEATURE_LED_DISPLAY_BIT) | FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_DS_GFXCLK_BIT) | FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_FW_DSTATE_BIT) | FEATURE_MASK(FEATURE_BACO_BIT) | FEATURE_MASK(FEATURE_ACDC_BIT) | FEATURE_MASK(FEATURE_GFX_SS_BIT) | FEATURE_MASK(FEATURE_APCC_DFLL_BIT) | FEATURE_MASK(FEATURE_FW_CTF_BIT); if (adev->pm.pp_feature & PP_MCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT) | FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT); if (adev->pm.pp_feature & PP_GFXOFF_MASK) { *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT); /* TODO: remove it once fw fix the bug */ *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_FW_DSTATE_BIT); } if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_VCN_PG_BIT) | FEATURE_MASK(FEATURE_JPEG_PG_BIT); /* disable DPM UCLK and DS SOCCLK on navi10 A0 secure board */ if (is_asic_secure(smu)) { /* only for navi10 A0 */ if ((adev->asic_type == CHIP_NAVI10) && (adev->rev_id == 0)) { *(uint64_t *)feature_mask &= ~(FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT) | FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT)); *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_SOCCLK_BIT); } } return 0; } static int navi10_check_powerplay_table(struct smu_context *smu) { return 0; } static int navi10_append_powerplay_table(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_5 *smc_dpm_table; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; memcpy(smc_pptable->I2cControllers, smc_dpm_table->I2cControllers, sizeof(I2cControllerConfig_t) * NUM_I2C_CONTROLLERS); /* SVI2 Board Parameters */ smc_pptable->MaxVoltageStepGfx = smc_dpm_table->MaxVoltageStepGfx; smc_pptable->MaxVoltageStepSoc = smc_dpm_table->MaxVoltageStepSoc; smc_pptable->VddGfxVrMapping = smc_dpm_table->VddGfxVrMapping; smc_pptable->VddSocVrMapping = smc_dpm_table->VddSocVrMapping; smc_pptable->VddMem0VrMapping = smc_dpm_table->VddMem0VrMapping; smc_pptable->VddMem1VrMapping = smc_dpm_table->VddMem1VrMapping; smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->GfxUlvPhaseSheddingMask; smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->SocUlvPhaseSheddingMask; smc_pptable->ExternalSensorPresent = smc_dpm_table->ExternalSensorPresent; smc_pptable->Padding8_V = smc_dpm_table->Padding8_V; /* Telemetry Settings */ smc_pptable->GfxMaxCurrent = smc_dpm_table->GfxMaxCurrent; smc_pptable->GfxOffset = smc_dpm_table->GfxOffset; smc_pptable->Padding_TelemetryGfx = smc_dpm_table->Padding_TelemetryGfx; smc_pptable->SocMaxCurrent = smc_dpm_table->SocMaxCurrent; smc_pptable->SocOffset = smc_dpm_table->SocOffset; smc_pptable->Padding_TelemetrySoc = smc_dpm_table->Padding_TelemetrySoc; smc_pptable->Mem0MaxCurrent = smc_dpm_table->Mem0MaxCurrent; smc_pptable->Mem0Offset = smc_dpm_table->Mem0Offset; smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->Padding_TelemetryMem0; smc_pptable->Mem1MaxCurrent = smc_dpm_table->Mem1MaxCurrent; smc_pptable->Mem1Offset = smc_dpm_table->Mem1Offset; smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->Padding_TelemetryMem1; /* GPIO Settings */ smc_pptable->AcDcGpio = smc_dpm_table->AcDcGpio; smc_pptable->AcDcPolarity = smc_dpm_table->AcDcPolarity; smc_pptable->VR0HotGpio = smc_dpm_table->VR0HotGpio; smc_pptable->VR0HotPolarity = smc_dpm_table->VR0HotPolarity; smc_pptable->VR1HotGpio = smc_dpm_table->VR1HotGpio; smc_pptable->VR1HotPolarity = smc_dpm_table->VR1HotPolarity; smc_pptable->GthrGpio = smc_dpm_table->GthrGpio; smc_pptable->GthrPolarity = smc_dpm_table->GthrPolarity; /* LED Display Settings */ smc_pptable->LedPin0 = smc_dpm_table->LedPin0; smc_pptable->LedPin1 = smc_dpm_table->LedPin1; smc_pptable->LedPin2 = smc_dpm_table->LedPin2; smc_pptable->padding8_4 = smc_dpm_table->padding8_4; /* GFXCLK PLL Spread Spectrum */ smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->PllGfxclkSpreadEnabled; smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->PllGfxclkSpreadPercent; smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->PllGfxclkSpreadFreq; /* GFXCLK DFLL Spread Spectrum */ smc_pptable->DfllGfxclkSpreadEnabled = smc_dpm_table->DfllGfxclkSpreadEnabled; smc_pptable->DfllGfxclkSpreadPercent = smc_dpm_table->DfllGfxclkSpreadPercent; smc_pptable->DfllGfxclkSpreadFreq = smc_dpm_table->DfllGfxclkSpreadFreq; /* UCLK Spread Spectrum */ smc_pptable->UclkSpreadEnabled = smc_dpm_table->UclkSpreadEnabled; smc_pptable->UclkSpreadPercent = smc_dpm_table->UclkSpreadPercent; smc_pptable->UclkSpreadFreq = smc_dpm_table->UclkSpreadFreq; /* SOCCLK Spread Spectrum */ smc_pptable->SoclkSpreadEnabled = smc_dpm_table->SoclkSpreadEnabled; smc_pptable->SocclkSpreadPercent = smc_dpm_table->SocclkSpreadPercent; smc_pptable->SocclkSpreadFreq = smc_dpm_table->SocclkSpreadFreq; /* Total board power */ smc_pptable->TotalBoardPower = smc_dpm_table->TotalBoardPower; smc_pptable->BoardPadding = smc_dpm_table->BoardPadding; /* Mvdd Svi2 Div Ratio Setting */ smc_pptable->MvddRatio = smc_dpm_table->MvddRatio; if (adev->pm.pp_feature & PP_GFXOFF_MASK) { /* TODO: remove it once SMU fw fix it */ smc_pptable->DebugOverrides |= DPM_OVERRIDE_DISABLE_DFLL_PLL_SHUTDOWN; } return 0; } static int navi10_store_powerplay_table(struct smu_context *smu) { struct smu_11_0_powerplay_table *powerplay_table = NULL; struct smu_table_context *table_context = &smu->smu_table; struct smu_baco_context *smu_baco = &smu->smu_baco; if (!table_context->power_play_table) return -EINVAL; powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); table_context->thermal_controller_type = powerplay_table->thermal_controller_type; mutex_lock(&smu_baco->mutex); if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO || powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO) smu_baco->platform_support = true; mutex_unlock(&smu_baco->mutex); return 0; } static int navi10_tables_init(struct smu_context *smu, struct smu_table *tables) { struct smu_table_context *smu_table = &smu->smu_table; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; return 0; } static int navi10_get_metrics_table(struct smu_context *smu, SmuMetrics_t *metrics_table) { struct smu_table_context *smu_table= &smu->smu_table; int ret = 0; if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) { ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, (void *)smu_table->metrics_table, false); if (ret) { pr_info("Failed to export SMU metrics table!\n"); return ret; } smu_table->metrics_time = jiffies; } memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t)); return ret; } static int navi10_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context) return -EINVAL; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int navi10_set_default_dpm_table(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context; PPTable_t *driver_ppt = NULL; driver_ppt = table_context->driver_pptable; dpm_context->dpm_tables.soc_table.min = driver_ppt->FreqTableSocclk[0]; dpm_context->dpm_tables.soc_table.max = driver_ppt->FreqTableSocclk[NUM_SOCCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.gfx_table.min = driver_ppt->FreqTableGfx[0]; dpm_context->dpm_tables.gfx_table.max = driver_ppt->FreqTableGfx[NUM_GFXCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.uclk_table.min = driver_ppt->FreqTableUclk[0]; dpm_context->dpm_tables.uclk_table.max = driver_ppt->FreqTableUclk[NUM_UCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.vclk_table.min = driver_ppt->FreqTableVclk[0]; dpm_context->dpm_tables.vclk_table.max = driver_ppt->FreqTableVclk[NUM_VCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.dclk_table.min = driver_ppt->FreqTableDclk[0]; dpm_context->dpm_tables.dclk_table.max = driver_ppt->FreqTableDclk[NUM_DCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.dcef_table.min = driver_ppt->FreqTableDcefclk[0]; dpm_context->dpm_tables.dcef_table.max = driver_ppt->FreqTableDcefclk[NUM_DCEFCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.pixel_table.min = driver_ppt->FreqTablePixclk[0]; dpm_context->dpm_tables.pixel_table.max = driver_ppt->FreqTablePixclk[NUM_PIXCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.display_table.min = driver_ppt->FreqTableDispclk[0]; dpm_context->dpm_tables.display_table.max = driver_ppt->FreqTableDispclk[NUM_DISPCLK_DPM_LEVELS - 1]; dpm_context->dpm_tables.phy_table.min = driver_ppt->FreqTablePhyclk[0]; dpm_context->dpm_tables.phy_table.max = driver_ppt->FreqTablePhyclk[NUM_PHYCLK_DPM_LEVELS - 1]; return 0; } static int navi10_dpm_set_uvd_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 1); if (ret) return ret; } power_gate->vcn_gated = false; } else { if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn); if (ret) return ret; } power_gate->vcn_gated = true; } return ret; } static int navi10_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { int ret = 0, clk_id = 0; SmuMetrics_t metrics; ret = navi10_get_metrics_table(smu, &metrics); if (ret) return ret; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; *value = metrics.CurrClock[clk_id]; return ret; } static bool navi10_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type) { PPTable_t *pptable = smu->smu_table.driver_pptable; DpmDescriptor_t *dpm_desc = NULL; uint32_t clk_index = 0; clk_index = smu_clk_get_index(smu, clk_type); dpm_desc = &pptable->DpmDescriptor[clk_index]; /* 0 - Fine grained DPM, 1 - Discrete DPM */ return dpm_desc->SnapToDiscrete == 0 ? true : false; } static int navi10_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int i, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; uint32_t freq_values[3] = {0}; uint32_t mark_index = 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: case SMU_DCEFCLK: ret = smu_get_current_clk_freq(smu, clk_type, &cur_value); if (ret) return size; /* 10KHz -> MHz */ cur_value = cur_value / 100; ret = smu_get_dpm_level_count(smu, clk_type, &count); if (ret) return size; if (!navi10_is_support_fine_grained_dpm(smu, clk_type)) { for (i = 0; i < count; i++) { ret = smu_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) return size; size += sprintf(buf + size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } } else { ret = smu_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]); if (ret) return size; ret = smu_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]); if (ret) return size; freq_values[1] = cur_value; mark_index = cur_value == freq_values[0] ? 0 : cur_value == freq_values[2] ? 2 : 1; if (mark_index != 1) freq_values[1] = (freq_values[0] + freq_values[2]) / 2; for (i = 0; i < 3; i++) { size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i], i == mark_index ? "*" : ""); } } break; default: break; } return size; } static int navi10_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { int ret = 0, size = 0; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_DCEFCLK: case SMU_FCLK: /* There is only 2 levels for fine grained DPM */ if (navi10_is_support_fine_grained_dpm(smu, clk_type)) { soft_max_level = (soft_max_level >= 1 ? 1 : 0); soft_min_level = (soft_min_level >= 1 ? 1 : 0); } ret = smu_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq); if (ret) return size; ret = smu_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq); if (ret) return size; ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq); if (ret) return size; break; default: break; } return size; } static int navi10_populate_umd_state_clk(struct smu_context *smu) { int ret = 0; uint32_t min_sclk_freq = 0, min_mclk_freq = 0; ret = smu_get_dpm_freq_range(smu, SMU_SCLK, &min_sclk_freq, NULL); if (ret) return ret; smu->pstate_sclk = min_sclk_freq * 100; ret = smu_get_dpm_freq_range(smu, SMU_MCLK, &min_mclk_freq, NULL); if (ret) return ret; smu->pstate_mclk = min_mclk_freq * 100; return ret; } static int navi10_get_clock_by_type_with_latency(struct smu_context *smu, enum smu_clk_type clk_type, struct pp_clock_levels_with_latency *clocks) { int ret = 0, i = 0; uint32_t level_count = 0, freq = 0; switch (clk_type) { case SMU_GFXCLK: case SMU_DCEFCLK: case SMU_SOCCLK: ret = smu_get_dpm_level_count(smu, clk_type, &level_count); if (ret) return ret; level_count = min(level_count, (uint32_t)MAX_NUM_CLOCKS); clocks->num_levels = level_count; for (i = 0; i < level_count; i++) { ret = smu_get_dpm_freq_by_index(smu, clk_type, i, &freq); if (ret) return ret; clocks->data[i].clocks_in_khz = freq * 1000; clocks->data[i].latency_in_us = 0; } break; default: break; } return ret; } static int navi10_pre_display_config_changed(struct smu_context *smu) { int ret = 0; uint32_t max_freq = 0; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0); if (ret) return ret; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &max_freq); if (ret) return ret; ret = smu_set_hard_freq_range(smu, SMU_UCLK, 0, max_freq); if (ret) return ret; } return ret; } static int navi10_display_config_changed(struct smu_context *smu) { int ret = 0; if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_write_watermarks_table(smu); if (ret) return ret; smu->watermarks_bitmap |= WATERMARKS_LOADED; } if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, smu->display_config->num_display); if (ret) return ret; } return ret; } static int navi10_force_dpm_limit_value(struct smu_context *smu, bool highest) { int ret = 0, i = 0; uint32_t min_freq, max_freq, force_freq; enum smu_clk_type clk_type; enum smu_clk_type