Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 26679 | 33.60% | 543 | 28.30% |
Jesse Barnes | 8534 | 10.75% | 92 | 4.79% |
Daniel Vetter | 7727 | 9.73% | 211 | 11.00% |
Maarten Lankhorst | 7720 | 9.72% | 169 | 8.81% |
Chris Wilson | 4503 | 5.67% | 155 | 8.08% |
Ander Conselvan de Oliveira | 2977 | 3.75% | 80 | 4.17% |
Paulo Zanoni | 2755 | 3.47% | 82 | 4.27% |
Imre Deak | 2220 | 2.80% | 64 | 3.34% |
Zhenyu Wang | 1973 | 2.48% | 14 | 0.73% |
Jani Nikula | 1238 | 1.56% | 67 | 3.49% |
Damien Lespiau | 1142 | 1.44% | 50 | 2.61% |
Matt Roper | 1086 | 1.37% | 39 | 2.03% |
Chon Ming Lee | 964 | 1.21% | 7 | 0.36% |
Stephen Chandler Paul | 923 | 1.16% | 11 | 0.57% |
Chandra Konduru | 850 | 1.07% | 6 | 0.31% |
Tvrtko A. Ursulin | 724 | 0.91% | 44 | 2.29% |
Ma Ling | 504 | 0.63% | 4 | 0.21% |
Keith Packard | 400 | 0.50% | 14 | 0.73% |
Shashank Sharma | 350 | 0.44% | 11 | 0.57% |
Vijay Purushothaman | 329 | 0.41% | 6 | 0.31% |
Eric Anholt | 318 | 0.40% | 6 | 0.31% |
Kumar, Mahesh | 294 | 0.37% | 9 | 0.47% |
Shaohua Li | 294 | 0.37% | 2 | 0.10% |
Vandana Kannan | 284 | 0.36% | 5 | 0.26% |
Rodrigo Vivi | 254 | 0.32% | 19 | 0.99% |
Radhakrishna Sripada | 247 | 0.31% | 4 | 0.21% |
Ben Widawsky | 242 | 0.30% | 9 | 0.47% |
Lucas De Marchi | 227 | 0.29% | 10 | 0.52% |
Dave Airlie | 210 | 0.26% | 13 | 0.68% |
Azhar Shaikh | 202 | 0.25% | 1 | 0.05% |
Eugeni Dodonov | 183 | 0.23% | 7 | 0.36% |
James Ausmus | 172 | 0.22% | 3 | 0.16% |
Hans de Goede | 159 | 0.20% | 4 | 0.21% |
Vandita Kulkarni | 157 | 0.20% | 7 | 0.36% |
Mika Kahola | 128 | 0.16% | 4 | 0.21% |
Satheeshakrishna M | 125 | 0.16% | 2 | 0.10% |
Manasi D Navare | 118 | 0.15% | 5 | 0.26% |
Lionel Landwerlin | 111 | 0.14% | 3 | 0.16% |
Kevin Strasser | 104 | 0.13% | 2 | 0.10% |
Gustavo Padovan | 103 | 0.13% | 6 | 0.31% |
Vidya Srinivas | 99 | 0.12% | 1 | 0.05% |
Dhinakaran Pandiyan | 99 | 0.12% | 7 | 0.36% |
Swati Sharma | 96 | 0.12% | 2 | 0.10% |
Ramalingam C | 82 | 0.10% | 3 | 0.16% |
Lukas Wunner | 82 | 0.10% | 2 | 0.10% |
Adam Jackson | 81 | 0.10% | 6 | 0.31% |
Yakui Zhao | 80 | 0.10% | 6 | 0.31% |
Nabendu Maiti | 77 | 0.10% | 2 | 0.10% |
Rob Clark | 71 | 0.09% | 4 | 0.21% |
Wayne Boyer | 69 | 0.09% | 1 | 0.05% |
Joonas Lahtinen | 68 | 0.09% | 2 | 0.10% |
Madhav Chauhan | 65 | 0.08% | 4 | 0.21% |
Juha-Pekka Heikkila | 65 | 0.08% | 3 | 0.16% |
Kristian Högsberg | 62 | 0.08% | 6 | 0.31% |
Clint Taylor | 62 | 0.08% | 3 | 0.16% |
Carl Worth | 49 | 0.06% | 1 | 0.05% |
José Roberto de Souza | 42 | 0.05% | 8 | 0.42% |
Sonika Jindal | 41 | 0.05% | 3 | 0.16% |
Bob Paauwe | 41 | 0.05% | 2 | 0.10% |
Uma Shankar | 40 | 0.05% | 2 | 0.10% |
Sagar Arun Kamble | 37 | 0.05% | 1 | 0.05% |
Vivek Kasireddy | 36 | 0.05% | 2 | 0.10% |
Mika Kuoppala | 34 | 0.04% | 1 | 0.05% |
Sean Paul | 33 | 0.04% | 2 | 0.10% |
Daniele Ceraolo Spurio | 31 | 0.04% | 3 | 0.16% |
Krzysztof Mazur | 28 | 0.04% | 1 | 0.05% |
Yuanhan Liu | 28 | 0.04% | 1 | 0.05% |
Shobhit Kumar | 26 | 0.03% | 3 | 0.16% |
Egbert Eich | 22 | 0.03% | 1 | 0.05% |
Daniel Stone | 21 | 0.03% | 2 | 0.10% |
Robert Foss | 15 | 0.02% | 1 | 0.05% |
Alexander Lam | 14 | 0.02% | 1 | 0.05% |
Linus Torvalds | 14 | 0.02% | 1 | 0.05% |
Patrik Jakobsson | 13 | 0.02% | 2 | 0.10% |
David Weinehall | 13 | 0.02% | 2 | 0.10% |
Joe Perches | 13 | 0.02% | 1 | 0.05% |
Sam Ravnborg | 12 | 0.02% | 1 | 0.05% |
Shawn C Lee | 11 | 0.01% | 1 | 0.05% |
Gajanan Bhat | 10 | 0.01% | 1 | 0.05% |
Andrea Arcangeli | 10 | 0.01% | 1 | 0.05% |
Pradeep Bhat | 10 | 0.01% | 1 | 0.05% |
Dan Carpenter | 7 | 0.01% | 1 | 0.05% |
Gustavo A. R. Silva | 5 | 0.01% | 3 | 0.16% |
Xiong Zhang | 5 | 0.01% | 1 | 0.05% |
Aditya Swarup | 5 | 0.01% | 1 | 0.05% |
Matthias Kaehlcke | 4 | 0.01% | 1 | 0.05% |
Hannes Eder | 4 | 0.01% | 1 | 0.05% |
Christophe Jaillet | 3 | 0.00% | 1 | 0.05% |
Artem B. Bityutskiy | 3 | 0.00% | 1 | 0.05% |
Xu, Anhua | 3 | 0.00% | 1 | 0.05% |
Michal Wajdeczko | 3 | 0.00% | 1 | 0.05% |
Alex Goins | 2 | 0.00% | 1 | 0.05% |
Fengguang Wu | 2 | 0.00% | 1 | 0.05% |
Xi Ruoyao | 2 | 0.00% | 1 | 0.05% |
Arnd Bergmann | 2 | 0.00% | 1 | 0.05% |
Christian König | 2 | 0.00% | 1 | 0.05% |
Tejun Heo | 2 | 0.00% | 1 | 0.05% |
Harsha Sharma | 2 | 0.00% | 1 | 0.05% |
Matthew Auld | 2 | 0.00% | 2 | 0.10% |
Thomas Zimmermann | 2 | 0.00% | 1 | 0.05% |
