Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Likun Gao | 8895 | 54.38% | 28 | 29.79% |
Kevin Wang | 2866 | 17.52% | 25 | 26.60% |
Huang Rui | 2117 | 12.94% | 13 | 13.83% |
Chengming Gui | 1998 | 12.21% | 8 | 8.51% |
Evan Quan | 189 | 1.16% | 7 | 7.45% |
Hawking Zhang | 123 | 0.75% | 1 | 1.06% |
Alex Deucher | 63 | 0.39% | 3 | 3.19% |
Kent Russell | 40 | 0.24% | 2 | 2.13% |
Kenneth Feng | 25 | 0.15% | 1 | 1.06% |
Fengguang Wu | 24 | 0.15% | 1 | 1.06% |
Nathan Chancellor | 9 | 0.06% | 3 | 3.19% |
Arnd Bergmann | 8 | 0.05% | 1 | 1.06% |
Dan Carpenter | 1 | 0.01% | 1 | 1.06% |
Total | 16358 | 94 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/firmware.h> #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "smu11_driver_if.h" #include "soc15_common.h" #include "atom.h" #include "power_state.h" #include "vega20_ppt.h" #include "vega20_pptable.h" #include "vega20_ppsmc.h" #include "nbio/nbio_7_4_sh_mask.h" #include "asic_reg/thm/thm_11_0_2_offset.h" #include "asic_reg/thm/thm_11_0_2_sh_mask.h" #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define CTF_OFFSET_EDGE 5 #define CTF_OFFSET_HOTSPOT 5 #define CTF_OFFSET_HBM 5 #define MSG_MAP(msg) \ [SMU_MSG_##msg] = {1, PPSMC_MSG_##msg} #define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \ FEATURE_DPM_GFXCLK_MASK | \ FEATURE_DPM_UCLK_MASK | \ FEATURE_DPM_SOCCLK_MASK | \ FEATURE_DPM_UVD_MASK | \ FEATURE_DPM_VCE_MASK | \ FEATURE_DPM_MP0CLK_MASK | \ FEATURE_DPM_LINK_MASK | \ FEATURE_DPM_DCEFCLK_MASK) static struct smu_11_0_cmn2aisc_mapping vega20_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage), MSG_MAP(GetSmuVersion), MSG_MAP(GetDriverIfVersion), MSG_MAP(SetAllowedFeaturesMaskLow), MSG_MAP(SetAllowedFeaturesMaskHigh), MSG_MAP(EnableAllSmuFeatures), MSG_MAP(DisableAllSmuFeatures), MSG_MAP(EnableSmuFeaturesLow), MSG_MAP(EnableSmuFeaturesHigh), MSG_MAP(DisableSmuFeaturesLow), MSG_MAP(DisableSmuFeaturesHigh), MSG_MAP(GetEnabledSmuFeaturesLow), MSG_MAP(GetEnabledSmuFeaturesHigh), MSG_MAP(SetWorkloadMask), MSG_MAP(SetPptLimit), MSG_MAP(SetDriverDramAddrHigh), MSG_MAP(SetDriverDramAddrLow), MSG_MAP(SetToolsDramAddrHigh), MSG_MAP(SetToolsDramAddrLow), MSG_MAP(TransferTableSmu2Dram), MSG_MAP(TransferTableDram2Smu), MSG_MAP(UseDefaultPPTable), MSG_MAP(UseBackupPPTable), MSG_MAP(RunBtc), MSG_MAP(RequestI2CBus), MSG_MAP(ReleaseI2CBus), MSG_MAP(SetFloorSocVoltage), MSG_MAP(SoftReset), MSG_MAP(StartBacoMonitor), MSG_MAP(CancelBacoMonitor), MSG_MAP(EnterBaco), MSG_MAP(SetSoftMinByFreq), MSG_MAP(SetSoftMaxByFreq), MSG_MAP(SetHardMinByFreq), MSG_MAP(SetHardMaxByFreq), MSG_MAP(GetMinDpmFreq), MSG_MAP(GetMaxDpmFreq), MSG_MAP(GetDpmFreqByIndex), MSG_MAP(GetDpmClockFreq), MSG_MAP(GetSsVoltageByDpm), MSG_MAP(SetMemoryChannelConfig), MSG_MAP(SetGeminiMode), MSG_MAP(SetGeminiApertureHigh), MSG_MAP(SetGeminiApertureLow), MSG_MAP(SetMinLinkDpmByIndex), MSG_MAP(OverridePcieParameters), MSG_MAP(OverDriveSetPercentage), MSG_MAP(SetMinDeepSleepDcefclk), MSG_MAP(ReenableAcDcInterrupt), MSG_MAP(NotifyPowerSource), MSG_MAP(SetUclkFastSwitch), MSG_MAP(SetUclkDownHyst), MSG_MAP(GetCurrentRpm), MSG_MAP(SetVideoFps), MSG_MAP(SetTjMax), MSG_MAP(SetFanTemperatureTarget), MSG_MAP(PrepareMp1ForUnload), MSG_MAP(DramLogSetDramAddrHigh), MSG_MAP(DramLogSetDramAddrLow), MSG_MAP(DramLogSetDramSize), MSG_MAP(SetFanMaxRpm), MSG_MAP(SetFanMinPwm), MSG_MAP(ConfigureGfxDidt), MSG_MAP(NumOfDisplays), MSG_MAP(RemoveMargins), MSG_MAP(ReadSerialNumTop32), MSG_MAP(ReadSerialNumBottom32), MSG_MAP(SetSystemVirtualDramAddrHigh), MSG_MAP(SetSystemVirtualDramAddrLow), MSG_MAP(WaflTest), MSG_MAP(SetFclkGfxClkRatio), MSG_MAP(AllowGfxOff), MSG_MAP(DisallowGfxOff), MSG_MAP(GetPptLimit), MSG_MAP(GetDcModeMaxDpmFreq), MSG_MAP(GetDebugData), MSG_MAP(SetXgmiMode), MSG_MAP(RunAfllBtc), MSG_MAP(ExitBaco), MSG_MAP(PrepareMp1ForReset), MSG_MAP(PrepareMp1ForShutdown), MSG_MAP(SetMGpuFanBoostLimitRpm), MSG_MAP(GetAVFSVoltageByDpm), }; static struct smu_11_0_cmn2aisc_mapping vega20_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(VCLK, PPCLK_VCLK), CLK_MAP(DCLK, PPCLK_DCLK), CLK_MAP(ECLK, PPCLK_ECLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), CLK_MAP(DISPCLK, PPCLK_DISPCLK), CLK_MAP(PIXCLK, PPCLK_PIXCLK), CLK_MAP(PHYCLK, PPCLK_PHYCLK), CLK_MAP(FCLK, PPCLK_FCLK), }; static struct smu_11_0_cmn2aisc_mapping vega20_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_UVD), FEA_MAP(DPM_VCE), FEA_MAP(ULV), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCEFCLK), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(THERMAL), FEA_MAP(GFX_PER_CU_CG), FEA_MAP(RM), FEA_MAP(DS_DCEFCLK), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(LED_DISPLAY), FEA_MAP(FAN_CONTROL), FEA_MAP(GFX_EDC), FEA_MAP(GFXOFF), FEA_MAP(CG), FEA_MAP(DPM_FCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_MP1CLK), FEA_MAP(DS_MP0CLK), FEA_MAP(XGMI), }; static struct smu_11_0_cmn2aisc_mapping vega20_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), TAB_MAP(OVERDRIVE), }; static struct smu_11_0_cmn2aisc_mapping vega20_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct smu_11_0_cmn2aisc_mapping vega20_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static int vega20_get_smu_table_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_TABLE_COUNT) return -EINVAL; mapping = vega20_table_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_get_pwr_src_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_POWER_SOURCE_COUNT) return -EINVAL; mapping = vega20_pwr_src_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_get_smu_feature_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_FEATURE_COUNT) return -EINVAL; mapping = vega20_feature_mask_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_get_smu_clk_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_CLK_COUNT) return -EINVAL; mapping = vega20_clk_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_get_smu_msg_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_MSG_MAX_COUNT) return -EINVAL; mapping = vega20_message_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile) { struct smu_11_0_cmn2aisc_mapping mapping; if (profile > PP_SMC_POWER_PROFILE_CUSTOM) return -EINVAL; mapping = vega20_workload_map[profile]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int vega20_tables_init(struct smu_context *smu, struct smu_table *tables) { struct smu_table_context *smu_table = &smu->smu_table; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; return 0; } static int vega20_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context) return -EINVAL; smu_dpm->dpm_context = kzalloc(sizeof(struct vega20_dpm_table), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; if (smu_dpm->golden_dpm_context) return -EINVAL; smu_dpm->golden_dpm_context = kzalloc(sizeof(struct vega20_dpm_table), GFP_KERNEL); if (!smu_dpm->golden_dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct vega20_dpm_table); smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_current_power_state) return -ENOMEM; smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_request_power_state) return -ENOMEM; return 0; } static int vega20_setup_od8_information(struct smu_context *smu) { ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; struct smu_table_context *table_context = &smu->smu_table; struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings; uint32_t od_feature_count, od_feature_array_size, od_setting_count, od_setting_array_size; if (!table_context->power_play_table) return -EINVAL; powerplay_table = table_context->power_play_table; if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) { /* Setup correct ODFeatureCount, and store ODFeatureArray from * powerplay table to od_feature_capabilities */ od_feature_count = (le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) > ATOM_VEGA20_ODFEATURE_COUNT) ? ATOM_VEGA20_ODFEATURE_COUNT : le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount); od_feature_array_size = sizeof(uint8_t) * od_feature_count; if (od8_settings->od_feature_capabilities) return -EINVAL; od8_settings->od_feature_capabilities = kmemdup(&powerplay_table->OverDrive8Table.ODFeatureCapabilities, od_feature_array_size, GFP_KERNEL); if (!od8_settings->od_feature_capabilities) return -ENOMEM; /* Setup correct ODSettingCount, and store ODSettingArray from * powerplay table to od_settings_max and od_setting_min */ od_setting_count = (le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) > ATOM_VEGA20_ODSETTING_COUNT) ? ATOM_VEGA20_ODSETTING_COUNT : le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount); od_setting_array_size = sizeof(uint32_t) * od_setting_count; if (od8_settings->od_settings_max) return -EINVAL; od8_settings->od_settings_max = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMax, od_setting_array_size, GFP_KERNEL); if (!od8_settings->od_settings_max) { kfree(od8_settings->od_feature_capabilities); od8_settings->od_feature_capabilities = NULL; return -ENOMEM; } if (od8_settings->od_settings_min) return -EINVAL; od8_settings->od_settings_min = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMin, od_setting_array_size, GFP_KERNEL); if (!od8_settings->od_settings_min) { kfree(od8_settings->od_feature_capabilities); od8_settings->od_feature_capabilities = NULL; kfree(od8_settings->od_settings_max); od8_settings->od_settings_max = NULL; return -ENOMEM; } } return 0; } static int vega20_store_powerplay_table(struct smu_context *smu) { ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; struct smu_table_context *table_context = &smu->smu_table; if (!table_context->power_play_table) return -EINVAL; powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smcPPTable, sizeof(PPTable_t)); table_context->thermal_controller_type = powerplay_table->ucThermalControllerType; table_context->TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]); return 0; } static int vega20_append_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_4 *smc_dpm_table; int index, i, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; smc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx; smc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc; smc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping; smc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping; smc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping; smc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping; smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask; smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask; smc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent; smc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent; smc_pptable->GfxOffset = smc_dpm_table->gfxoffset; smc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx; smc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent; smc_pptable->SocOffset = smc_dpm_table->socoffset; smc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc; smc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent; smc_pptable->Mem0Offset = smc_dpm_table->mem0offset; smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0; smc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent; smc_pptable->Mem1Offset = smc_dpm_table->mem1offset; smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1; smc_pptable->AcDcGpio = smc_dpm_table->acdcgpio; smc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity; smc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio; smc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity; smc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio; smc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity; smc_pptable->Padding1 = smc_dpm_table->padding1; smc_pptable->Padding2 = smc_dpm_table->padding2; smc_pptable->LedPin0 = smc_dpm_table->ledpin0; smc_pptable->LedPin1 = smc_dpm_table->ledpin1; smc_pptable->LedPin2 = smc_dpm_table->ledpin2; smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled; smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent; smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq; smc_pptable->UclkSpreadEnabled = 0; smc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent; smc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq; smc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled; smc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent; smc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq; smc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled; smc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent; smc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq; for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) { smc_pptable->I2cControllers[i].Enabled = smc_dpm_table->i2ccontrollers[i].enabled; smc_pptable->I2cControllers[i].SlaveAddress = smc_dpm_table->i2ccontrollers[i].slaveaddress; smc_pptable->I2cControllers[i].ControllerPort = smc_dpm_table->i2ccontrollers[i].controllerport; smc_pptable->I2cControllers[i].ThermalThrottler = smc_dpm_table->i2ccontrollers[i].thermalthrottler; smc_pptable->I2cControllers[i].I2cProtocol = smc_dpm_table->i2ccontrollers[i].i2cprotocol; smc_pptable->I2cControllers[i].I2cSpeed = smc_dpm_table->i2ccontrollers[i].i2cspeed; } return 0; } static int vega20_check_powerplay_table(struct smu_context *smu) { ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; struct smu_table_context *table_context = &smu->smu_table; powerplay_table = table_context->power_play_table; if (powerplay_table->sHeader.format_revision < ATOM_VEGA20_TABLE_REVISION_VEGA20) { pr_err("Unsupported PPTable format!"); return -EINVAL; } if (!powerplay_table->sHeader.structuresize) { pr_err("Invalid PowerPlay Table!"); return -EINVAL; } return 0; } static int vega20_run_btc_afll(struct smu_context *smu) { return smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc); } #define FEATURE_MASK(feature) (1ULL << feature) static int vega20_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { if (num > 2) return -EINVAL; memset(feature_mask, 0, sizeof(uint32_t) * num); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | FEATURE_MASK(FEATURE_DPM_UVD_BIT) | FEATURE_MASK(FEATURE_DPM_VCE_BIT) | FEATURE_MASK(FEATURE_ULV_BIT) | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | FEATURE_MASK(FEATURE_DPM_LINK_BIT) | FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_PPT_BIT) | FEATURE_MASK(FEATURE_TDC_BIT) | FEATURE_MASK(FEATURE_THERMAL_BIT) | FEATURE_MASK(FEATURE_GFX_PER_CU_CG_BIT) | FEATURE_MASK(FEATURE_RM_BIT) | FEATURE_MASK(FEATURE_ACDC_BIT) | FEATURE_MASK(FEATURE_VR0HOT_BIT) | FEATURE_MASK(FEATURE_VR1HOT_BIT) | FEATURE_MASK(FEATURE_FW_CTF_BIT) | FEATURE_MASK(FEATURE_LED_DISPLAY_BIT) | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) | FEATURE_MASK(FEATURE_GFX_EDC_BIT) | FEATURE_MASK(FEATURE_GFXOFF_BIT) | FEATURE_MASK(FEATURE_CG_BIT) | FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | FEATURE_MASK(FEATURE_XGMI_BIT); return 0; } static enum amd_pm_state_type vega20_get_current_power_state(struct smu_context *smu) { enum amd_pm_state_type pm_type; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu_dpm_ctx->dpm_context || !smu_dpm_ctx->dpm_current_power_state) return -EINVAL; mutex_lock(&(smu->mutex)); switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) { case SMU_STATE_UI_LABEL_BATTERY: pm_type = POWER_STATE_TYPE_BATTERY; break; case SMU_STATE_UI_LABEL_BALLANCED: pm_type = POWER_STATE_TYPE_BALANCED; break; case SMU_STATE_UI_LABEL_PERFORMANCE: pm_type = POWER_STATE_TYPE_PERFORMANCE; break; default: if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT) pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; else pm_type = POWER_STATE_TYPE_DEFAULT; break; } mutex_unlock(&(smu->mutex)); return pm_type; } static int vega20_set_single_dpm_table(struct smu_context *smu, struct vega20_single_dpm_table *single_dpm_table, PPCLK_e clk_id) { int ret = 0; uint32_t i, num_of_levels = 0, clk; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, (clk_id << 16 | 0xFF)); if (ret) { pr_err("[GetNumOfDpmLevel] failed to get dpm levels!"); return ret; } smu_read_smc_arg(smu, &num_of_levels); if (!num_of_levels) { pr_err("[GetNumOfDpmLevel] number of clk levels is invalid!"); return -EINVAL; } single_dpm_table->count = num_of_levels; for (i = 0; i < num_of_levels; i++) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, (clk_id << 16 | i)); if (ret) { pr_err("[GetDpmFreqByIndex] failed to get dpm freq by index!"); return ret; } smu_read_smc_arg(smu, &clk); if (!clk) { pr_err("[GetDpmFreqByIndex] clk value is invalid!"); return -EINVAL; } single_dpm_table->dpm_levels[i].value = clk; single_dpm_table->dpm_levels[i].enabled = true; } return 0; } static void vega20_init_single_dpm_state(struct vega20_dpm_state *dpm_state) { dpm_state->soft_min_level = 0x0; dpm_state->soft_max_level = 0xffff; dpm_state->hard_min_level = 0x0; dpm_state->hard_max_level = 0xffff; } static int vega20_set_default_dpm_table(struct smu_context *smu) { int ret; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_single_dpm_table *single_dpm_table; dpm_table = smu_dpm->dpm_context; /* socclk */ single_dpm_table = &(dpm_table->soc_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_SOCCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get socclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* gfxclk */ single_dpm_table = &(dpm_table->gfx_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_GFXCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* memclk */ single_dpm_table = &(dpm_table->mem_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_UCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* eclk */ single_dpm_table = &(dpm_table->eclk_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_ECLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get eclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.eclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* vclk */ single_dpm_table = &(dpm_table->vclk_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_VCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get vclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* dclk */ single_dpm_table = &(dpm_table->dclk_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get dclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* dcefclk */ single_dpm_table = &(dpm_table->dcef_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCEFCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get dcefclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* pixclk */ single_dpm_table = &(dpm_table->pixel_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_PIXCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get pixclk dpm levels!"); return ret; } } else { single_dpm_table->count = 0; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* dispclk */ single_dpm_table = &(dpm_table->display_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DISPCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get dispclk dpm levels!"); return ret; } } else { single_dpm_table->count = 0; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* phyclk */ single_dpm_table = &(dpm_table->phy_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_PHYCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get phyclk dpm levels!"); return ret; } } else { single_dpm_table->count = 0; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* fclk */ single_dpm_table = &(dpm_table->fclk_table); if (smu_feature_is_enabled(smu,FEATURE_DPM_FCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_FCLK); if (ret) { pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!"); return ret; } } else { single_dpm_table->count = 0; } vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); memcpy(smu_dpm->golden_dpm_context, dpm_table, sizeof(struct vega20_dpm_table)); return 0; } static int vega20_populate_umd_state_clk(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_single_dpm_table *gfx_table = NULL; struct vega20_single_dpm_table *mem_table = NULL; dpm_table = smu_dpm->dpm_context; gfx_table = &(dpm_table->gfx_table); mem_table = &(dpm_table->mem_table); smu->pstate_sclk = gfx_table->dpm_levels[0].value; smu->pstate_mclk = mem_table->dpm_levels[0].value; if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) { smu->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; smu->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; } smu->pstate_sclk = smu->pstate_sclk * 100; smu->pstate_mclk = smu->pstate_mclk * 100; return 0; } static int vega20_get_clk_table(struct smu_context *smu, struct pp_clock_levels_with_latency *clocks, struct vega20_single_dpm_table *dpm_table) { int i, count; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static int vega20_print_clk_levels(struct smu_context *smu, enum smu_clk_type type, char *buf) { int i, now, size = 0; int ret = 0; uint32_t gen_speed, lane_width; struct amdgpu_device *adev = smu->adev; struct pp_clock_levels_with_latency clocks; struct vega20_single_dpm_table *single_dpm_table; struct smu_table_context *table_context = &smu->smu_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings; OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table); PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable; dpm_table = smu_dpm->dpm_context; switch (type) { case SMU_SCLK: ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now); if (ret) { pr_err("Attempt to get current gfx clk Failed!"); return ret; } single_dpm_table = &(dpm_table->gfx_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get gfx clk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case SMU_MCLK: ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now); if (ret) { pr_err("Attempt to get current mclk Failed!"); return ret; } single_dpm_table = &(dpm_table->mem_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get memory clk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case SMU_SOCCLK: ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now); if (ret) { pr_err("Attempt to get current socclk Failed!"); return ret; } single_dpm_table = &(dpm_table->soc_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get socclk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case SMU_FCLK: ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now); if (ret) { pr_err("Attempt to get current fclk Failed!"); return ret; } single_dpm_table = &(dpm_table->fclk_table); for (i = 0; i < single_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, (single_dpm_table->dpm_levels[i].value == now / 100) ? "*" : ""); break; case SMU_DCEFCLK: ret = smu_get_current_clk_freq(smu, SMU_DCEFCLK, &now); if (ret) { pr_err("Attempt to get current dcefclk Failed!"); return ret; } single_dpm_table = &(dpm_table->dcef_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get dcefclk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); break; case SMU_PCIE: gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; for (i = 0; i < NUM_LINK_LEVELS; i++) size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i, (pptable->PcieGenSpeed[i] == 0) ? "2.5GT/s," : (pptable->PcieGenSpeed[i] == 1) ? "5.0GT/s," : (pptable->PcieGenSpeed[i] == 2) ? "8.0GT/s," : (pptable->PcieGenSpeed[i] == 3) ? "16.0GT/s," : "", (pptable->PcieLaneCount[i] == 1) ? "x1" : (pptable->PcieLaneCount[i] == 2) ? "x2" : (pptable->PcieLaneCount[i] == 3) ? "x4" : (pptable->PcieLaneCount[i] == 4) ? "x8" : (pptable->PcieLaneCount[i] == 5) ? "x12" : (pptable->PcieLaneCount[i] == 6) ? "x16" : "", pptable->LclkFreq[i], (gen_speed == pptable->PcieGenSpeed[i]) && (lane_width == pptable->PcieLaneCount[i]) ? "*" : ""); break; case SMU_OD_SCLK: if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) { size = sprintf(buf, "%s:\n", "OD_SCLK"); size += sprintf(buf + size, "0: %10uMhz\n", od_table->GfxclkFmin); size += sprintf(buf + size, "1: %10uMhz\n", od_table->GfxclkFmax); } break; case SMU_OD_MCLK: if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { size = sprintf(buf, "%s:\n", "OD_MCLK"); size += sprintf(buf + size, "1: %10uMhz\n", od_table->UclkFmax); } break; case SMU_OD_VDDC_CURVE: if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE"); size += sprintf(buf + size, "0: %10uMhz %10dmV\n", od_table->GfxclkFreq1, od_table->GfxclkVolt1 / VOLTAGE_SCALE); size += sprintf(buf + size, "1: %10uMhz %10dmV\n", od_table->GfxclkFreq2, od_table->GfxclkVolt2 / VOLTAGE_SCALE); size += sprintf(buf + size, "2: %10uMhz %10dmV\n", od_table->GfxclkFreq3, od_table->GfxclkVolt3 / VOLTAGE_SCALE); } break; case SMU_OD_RANGE: size = sprintf(buf, "%s:\n", "OD_RANGE"); if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) { size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value); } if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { single_dpm_table = &(dpm_table->mem_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get memory clk levels Failed!"); return ret; } size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n", clocks.data[0].clocks_in_khz / 1000, od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value); } if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].max_value); size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].max_value); size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].max_value); size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].max_value); } break; default: break; } return size; } static int vega20_upload_dpm_level(struct smu_context *smu, bool max, uint32_t feature_mask) { struct vega20_dpm_table *dpm_table; struct vega20_single_dpm_table *single_dpm_table; uint32_t freq; int ret = 0; dpm_table = smu->smu_dpm.dpm_context; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) && (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { single_dpm_table = &(dpm_table->gfx_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_GFXCLK << 16) | (freq & 0xffff)); if (ret) { pr_err("Failed to set soft %s gfxclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && (feature_mask & FEATURE_DPM_UCLK_MASK)) { single_dpm_table = &(dpm_table->mem_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_UCLK << 16) | (freq & 0xffff)); if (ret) { pr_err("Failed to set soft %s memclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) && (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { single_dpm_table = &(dpm_table->soc_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_SOCCLK << 16) | (freq & 0xffff)); if (ret) { pr_err("Failed to set soft %s socclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT) && (feature_mask & FEATURE_DPM_FCLK_MASK)) { single_dpm_table = &(dpm_table->fclk_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_FCLK << 16) | (freq & 0xffff)); if (ret) { pr_err("Failed to set soft %s fclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) { single_dpm_table = &(dpm_table->dcef_table); freq = single_dpm_table->dpm_state.hard_min_level; if (!max) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, (PPCLK_DCEFCLK << 16) | (freq & 0xffff)); if (ret) { pr_err("Failed to set hard min dcefclk !\n"); return ret; } } } return ret; } static int vega20_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { struct vega20_dpm_table *dpm_table; struct vega20_single_dpm_table *single_dpm_table; uint32_t soft_min_level, soft_max_level, hard_min_level; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; int ret = 0; if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { pr_info("force clock level is for dpm manual mode only.\n"); return -EINVAL; } mutex_lock(&(smu->mutex)); soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; dpm_table = smu->smu_dpm.dpm_context; switch (clk_type) { case SMU_SCLK: single_dpm_table = &(dpm_table->gfx_table); if (soft_max_level >= single_dpm_table->count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.soft_min_level = single_dpm_table->dpm_levels[soft_min_level].value; single_dpm_table->dpm_state.soft_max_level = single_dpm_table->dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK); if (ret) { pr_err("Failed to upload boot level to lowest!\n"); break; } ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK); if (ret) pr_err("Failed to upload dpm max level to highest!\n"); break; case SMU_MCLK: single_dpm_table = &(dpm_table->mem_table); if (soft_max_level >= single_dpm_table->count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.soft_min_level = single_dpm_table->dpm_levels[soft_min_level].value; single_dpm_table->dpm_state.soft_max_level = single_dpm_table->dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_UCLK_MASK); if (ret) { pr_err("Failed to upload boot level to lowest!\n"); break; } ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_UCLK_MASK); if (ret) pr_err("Failed to upload dpm max level to highest!\n"); break; case SMU_SOCCLK: single_dpm_table = &(dpm_table->soc_table); if (soft_max_level >= single_dpm_table->count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.soft_min_level = single_dpm_table->dpm_levels[soft_min_level].value; single_dpm_table->dpm_state.soft_max_level = single_dpm_table->dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_SOCCLK_MASK); if (ret) { pr_err("Failed to upload boot level to lowest!\n"); break; } ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_SOCCLK_MASK); if (ret) pr_err("Failed to upload dpm max level to highest!\n"); break; case SMU_FCLK: single_dpm_table = &(dpm_table->fclk_table); if (soft_max_level >= single_dpm_table->count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.soft_min_level = single_dpm_table->dpm_levels[soft_min_level].value; single_dpm_table->dpm_state.soft_max_level = single_dpm_table->dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_FCLK_MASK); if (ret) { pr_err("Failed to upload boot level to lowest!\n"); break; } ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_FCLK_MASK); if (ret) pr_err("Failed to upload dpm max level to highest!\n"); break; case SMU_DCEFCLK: hard_min_level = soft_min_level; single_dpm_table = &(dpm_table->dcef_table); if (hard_min_level >= single_dpm_table->count) { pr_err("Clock level specified %d is over max allowed %d\n", hard_min_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.hard_min_level = single_dpm_table->dpm_levels[hard_min_level].value; ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_DCEFCLK_MASK); if (ret) pr_err("Failed to upload boot level to lowest!\n"); break; case SMU_PCIE: if (soft_min_level >= NUM_LINK_LEVELS || soft_max_level >= NUM_LINK_LEVELS) { ret = -EINVAL; break; } ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinLinkDpmByIndex, soft_min_level); if (ret) pr_err("Failed to set min link dpm level!\n"); break; default: break; } mutex_unlock(&(smu->mutex)); return ret; } static int vega20_get_clock_by_type_with_latency(struct smu_context *smu, enum smu_clk_type clk_type, struct pp_clock_levels_with_latency *clocks) { int ret; struct vega20_single_dpm_table *single_dpm_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; dpm_table = smu_dpm->dpm_context; mutex_lock(&smu->mutex); switch (clk_type) { case SMU_GFXCLK: single_dpm_table = &(dpm_table->gfx_table); ret = vega20_get_clk_table(smu, clocks, single_dpm_table); break; case SMU_MCLK: single_dpm_table = &(dpm_table->mem_table); ret = vega20_get_clk_table(smu, clocks, single_dpm_table); break; case SMU_DCEFCLK: single_dpm_table = &(dpm_table->dcef_table); ret = vega20_get_clk_table(smu, clocks, single_dpm_table); break; case SMU_SOCCLK: single_dpm_table = &(dpm_table->soc_table); ret = vega20_get_clk_table(smu, clocks, single_dpm_table); break; default: ret = -EINVAL; } mutex_unlock(&smu->mutex); return ret; } static int vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu, uint32_t *voltage, uint32_t freq) { int ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetAVFSVoltageByDpm, ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq)); if (ret) { pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!"); return ret; } smu_read_smc_arg(smu, voltage); *voltage = *voltage / VOLTAGE_SCALE; return 0; } static int vega20_set_default_od8_setttings(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table); struct vega20_od8_settings *od8_settings = NULL; PPTable_t *smc_pptable = table_context->driver_pptable; int i, ret; if (smu->od_settings) return -EINVAL; od8_settings = kzalloc(sizeof(struct vega20_od8_settings), GFP_KERNEL); if (!od8_settings) return -ENOMEM; smu->od_settings = (void *)od8_settings; ret = vega20_setup_od8_information(smu); if (ret) { pr_err("Retrieve board OD limits failed!\n"); return ret; } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] && od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 && od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 && (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >= od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) { od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = OD8_GFXCLK_LIMITS; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = OD8_GFXCLK_LIMITS; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = od_table->GfxclkFmin; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = od_table->GfxclkFmax; } if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] && (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >= smc_pptable->MinVoltageGfx / VOLTAGE_SCALE) && (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <= smc_pptable->MaxVoltageGfx / VOLTAGE_SCALE) && (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] <= od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3])) { od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = OD8_GFXCLK_CURVE; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = OD8_GFXCLK_CURVE; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = OD8_GFXCLK_CURVE; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = OD8_GFXCLK_CURVE; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = OD8_GFXCLK_CURVE; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = OD8_GFXCLK_CURVE; od_table->GfxclkFreq1 = od_table->GfxclkFmin; od_table->GfxclkFreq2 = (od_table->GfxclkFmin + od_table->GfxclkFmax) / 2; od_table->GfxclkFreq3 = od_table->GfxclkFmax; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = od_table->GfxclkFreq1; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = od_table->GfxclkFreq2; od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = od_table->GfxclkFreq3; ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value, od_table->GfxclkFreq1); if (ret) od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0; od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value * VOLTAGE_SCALE; ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value, od_table->GfxclkFreq2); if (ret) od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0; od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value * VOLTAGE_SCALE; ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value, od_table->GfxclkFreq3); if (ret) od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0; od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value * VOLTAGE_SCALE; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] && od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 && od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 && (od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] >= od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX])) { od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX; od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = od_table->UclkFmax; } } if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] && od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 && od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100 && od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 && od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100) { od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT; od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = od_table->OverDrivePct; } if (smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) { if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] && od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && (od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >= od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) { od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = OD8_ACOUSTIC_LIMIT_SCLK; od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = od_table->FanMaximumRpm; } if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] && od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] > 0 && od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 && (od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >= od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) { od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = OD8_FAN_SPEED_MIN; od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = od_table->FanMinimumPwm * smc_pptable->FanMaximumRpm / 100; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_THERMAL_BIT)) { if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] && od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 && od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 && (od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >= od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) { od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = OD8_TEMPERATURE_FAN; od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = od_table->FanTargetTemperature; } if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] && od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && (od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >= od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) { od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = OD8_TEMPERATURE_SYSTEM; od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = od_table->MaxOpTemp; } } for (i = 0; i < OD8_SETTING_COUNT; i++) { if (od8_settings->od8_settings_array[i].feature_id) { od8_settings->od8_settings_array[i].min_value = od8_settings->od_settings_min[i]; od8_settings->od8_settings_array[i].max_value = od8_settings->od_settings_max[i]; od8_settings->od8_settings_array[i].current_value = od8_settings->od8_settings_array[i].default_value; } else { od8_settings->od8_settings_array[i].min_value = 0; od8_settings->od8_settings_array[i].max_value = 0; od8_settings->od8_settings_array[i].current_value = 0; } } return 0; } static int vega20_get_metrics_table(struct smu_context *smu, SmuMetrics_t *metrics_table) { struct smu_table_context *smu_table= &smu->smu_table; int ret = 0; if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + HZ / 1000)) { ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, (void *)smu_table->metrics_table, false); if (ret) { pr_info("Failed to export SMU metrics table!\n"); return ret; } smu_table->metrics_time = jiffies; } memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t)); return ret; } static int vega20_set_default_od_settings(struct smu_context *smu, bool initialize) { struct smu_table_context *table_context = &smu->smu_table; int ret; if (initialize) { if (table_context->overdrive_table) return -EINVAL; table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL); if (!table_context->overdrive_table) return -ENOMEM; ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export over drive table!\n"); return ret; } ret = vega20_set_default_od8_setttings(smu); if (ret) return ret; } ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import over drive table!\n"); return ret; } return 0; } static int vega20_get_od_percentage(struct smu_context *smu, enum smu_clk_type clk_type) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_dpm_table *golden_table = NULL; struct vega20_single_dpm_table *single_dpm_table; struct vega20_single_dpm_table *golden_dpm_table; int value, golden_value; dpm_table = smu_dpm->dpm_context; golden_table = smu_dpm->golden_dpm_context; switch (clk_type) { case SMU_OD_SCLK: single_dpm_table = &(dpm_table->gfx_table); golden_dpm_table = &(golden_table->gfx_table); break; case SMU_OD_MCLK: single_dpm_table = &(dpm_table->mem_table); golden_dpm_table = &(golden_table->mem_table); break; default: return -EINVAL; break; } value = single_dpm_table->dpm_levels[single_dpm_table->count - 1].value; golden_value = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega20_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; int16_t workload_type = 0; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "UseRlcBusy", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!smu->pm_enabled || !buf) return -EINVAL; size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_workload_get_type(smu, i); if (workload_type < 0) return -EINVAL; result = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor), false); if (result) { pr_err("[%s] Failed to get activity monitor!", __func__); return result; } size += sprintf(buf + size, "%2d %14s%s:\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_UseRlcBusy, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Soc_FPS, activity_monitor.Soc_UseRlcBusy, activity_monitor.Soc_MinActiveFreqType, activity_monitor.Soc_MinActiveFreq, activity_monitor.Soc_BoosterFreqType, activity_monitor.Soc_BoosterFreq, activity_monitor.Soc_PD_Data_limit_c, activity_monitor.Soc_PD_Data_error_coeff, activity_monitor.Soc_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "UCLK", activity_monitor.Mem_FPS, activity_monitor.Mem_UseRlcBusy, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 3, "FCLK", activity_monitor.Fclk_FPS, activity_monitor.Fclk_UseRlcBusy, activity_monitor.Fclk_MinActiveFreqType, activity_monitor.Fclk_MinActiveFreq, activity_monitor.Fclk_BoosterFreqType, activity_monitor.Fclk_BoosterFreq, activity_monitor.Fclk_PD_Data_limit_c, activity_monitor.Fclk_PD_Data_error_coeff, activity_monitor.Fclk_PD_Data_error_rate_coeff); } return size; } static int vega20_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type = 0, ret = 0; smu->power_profile_mode = input[size]; if (!smu->pm_enabled) return ret; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), false); if (ret) { pr_err("[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_UseRlcBusy = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Soc_FPS = input[1]; activity_monitor.Soc_UseRlcBusy = input[2]; activity_monitor.Soc_MinActiveFreqType = input[3]; activity_monitor.Soc_MinActiveFreq = input[4]; activity_monitor.Soc_BoosterFreqType = input[5]; activity_monitor.Soc_BoosterFreq = input[6]; activity_monitor.Soc_PD_Data_limit_c = input[7]; activity_monitor.Soc_PD_Data_error_coeff = input[8]; activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Uclk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_UseRlcBusy = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; case 3: /* Fclk */ activity_monitor.Fclk_FPS = input[1]; activity_monitor.Fclk_UseRlcBusy = input[2]; activity_monitor.Fclk_MinActiveFreqType = input[3]; activity_monitor.Fclk_MinActiveFreq = input[4]; activity_monitor.Fclk_BoosterFreqType = input[5]; activity_monitor.Fclk_BoosterFreq = input[6]; activity_monitor.Fclk_PD_Data_limit_c = input[7]; activity_monitor.Fclk_PD_Data_error_coeff = input[8]; activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), true); if (ret) { pr_err("[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_workload_get_type(smu, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type); return ret; } static int vega20_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; struct vega20_single_dpm_table *gfx_dpm_table; struct vega20_single_dpm_table *mem_dpm_table; struct vega20_single_dpm_table *soc_dpm_table; if (!smu->smu_dpm.dpm_context) return -EINVAL; gfx_dpm_table = &dpm_table->gfx_table; mem_dpm_table = &dpm_table->mem_table; soc_dpm_table = &dpm_table->soc_table; *sclk_mask = 0; *mclk_mask = 0; *soc_mask = 0; if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL && soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) { *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL; *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL; *soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = gfx_dpm_table->count - 1; *mclk_mask = mem_dpm_table->count - 1; *soc_mask = soc_dpm_table->count - 1; } return 0; } static int vega20_set_uclk_to_highest_dpm_level(struct smu_context *smu, struct vega20_single_dpm_table *dpm_table) { int ret = 0; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu_dpm_ctx->dpm_context) return -EINVAL; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { if (dpm_table->count <= 0) { pr_err("[%s] Dpm table has no entry!", __func__); return -EINVAL; } if (dpm_table->count > NUM_UCLK_DPM_LEVELS) { pr_err("[%s] Dpm table has too many entries!", __func__); return -EINVAL; } dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level); if (ret) { pr_err("[%s] Set hard min uclk failed!", __func__); return ret; } } return ret; } static int vega20_pre_display_config_changed(struct smu_context *smu) { int ret = 0; struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context; if (!smu->smu_dpm.dpm_context) return -EINVAL; smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0); ret = vega20_set_uclk_to_highest_dpm_level(smu, &dpm_table->mem_table); if (ret) pr_err("Failed to set uclk to highest dpm level"); return ret; } static int vega20_display_config_changed(struct smu_context *smu) { int ret = 0; if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_write_watermarks_table(smu); if (ret) { pr_err("Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, smu->display_config->num_display); } return ret; } static int vega20_apply_clocks_adjust_rules(struct smu_context *smu) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); struct vega20_dpm_table *dpm_ctx = (struct vega20_dpm_table *)(smu_dpm_ctx->dpm_context); struct vega20_single_dpm_table *dpm_table; bool vblank_too_short = false; bool disable_mclk_switching; uint32_t i, latency; disable_mclk_switching = ((1 < smu->display_config->num_display) && !smu->display_config->multi_monitor_in_sync) || vblank_too_short; latency = smu->display_config->dce_tolerable_mclk_in_active_latency; /* gfxclk */ dpm_table = &(dpm_ctx->gfx_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } /* memclk */ dpm_table = &(dpm_ctx->mem_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } /* honour DAL's UCLK Hardmin */ if (dpm_table->dpm_state.hard_min_level < (smu->display_config->min_mem_set_clock / 100)) dpm_table->dpm_state.hard_min_level = smu->display_config->min_mem_set_clock / 100; /* Hardmin is dependent on displayconfig */ if (disable_mclk_switching) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; for (i = 0; i < smu_dpm_ctx->mclk_latency_table->count - 1; i++) { if (smu_dpm_ctx->mclk_latency_table->entries[i].latency <= latency) { if (dpm_table->dpm_levels[i].value >= (smu->display_config->min_mem_set_clock / 100)) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; break; } } } } if (smu->display_config->nb_pstate_switch_disable) dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; /* vclk */ dpm_table = &(dpm_ctx->vclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } /* dclk */ dpm_table = &(dpm_ctx->dclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } /* socclk */ dpm_table = &(dpm_ctx->soc_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } /* eclk */ dpm_table = &(dpm_ctx->eclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; } if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } return 0; } static int vega20_notify_smc_dispaly_config(struct smu_context *smu) { struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context; struct vega20_single_dpm_table *memtable = &dpm_table->mem_table; struct smu_clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memory_clock = smu->display_config->min_mem_set_clock; if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; if (!smu->funcs->display_clock_voltage_request(smu, &clock_req)) { if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, min_clocks.dcef_clock_in_sr/100); if (ret) { pr_err("Attempt to set divider for DCEFCLK Failed!"); return ret; } } } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { memtable->dpm_state.hard_min_level = min_clocks.memory_clock/100; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16) | memtable->dpm_state.hard_min_level); if (ret) { pr_err("[%s] Set hard min uclk failed!", __func__); return ret; } } return 0; } static uint32_t vega20_find_lowest_dpm_level(struct vega20_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } if (i >= table->count) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static uint32_t vega20_find_highest_dpm_level(struct vega20_single_dpm_table *table) { int i = 0; if (!table) { pr_err("[%s] DPM Table does not exist!", __func__); return 0; } if (table->count <= 0) { pr_err("[%s] DPM Table has no entry!", __func__); return 0; } if (table->count > MAX_REGULAR_DPM_NUMBER) { pr_err("[%s] DPM Table has too many entries!", __func__); return MAX_REGULAR_DPM_NUMBER - 1; } for (i = table->count - 1; i >= 0; i--) { if (table->dpm_levels[i].enabled) break; } if (i < 0) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static int vega20_force_dpm_limit_value(struct smu_context *smu, bool highest) { uint32_t soft_level; int ret = 0; struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; if (highest) soft_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table)); else soft_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table)); dpm_table->gfx_table.dpm_state.soft_min_level = dpm_table->gfx_table.dpm_state.soft_max_level = dpm_table->gfx_table.dpm_levels[soft_level].value; if (highest) soft_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table)); else soft_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table)); dpm_table->mem_table.dpm_state.soft_min_level = dpm_table->mem_table.dpm_state.soft_max_level = dpm_table->mem_table.dpm_levels[soft_level].value; if (highest) soft_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table)); else soft_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table)); dpm_table->soc_table.dpm_state.soft_min_level = dpm_table->soc_table.dpm_state.soft_max_level = dpm_table->soc_table.dpm_levels[soft_level].value; ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF); if (ret) { pr_err("Failed to upload boot level to %s!\n", highest ? "highest" : "lowest"); return ret; } ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF); if (ret) { pr_err("Failed to upload dpm max level to %s!