clks[] = { SMU_GFXCLK, SMU_MCLK, SMU_SOCCLK, }; for (i = 0; i < ARRAY_SIZE(clks); i++) { clk_type = clks[i]; ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; force_freq = highest ? max_freq : min_freq; ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq); if (ret) return ret; } return ret; } static int navi10_unforce_dpm_levels(struct smu_context *smu) { int ret = 0, i = 0; uint32_t min_freq, max_freq; enum smu_clk_type clk_type; enum smu_clk_type clks[] = { SMU_GFXCLK, SMU_MCLK, SMU_SOCCLK, }; for (i = 0; i < ARRAY_SIZE(clks); i++) { clk_type = clks[i]; ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq); if (ret) return ret; } return ret; } static int navi10_get_gpu_power(struct smu_context *smu, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = navi10_get_metrics_table(smu, &metrics); if (ret) return ret; *value = metrics.AverageSocketPower << 8; return 0; } static int navi10_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = navi10_get_metrics_table(smu, &metrics); if (ret) return ret; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: *value = metrics.AverageGfxActivity; break; case AMDGPU_PP_SENSOR_MEM_LOAD: *value = metrics.AverageUclkActivity; break; default: pr_err("Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return 0; } static bool navi10_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; unsigned long feature_enabled; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static int navi10_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { SmuMetrics_t metrics; int ret = 0; if (!speed) return -EINVAL; ret = navi10_get_metrics_table(smu, &metrics); if (ret) return ret; *speed = metrics.CurrFanSpeed; return ret; } static int navi10_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed) { int ret = 0; uint32_t percent = 0; uint32_t current_rpm; PPTable_t *pptable = smu->smu_table.driver_pptable; ret = navi10_get_fan_speed_rpm(smu, ¤t_rpm); if (ret) return ret; percent = current_rpm * 100 / pptable->FanMaximumRpm; *speed = percent > 100 ? 100 : percent; return ret; } static int navi10_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; int16_t workload_type = 0; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "MinFreqType", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_workload_get_type(smu, i); if (workload_type < 0) return -EINVAL; result = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor), false); if (result) { pr_err("[%s] Failed to get activity monitor!", __func__); return result; } size += sprintf(buf + size, "%2d %14s%s:\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_MinFreqStep, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Soc_FPS, activity_monitor.Soc_MinFreqStep, activity_monitor.Soc_MinActiveFreqType, activity_monitor.Soc_MinActiveFreq, activity_monitor.Soc_BoosterFreqType, activity_monitor.Soc_BoosterFreq, activity_monitor.Soc_PD_Data_limit_c, activity_monitor.Soc_PD_Data_error_coeff, activity_monitor.Soc_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "MEMLK", activity_monitor.Mem_FPS, activity_monitor.Mem_MinFreqStep, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); } return size; } static int navi10_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type, ret = 0; smu->power_profile_mode = input[size]; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (size < 0) return -EINVAL; ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), false); if (ret) { pr_err("[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_MinFreqStep = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Soc_FPS = input[1]; activity_monitor.Soc_MinFreqStep = input[2]; activity_monitor.Soc_MinActiveFreqType = input[3]; activity_monitor.Soc_MinActiveFreq = input[4]; activity_monitor.Soc_BoosterFreqType = input[5]; activity_monitor.Soc_BoosterFreq = input[6]; activity_monitor.Soc_PD_Data_limit_c = input[7]; activity_monitor.Soc_PD_Data_error_coeff = input[8]; activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Memlk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_MinFreqStep = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), true); if (ret) { pr_err("[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_workload_get_type(smu, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type); return ret; } static int navi10_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { int ret = 0; uint32_t level_count = 0; if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { if (sclk_mask) *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { if (mclk_mask) *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { if(sclk_mask) { ret = smu_get_dpm_level_count(smu, SMU_SCLK, &level_count); if (ret) return ret; *sclk_mask = level_count - 1; } if(mclk_mask) { ret = smu_get_dpm_level_count(smu, SMU_MCLK, &level_count); if (ret) return ret; *mclk_mask = level_count - 1; } if(soc_mask) { ret = smu_get_dpm_level_count(smu, SMU_SOCCLK, &level_count); if (ret) return ret; *soc_mask = level_count - 1; } } return ret; } static int navi10_notify_smc_dispaly_config(struct smu_context *smu) { struct smu_clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memory_clock = smu->display_config->min_mem_set_clock; if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; if (!smu_display_clock_voltage_request(smu, &clock_req)) { if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, min_clocks.dcef_clock_in_sr/100); if (ret) { pr_err("Attempt to set divider for DCEFCLK Failed!"); return ret; } } } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_set_hard_freq_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0); if (ret) { pr_err("[%s] Set hard min uclk failed!", __func__); return ret; } } return 0; } static int navi10_set_watermarks_table(struct smu_context *smu, void *watermarks, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int i; Watermarks_t *table = watermarks; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges->num_wm_dmif_sets > 4 || clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } return 0; } static int navi10_thermal_get_temperature(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { SmuMetrics_t metrics; int ret = 0; if (!value) return -EINVAL; ret = navi10_get_metrics_table(smu, &metrics); if (ret) return ret; switch (sensor) { case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: *value = metrics.TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: *value = metrics.TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case AMDGPU_PP_SENSOR_MEM_TEMP: *value = metrics.TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; default: pr_err("Invalid sensor for retrieving temp\n"); return -EINVAL; } return 0; } static int navi10_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; if(!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: case AMDGPU_PP_SENSOR_GPU_LOAD: ret = navi10_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = navi10_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: case AMDGPU_PP_SENSOR_EDGE_TEMP: case AMDGPU_PP_SENSOR_MEM_TEMP: ret = navi10_thermal_get_temperature(smu, sensor, (uint32_t *)data); *size = 4; break; default: ret = smu_smc_read_sensor(smu, sensor, data, size); } mutex_unlock(&smu->sensor_lock); return ret; } static int navi10_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states) { uint32_t num_discrete_levels = 0; uint16_t *dpm_levels = NULL; uint16_t i = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *driver_ppt = NULL; if (!clocks_in_khz || !num_states || !table_context->driver_pptable) return -EINVAL; driver_ppt = table_context->driver_pptable; num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels; dpm_levels = driver_ppt->FreqTableUclk; if (num_discrete_levels == 0 || dpm_levels == NULL) return -EINVAL; *num_states = num_discrete_levels; for (i = 0; i < num_discrete_levels; i++) { /* convert to khz */ *clocks_in_khz = (*dpm_levels) * 1000; clocks_in_khz++; dpm_levels++; } return 0; } static int navi10_set_peak_clock_by_device(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; uint32_t sclk_freq = 0, uclk_freq = 0; uint32_t uclk_level = 0; switch (adev->pdev->revision) { case 0xf0: /* XTX */ case 0xc0: sclk_freq = NAVI10_PEAK_SCLK_XTX; break; case 0xf1: /* XT */ case 0xc1: sclk_freq = NAVI10_PEAK_SCLK_XT; break; default: /* XL */ sclk_freq = NAVI10_PEAK_SCLK_XL; break; } ret = smu_get_dpm_level_count(smu, SMU_UCLK, &uclk_level); if (ret) return ret; ret = smu_get_dpm_freq_by_index(smu, SMU_UCLK, uclk_level - 1, &uclk_freq); if (ret) return ret; ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq); if (ret) return ret; ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq); if (ret) return ret; return ret; } static int navi10_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; struct amdgpu_device *adev = smu->adev; if (adev->asic_type != CHIP_NAVI10) return -EINVAL; switch (level) { case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = navi10_set_peak_clock_by_device(smu); break; default: ret = -EINVAL; break; } return ret; } static int navi10_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; if (!range || !powerplay_table) return -EINVAL; range->max = powerplay_table->software_shutdown_temp * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int navi10_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch) { int ret = 0; struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks = (struct smu_11_0_max_sustainable_clocks *) smu->smu_table.max_sustainable_clocks; uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal; uint32_t max_memory_clock = max_sustainable_clocks->uclock; if(smu->disable_uclk_switch == disable_memory_clock_switch) return 0; if(disable_memory_clock_switch) ret = smu_set_hard_freq_range(smu, SMU_UCLK, max_memory_clock, 0); else ret = smu_set_hard_freq_range(smu, SMU_UCLK, min_memory_clock, 0); if(!ret) smu->disable_uclk_switch = disable_memory_clock_switch; return ret; } static int navi10_get_power_limit(struct smu_context *smu, uint32_t *limit, bool asic_default) { PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t asic_default_power_limit = 0; int ret = 0; int power_src; if (!smu->default_power_limit || !smu->power_limit) { if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) { power_src = smu_power_get_index(smu, SMU_POWER_SOURCE_AC); if (power_src < 0) return -EINVAL; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit, power_src << 16); if (ret) { pr_err("[%s] get PPT limit failed!", __func__); return ret; } smu_read_smc_arg(smu, &asic_default_power_limit); } else { /* the last hope to figure out the ppt limit */ if (!pptable) { pr_err("Cannot get PPT limit due to pptable missing!"); return -EINVAL; } asic_default_power_limit = pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0]; } if (smu->od_enabled) { asic_default_power_limit *= (100 + smu->smu_table.TDPODLimit); asic_default_power_limit /= 100; } smu->default_power_limit = asic_default_power_limit; smu->power_limit = asic_default_power_limit; } if (asic_default) *limit = smu->default_power_limit; else *limit = smu->power_limit; return 0; } static const struct pptable_funcs navi10_ppt_funcs = { .tables_init = navi10_tables_init, .alloc_dpm_context = navi10_allocate_dpm_context, .store_powerplay_table = navi10_store_powerplay_table, .check_powerplay_table = navi10_check_powerplay_table, .append_powerplay_table = navi10_append_powerplay_table, .get_smu_msg_index = navi10_get_smu_msg_index, .get_smu_clk_index = navi10_get_smu_clk_index, .get_smu_feature_index = navi10_get_smu_feature_index, .get_smu_table_index = navi10_get_smu_table_index, .get_smu_power_index = navi10_get_pwr_src_index, .get_workload_type = navi10_get_workload_type, .get_allowed_feature_mask = navi10_get_allowed_feature_mask, .set_default_dpm_table = navi10_set_default_dpm_table, .dpm_set_uvd_enable = navi10_dpm_set_uvd_enable, .get_current_clk_freq_by_table = navi10_get_current_clk_freq_by_table, .print_clk_levels = navi10_print_clk_levels, .force_clk_levels = navi10_force_clk_levels, .populate_umd_state_clk = navi10_populate_umd_state_clk, .get_clock_by_type_with_latency = navi10_get_clock_by_type_with_latency, .pre_display_config_changed = navi10_pre_display_config_changed, .display_config_changed = navi10_display_config_changed, .notify_smc_dispaly_config = navi10_notify_smc_dispaly_config, .force_dpm_limit_value = navi10_force_dpm_limit_value, .unforce_dpm_levels = navi10_unforce_dpm_levels, .is_dpm_running = navi10_is_dpm_running, .get_fan_speed_percent = navi10_get_fan_speed_percent, .get_fan_speed_rpm = navi10_get_fan_speed_rpm, .get_power_profile_mode = navi10_get_power_profile_mode, .set_power_profile_mode = navi10_set_power_profile_mode, .get_profiling_clk_mask = navi10_get_profiling_clk_mask, .set_watermarks_table = navi10_set_watermarks_table, .read_sensor = navi10_read_sensor, .get_uclk_dpm_states = navi10_get_uclk_dpm_states, .set_performance_level = navi10_set_performance_level, .get_thermal_temperature_range = navi10_get_thermal_temperature_range, .display_disable_memory_clock_switch = navi10_display_disable_memory_clock_switch, .get_power_limit = navi10_get_power_limit, }; void navi10_set_ppt_funcs(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; smu->ppt_funcs = &navi10_ppt_funcs; smu_table->table_count = TABLE_COUNT; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1