Eric Engestrom | 2 | 0.00% | 2 | 0.10% |
Ayan Halder | 1 | 0.00% | 1 | 0.05% |
Thomas Jarosch | 1 | 0.00% | 1 | 0.05% |
Janusz Krzysztofik | 1 | 0.00% | 1 | 0.05% |
Jason Stubbs | 1 | 0.00% | 1 | 0.05% |
Thierry Reding | 1 | 0.00% | 1 | 0.05% |
Carsten Emde | 1 | 0.00% | 1 | 0.05% |
Rafael Barbalho | 1 | 0.00% | 1 | 0.05% |
Total | 79401 | 1919 |
/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> */ #include <linux/i2c.h> #include <linux/input.h> #include <linux/intel-iommu.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/dma-resv.h> #include <linux/slab.h> #include <linux/vgaarb.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_atomic_uapi.h> #include <drm/drm_dp_helper.h> #include <drm/drm_edid.h> #include <drm/drm_fourcc.h> #include <drm/drm_plane_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_rect.h> #include <drm/i915_drm.h> #include "display/intel_crt.h" #include "display/intel_ddi.h" #include "display/intel_dp.h" #include "display/intel_dsi.h" #include "display/intel_dvo.h" #include "display/intel_gmbus.h" #include "display/intel_hdmi.h" #include "display/intel_lvds.h" #include "display/intel_sdvo.h" #include "display/intel_tv.h" #include "display/intel_vdsc.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_acpi.h" #include "intel_atomic.h" #include "intel_atomic_plane.h" #include "intel_bw.h" #include "intel_cdclk.h" #include "intel_color.h" #include "intel_display_types.h" #include "intel_fbc.h" #include "intel_fbdev.h" #include "intel_fifo_underrun.h" #include "intel_frontbuffer.h" #include "intel_hdcp.h" #include "intel_hotplug.h" #include "intel_overlay.h" #include "intel_pipe_crc.h" #include "intel_pm.h" #include "intel_psr.h" #include "intel_quirks.h" #include "intel_sideband.h" #include "intel_sprite.h" #include "intel_tc.h" /* Primary plane formats for gen <= 3 */ static const u32 i8xx_primary_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_XRGB8888, }; /* Primary plane formats for gen >= 4 */ static const u32 i965_primary_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_XBGR2101010, }; static const u64 i9xx_format_modifiers[] = { I915_FORMAT_MOD_X_TILED, DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; /* Cursor formats */ static const u32 intel_cursor_formats[] = { DRM_FORMAT_ARGB8888, }; static const u64 cursor_format_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); static int intel_framebuffer_init(struct intel_framebuffer *ifb, struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd); static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2); static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state); static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state); static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config); static void intel_begin_crtc_commit(struct intel_atomic_state *, struct intel_crtc *); static void intel_finish_crtc_commit(struct intel_atomic_state *, struct intel_crtc *); static void intel_crtc_init_scalers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state); static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state); static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state); static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state); static void intel_modeset_setup_hw_state(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx); static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); struct intel_limit { struct { int min, max; } dot, vco, n, m, m1, m2, p, p1; struct { int dot_limit; int p2_slow, p2_fast; } p2; }; /* returns HPLL frequency in kHz */ int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) { int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; /* Obtain SKU information */ hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & CCK_FUSE_HPLL_FREQ_MASK; return vco_freq[hpll_freq] * 1000; } int vlv_get_cck_clock(struct drm_i915_private *dev_priv, const char *name, u32 reg, int ref_freq) { u32 val; int divider; val = vlv_cck_read(dev_priv, reg); divider = val & CCK_FREQUENCY_VALUES; WARN((val & CCK_FREQUENCY_STATUS) != (divider << CCK_FREQUENCY_STATUS_SHIFT), "%s change in progress\n", name); return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); } int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, const