\n!", highest ? "highest" : "lowest"); return ret; } return ret; } static int vega20_unforce_dpm_levels(struct smu_context *smu) { uint32_t soft_min_level, soft_max_level; int ret = 0; struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table)); soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table)); dpm_table->gfx_table.dpm_state.soft_min_level = dpm_table->gfx_table.dpm_levels[soft_min_level].value; dpm_table->gfx_table.dpm_state.soft_max_level = dpm_table->gfx_table.dpm_levels[soft_max_level].value; soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table)); soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table)); dpm_table->mem_table.dpm_state.soft_min_level = dpm_table->gfx_table.dpm_levels[soft_min_level].value; dpm_table->mem_table.dpm_state.soft_max_level = dpm_table->gfx_table.dpm_levels[soft_max_level].value; soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table)); soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table)); dpm_table->soc_table.dpm_state.soft_min_level = dpm_table->soc_table.dpm_levels[soft_min_level].value; dpm_table->soc_table.dpm_state.soft_max_level = dpm_table->soc_table.dpm_levels[soft_max_level].value; ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF); if (ret) { pr_err("Failed to upload DPM Bootup Levels!"); return ret; } ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF); if (ret) { pr_err("Failed to upload DPM Max Levels!"); return ret; } return ret; } static int vega20_update_specified_od8_value(struct smu_context *smu, uint32_t index, uint32_t value) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table); struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings; switch (index) { case OD8_SETTING_GFXCLK_FMIN: od_table->GfxclkFmin = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FMAX: if (value < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].min_value || value > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) return -EINVAL; od_table->GfxclkFmax = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ1: od_table->GfxclkFreq1 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE1: od_table->GfxclkVolt1 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ2: od_table->GfxclkFreq2 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE2: od_table->GfxclkVolt2 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_FREQ3: od_table->GfxclkFreq3 = (uint16_t)value; break; case OD8_SETTING_GFXCLK_VOLTAGE3: od_table->GfxclkVolt3 = (uint16_t)value; break; case OD8_SETTING_UCLK_FMAX: if (value < od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].min_value || value > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) return -EINVAL; od_table->UclkFmax = (uint16_t)value; break; case OD8_SETTING_POWER_PERCENTAGE: od_table->OverDrivePct = (int16_t)value; break; case OD8_SETTING_FAN_ACOUSTIC_LIMIT: od_table->FanMaximumRpm = (uint16_t)value; break; case OD8_SETTING_FAN_MIN_SPEED: od_table->FanMinimumPwm = (uint16_t)value; break; case OD8_SETTING_FAN_TARGET_TEMP: od_table->FanTargetTemperature = (uint16_t)value; break; case OD8_SETTING_OPERATING_TEMP_MAX: od_table->MaxOpTemp = (uint16_t)value; break; } return 0; } static int vega20_update_od8_settings(struct smu_context *smu, uint32_t index, uint32_t value) { struct smu_table_context *table_context = &smu->smu_table; int ret; ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export over drive table!\n"); return ret; } ret = vega20_update_specified_od8_value(smu, index, value); if (ret) return ret; ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import over drive table!\n"); return ret; } return 0; } static int vega20_set_od_percentage(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t value) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_dpm_table *golden_table = NULL; struct vega20_single_dpm_table *single_dpm_table; struct vega20_single_dpm_table *golden_dpm_table; uint32_t od_clk, index; int ret = 0; int feature_enabled; PPCLK_e clk_id; mutex_lock(&(smu->mutex)); dpm_table = smu_dpm->dpm_context; golden_table = smu_dpm->golden_dpm_context; switch (clk_type) { case SMU_OD_SCLK: single_dpm_table = &(dpm_table->gfx_table); golden_dpm_table = &(golden_table->gfx_table); feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT); clk_id = PPCLK_GFXCLK; index = OD8_SETTING_GFXCLK_FMAX; break; case SMU_OD_MCLK: single_dpm_table = &(dpm_table->mem_table); golden_dpm_table = &(golden_table->mem_table); feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT); clk_id = PPCLK_UCLK; index = OD8_SETTING_UCLK_FMAX; break; default: ret = -EINVAL; break; } if (ret) goto set_od_failed; od_clk = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value * value; od_clk /= 100; od_clk += golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value; ret = vega20_update_od8_settings(smu, index, od_clk); if (ret) { pr_err("[Setoverdrive] failed to set od clk!\n"); goto set_od_failed; } if (feature_enabled) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, clk_id); if (ret) { pr_err("[Setoverdrive] failed to refresh dpm table!\n"); goto set_od_failed; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; } ret = smu_handle_task(smu, smu_dpm->dpm_level, AMD_PP_TASK_READJUST_POWER_STATE); set_od_failed: mutex_unlock(&(smu->mutex)); return ret; } static int vega20_odn_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table); struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct vega20_dpm_table *dpm_table = NULL; struct vega20_single_dpm_table *single_dpm_table; struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings; struct pp_clock_levels_with_latency clocks; int32_t input_index, input_clk, input_vol, i; int od8_id; int ret = 0; dpm_table = smu_dpm->dpm_context; if (!input) { pr_warn("NULL user input for clock and voltage\n"); return -EINVAL; } switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id)) { pr_info("Sclk min/max frequency overdrive not supported\n"); return -EOPNOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; if (input_index != 0 && input_index != 1) { pr_info("Invalid index %d\n", input_index); pr_info("Support min/max sclk frequency settingonly which index by 0/1\n"); return -EINVAL; } if (input_clk < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value || input_clk > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value, od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value); return -EINVAL; } if (input_index == 0 && od_table->GfxclkFmin != input_clk) { od_table->GfxclkFmin = input_clk; od8_settings->od_gfxclk_update = true; } else if (input_index == 1 && od_table->GfxclkFmax != input_clk) { od_table->GfxclkFmax = input_clk; od8_settings->od_gfxclk_update = true; } } break; case PP_OD_EDIT_MCLK_VDDC_TABLE: if (!od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { pr_info("Mclk max frequency overdrive not supported\n"); return -EOPNOTSUPP; } single_dpm_table = &(dpm_table->mem_table); ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { pr_err("Attempt to get memory clk levels Failed!"); return ret; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; if (input_index != 1) { pr_info("Invalid index %d\n", input_index); pr_info("Support max Mclk frequency setting only which index by 1\n"); return -EINVAL; } if (input_clk < clocks.data[0].clocks_in_khz / 1000 || input_clk > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, clocks.data[0].clocks_in_khz / 1000, od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value); return -EINVAL; } if (input_index == 1 && od_table->UclkFmax != input_clk) { od8_settings->od_gfxclk_update = true; od_table->UclkFmax = input_clk; } } break; case PP_OD_EDIT_VDDC_CURVE: if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) { pr_info("Voltage curve calibrate not supported\n"); return -EOPNOTSUPP; } for (i = 0; i < size; i += 3) { if (i + 3 > size) { pr_info("invalid number of input parameters %d\n", size); return -EINVAL; } input_index = input[i]; input_clk = input[i + 1]; input_vol = input[i + 2]; if (input_index > 2) { pr_info("Setting for point %d is not supported\n", input_index + 1); pr_info("Three supported points index by 0, 1, 2\n"); return -EINVAL; } od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index; if (input_clk < od8_settings->od8_settings_array[od8_id].min_value || input_clk > od8_settings->od8_settings_array[od8_id].max_value) { pr_info("clock freq %d is not within allowed range [%d - %d]\n", input_clk, od8_settings->od8_settings_array[od8_id].min_value, od8_settings->od8_settings_array[od8_id].max_value); return -EINVAL; } od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index; if (input_vol < od8_settings->od8_settings_array[od8_id].min_value || input_vol > od8_settings->od8_settings_array[od8_id].max_value) { pr_info("clock voltage %d is not within allowed range [%d- %d]\n", input_vol, od8_settings->od8_settings_array[od8_id].min_value, od8_settings->od8_settings_array[od8_id].max_value); return -EINVAL; } switch (input_index) { case 0: od_table->GfxclkFreq1 = input_clk; od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE; break; case 1: od_table->GfxclkFreq2 = input_clk; od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE; break; case 2: od_table->GfxclkFreq3 = input_clk; od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE; break; } } break; case PP_OD_RESTORE_DEFAULT_TABLE: ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export over drive table!\n"); return ret; } break; case PP_OD_COMMIT_DPM_TABLE: ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import over drive table!\n"); return ret; } /* retrieve updated gfxclk table */ if (od8_settings->od_gfxclk_update) { od8_settings->od_gfxclk_update = false; single_dpm_table = &(dpm_table->gfx_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_GFXCLK); if (ret) { pr_err("[Setoverdrive] failed to refresh dpm table!\n"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; } } break; default: return -EINVAL; } if (type == PP_OD_COMMIT_DPM_TABLE) { mutex_lock(&(smu->mutex)); ret = smu_handle_task(smu, smu_dpm->dpm_level, AMD_PP_TASK_READJUST_POWER_STATE); mutex_unlock(&(smu->mutex)); } return ret; } static int vega20_dpm_set_uvd_enable(struct smu_context *smu, bool enable) { if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_UVD_BIT)) return 0; if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) return 0; return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_UVD_BIT, enable); } static int vega20_dpm_set_vce_enable(struct smu_context *smu, bool enable) { if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_VCE_BIT)) return 0; if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) return 0; return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_VCE_BIT, enable); } static bool vega20_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; unsigned long feature_enabled; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static int vega20_set_thermal_fan_table(struct smu_context *smu) { int ret; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget, (uint32_t)pptable->FanTargetTemperature); return ret; } static int vega20_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { int ret; ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm); if (ret) { pr_err("Attempt to get current RPM from SMC Failed!\n"); return ret; } smu_read_smc_arg(smu, speed); return 0; } static int vega20_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed) { int ret = 0; uint32_t current_rpm = 0, percent = 0; PPTable_t *pptable = smu->smu_table.driver_pptable; ret = vega20_get_fan_speed_rpm(smu, ¤t_rpm); if (ret) return ret; percent = current_rpm * 100 / pptable->FanMaximumRpm; *speed = percent > 100 ? 100 : percent; return 0; } static int vega20_get_gpu_power(struct smu_context *smu, uint32_t *value) { uint32_t smu_version; int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = vega20_get_metrics_table(smu, &metrics); if (ret) return ret; ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) return ret; /* For the 40.46 release, they changed the value name */ if (smu_version == 0x282e00) *value = metrics.AverageSocketPower << 8; else *value = metrics.CurrSocketPower << 8; return 0; } static int vega20_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; SmuMetrics_t metrics; if (!value) return -EINVAL; ret = vega20_get_metrics_table(smu, &metrics); if (ret) return ret; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: *value = metrics.AverageGfxActivity; break; case AMDGPU_PP_SENSOR_MEM_LOAD: *value = metrics.AverageUclkActivity; break; default: pr_err("Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return 0; } static int vega20_thermal_get_temperature(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { struct amdgpu_device *adev = smu->adev; SmuMetrics_t metrics; uint32_t temp = 0; int ret = 0; if (!value) return -EINVAL; ret = vega20_get_metrics_table(smu, &metrics); if (ret) return ret; switch (sensor) { case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS); temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >> CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT; temp = temp & 0x1ff; temp *= SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; *value = temp; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: *value = metrics.TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case AMDGPU_PP_SENSOR_MEM_TEMP: *value = metrics.TemperatureHBM * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; default: pr_err("Invalid sensor for retrieving temp\n"); return -EINVAL; } return 0; } static int vega20_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; if(!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: case AMDGPU_PP_SENSOR_GPU_LOAD: ret = vega20_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = vega20_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: case AMDGPU_PP_SENSOR_EDGE_TEMP: case AMDGPU_PP_SENSOR_MEM_TEMP: ret = vega20_thermal_get_temperature(smu, sensor, (uint32_t *)data); *size = 4; break; default: ret = smu_smc_read_sensor(smu, sensor, data, size); } mutex_unlock(&smu->sensor_lock); return ret; } static int vega20_set_watermarks_table(struct smu_context *smu, void *watermarks, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int i; Watermarks_t *table = watermarks; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges->num_wm_dmif_sets > 4 || clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } return 0; } static int vega20_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; ATOM_Vega20_POWERPLAYTABLE *powerplay_table = table_context->power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; if (!range || !powerplay_table) return -EINVAL; range->max = powerplay_table->usSoftwareShutdownTemp * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = pptable->ThotspotLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->ThbmLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static const struct pptable_funcs vega20_ppt_funcs = { .tables_init = vega20_tables_init, .alloc_dpm_context = vega20_allocate_dpm_context, .store_powerplay_table = vega20_store_powerplay_table, .check_powerplay_table = vega20_check_powerplay_table, .append_powerplay_table = vega20_append_powerplay_table, .get_smu_msg_index = vega20_get_smu_msg_index, .get_smu_clk_index = vega20_get_smu_clk_index, .get_smu_feature_index = vega20_get_smu_feature_index, .get_smu_table_index = vega20_get_smu_table_index, .get_smu_power_index = vega20_get_pwr_src_index, .get_workload_type = vega20_get_workload_type, .run_afll_btc = vega20_run_btc_afll, .get_allowed_feature_mask = vega20_get_allowed_feature_mask, .get_current_power_state = vega20_get_current_power_state, .set_default_dpm_table = vega20_set_default_dpm_table, .set_power_state = NULL, .populate_umd_state_clk = vega20_populate_umd_state_clk, .print_clk_levels = vega20_print_clk_levels, .force_clk_levels = vega20_force_clk_levels, .get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency, .get_od_percentage = vega20_get_od_percentage, .get_power_profile_mode = vega20_get_power_profile_mode, .set_power_profile_mode = vega20_set_power_profile_mode, .set_od_percentage = vega20_set_od_percentage, .set_default_od_settings = vega20_set_default_od_settings, .od_edit_dpm_table = vega20_odn_edit_dpm_table, .dpm_set_uvd_enable = vega20_dpm_set_uvd_enable, .dpm_set_vce_enable = vega20_dpm_set_vce_enable, .read_sensor = vega20_read_sensor, .pre_display_config_changed = vega20_pre_display_config_changed, .display_config_changed = vega20_display_config_changed, .apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules, .notify_smc_dispaly_config = vega20_notify_smc_dispaly_config, .force_dpm_limit_value = vega20_force_dpm_limit_value, .unforce_dpm_levels = vega20_unforce_dpm_levels, .get_profiling_clk_mask = vega20_get_profiling_clk_mask, .is_dpm_running = vega20_is_dpm_running, .set_thermal_fan_table = vega20_set_thermal_fan_table, .get_fan_speed_percent = vega20_get_fan_speed_percent, .get_fan_speed_rpm = vega20_get_fan_speed_rpm, .set_watermarks_table = vega20_set_watermarks_table, .get_thermal_temperature_range = vega20_get_thermal_temperature_range }; void vega20_set_ppt_funcs(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; smu->ppt_funcs = &vega20_ppt_funcs; smu_table->table_count = TABLE_COUNT; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1