char *name, u32 reg) { int hpll; vlv_cck_get(dev_priv); if (dev_priv->hpll_freq == 0) dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); vlv_cck_put(dev_priv); return hpll; } static void intel_update_czclk(struct drm_i915_private *dev_priv) { if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) return; dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", CCK_CZ_CLOCK_CONTROL); DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); } static inline u32 /* units of 100MHz */ intel_fdi_link_freq(struct drm_i915_private *dev_priv, const struct intel_crtc_state *pipe_config) { if (HAS_DDI(dev_priv)) return pipe_config->port_clock; /* SPLL */ else return dev_priv->fdi_pll_freq; } static const struct intel_limit intel_limits_i8xx_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 2 }, }; static const struct intel_limit intel_limits_i8xx_dvo = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 4 }, }; static const struct intel_limit intel_limits_i8xx_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 1, .max = 6 }, .p2 = { .dot_limit = 165000, .p2_slow = 14, .p2_fast = 7 }, }; static const struct intel_limit intel_limits_i9xx_sdvo = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const struct intel_limit intel_limits_i9xx_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 7, .max = 98 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 7 }, }; static const struct intel_limit intel_limits_g4x_sdvo = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 1, .max = 3}, .p2 = { .dot_limit = 270000, .p2_slow = 10, .p2_fast = 10 }, }; static const struct intel_limit intel_limits_g4x_hdmi = { .dot = { .min = 22000, .max = 400000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 16, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8}, .p2 = { .dot_limit = 165000, .p2_slow = 10, .p2_fast = 5 }, }; static const struct intel_limit intel_limits_g4x_single_channel_lvds = { .dot = { .min = 20000, .max = 115000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 0, .p2_slow = 14, .p2_fast = 14 }, }; static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { .dot = { .min = 80000, .max = 224000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 0, .p2_slow = 7, .p2_fast = 7 }, }; static const struct intel_limit intel_limits_pineview_sdvo = { .dot = { .min = 20000, .max = 400000}, .vco = { .min = 1700000, .max = 3500000 }, /* Pineview's Ncounter is a ring counter */ .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, /* Pineview only has one combined m divider, which we treat as m2. */ .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const struct intel_limit intel_limits_pineview_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1700000, .max = 3500000 }, .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 7, .max = 112 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 14 }, }; /* Ironlake / Sandybridge * * We calculate clock using (register_value + 2) for N/M1/M2, so here * the range value for them is (actual_value - 2). */ static const struct intel_limit intel_limits_ironlake_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 5 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 10, .p2_fast = 5 }, }; static const struct intel_limit intel_limits_ironlake_single_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 118 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const struct intel_limit intel_limits_ironlake_dual_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 56 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; /* LVDS 100mhz refclk limits. */ static const struct intel_limit intel_limits_ironlake_single_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 2 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; static const struct intel_limit intel_limits_vlv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 270000 * 5 }, .vco = { .min = 4000000, .max = 6000000 }, .n = { .min = 1, .max = 7 }, .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ }; static const struct intel_limit intel_limits_chv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 540000 * 5}, .vco = { .min = 4800000, .max = 6480000 }, .n = { .min = 1, .max = 1 }, .m1 = { .min = 2, .max = 2 }, .m2 = { .min = 24 << 22, .max = 175 << 22 }, .p1 = { .min = 2, .max = 4 }, .p2 = { .p2_slow = 1, .p2_fast = 14 }, }; static const struct intel_limit intel_limits_bxt = { /* FIXME: find real dot limits */ .dot = { .min = 0, .max = INT_MAX }, .vco = { .min = 4800000, .max = 6700000 }, .n = { .min = 1, .max = 1 }, .m1 = { .min = 2, .max = 2 }, /* FIXME: find real m2 limits */ .m2 = { .min = 2 << 22, .max = 255 << 22 }, .p1 = { .min = 2, .max = 4 }, .p2 = { .p2_slow = 1, .p2_fast = 20 }, }; /* WA Display #0827: Gen9:all */ static void skl_wa_827(struct drm_i915_private *dev_priv, int pipe, bool enable) { if (enable) I915_WRITE(CLKGATE_DIS_PSL(pipe), I915_READ(CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); else I915_WRITE(CLKGATE_DIS_PSL(pipe), I915_READ(CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); } /* Wa_2006604312:icl */ static void icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { if (enable) I915_WRITE(CLKGATE_DIS_PSL(pipe), I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); else I915_WRITE(CLKGATE_DIS_PSL(pipe), I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); } static bool needs_modeset(const struct intel_crtc_state *state) { return drm_atomic_crtc_needs_modeset(&state->base); } /* * Platform specific helpers to calculate the port PLL loopback- (clock.m), * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. * The helpers' return value is the rate of the clock that is fed to the * display engine's pipe which can be the above fast dot clock rate or a * divided-down version of it. */ /* m1 is reserved as 0 in Pineview, n is a ring counter */ static int pnv_calc_dpll_params(int refclk, struct dpll *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot; } static u32 i9xx_dpll_compute_m(struct dpll *dpll) { return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); } static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) { clock->m = i9xx_dpll_compute_m(clock); clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot; } static int vlv_calc_dpll_params(int refclk, struct dpll *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot / 5; } int chv_calc_dpll_params(int refclk, struct dpll *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return 0; clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); return clock->dot / 5; } #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) /* * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, const struct intel_limit *limit, const struct dpll *clock) { if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid("n out of range\n"); if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid("p1 out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid("m1 out of range\n"); if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) if (clock->m1 <= clock->m2) INTELPllInvalid("m1 <= m2\n"); if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) { if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid("p out of range\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid("m out of range\n"); } if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" depending on the multiplier, * connector, etc., rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid("dot out of range\n"); return true; } static int i9xx_select_p2_div(const struct intel_limit *limit, const struct intel_crtc_state *crtc_state, int target) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { /* * For LVDS just rely on its current settings for dual-channel. * We haven't figured out how to reliably set up different * single/dual channel state, if we even can. */ if (intel_is_dual_link_lvds(dev_priv)) return limit->p2.p2_fast; else return limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) return limit->p2.p2_slow; else return limit->p2.p2_fast; } } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool i9xx_find_best_dpll(const struct intel_limit *limit, struct intel_crtc_state *crtc_state, int target, int refclk, struct dpll *match_clock, struct dpll *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; struct dpll clock; int err = target; memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { if (clock.m2 >= clock.m1) break; for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; i9xx_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool pnv_find_best_dpll(const struct intel_limit *limit, struct intel_crtc_state *crtc_state, int target, int refclk, struct dpll *match_clock, struct dpll *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; struct dpll clock; int err = target; memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; pnv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. * * Target and reference clocks are specified in kHz. * * If match_clock is provided, then best_clock P divider must match the P * divider from @match_clock used for LVDS downclocking. */ static bool g4x_find_best_dpll(const struct intel_limit *limit, struct intel_crtc_state *crtc_state, int target, int refclk, struct dpll *match_clock, struct dpll *best_clock) { struct drm_device *dev = crtc_state->base.crtc->dev; struct dpll clock; int max_n; bool found = false; /* approximately equals target * 0.00585 */ int err_most = (target >> 8) + (target >> 9); memset(best_clock, 0, sizeof(*best_clock)); clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); max_n = limit->n.max; /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { /* based on hardware requirement, prefere larger m1,m2 */ for (clock.m1 = limit->m1.max; clock.m1 >= limit->m1.min; clock.m1--) { for (clock.m2 = limit->m2.max; clock.m2 >= limit->m2.min; clock.m2--) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { int this_err; i9xx_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err_most) { *best_clock = clock; err_most = this_err; max_n = clock.n; found = true; } } } } } return found; } /* * Check if the calculated PLL configuration is more optimal compared to the * best configuration and error found so far. Return the calculated error. */ static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, const struct dpll *calculated_clock, const struct dpll *best_clock, unsigned int best_error_ppm, unsigned int *error_ppm) { /* * For CHV ignore the error and consider only the P value. * Prefer a bigger P value based on HW requirements. */ if (IS_CHERRYVIEW(to_i915(dev))) { *error_ppm = 0; return calculated_clock->p > best_clock->p; } if (WARN_ON_ONCE(!target_freq)) return false; *error_ppm = div_u64(1000000ULL * abs(target_freq - calculated_clock->dot), target_freq); /* * Prefer a better P value over a better (smaller) error if the error * is small. Ensure this preference for future configurations too by * setting the error to 0. */ if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { *error_ppm = 0; return true; } return *error_ppm + 10 < best_error_ppm; } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ static bool vlv_find_best_dpll(const struct intel_limit *limit, struct intel_crtc_state *crtc_state, int target, int refclk, struct dpll *match_clock, struct dpll *best_clock) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct dpll clock; unsigned int bestppm = 1000000; /* min update 19.2 MHz */ int max_n = min(limit->n.max, refclk / 19200); bool found = false; target *= 5; /* fast clock */ memset(best_clock, 0, sizeof(*best_clock)); /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { clock.p = clock.p1 * clock.p2; /* based on hardware requirement, prefer bigger m1,m2 values */ for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { unsigned int ppm; clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, refclk * clock.m1); vlv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) continue; if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, bestppm, &ppm)) continue; *best_clock = clock; bestppm = ppm; found = true; } } } } return found; } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ static bool chv_find_best_dpll(const struct intel_limit *limit, struct intel_crtc_state *crtc_state, int target, int refclk, struct dpll *match_clock, struct dpll *best_clock) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; unsigned int best_error_ppm; struct dpll clock; u64 m2; int found = false; memset(best_clock, 0, sizeof(*best_clock)); best_error_ppm = 1000000; /* * Based on hardware doc, the n always set to 1, and m1 always * set to 2. If requires to support 200Mhz refclk, we need to * revisit this because n may not 1 anymore. */ clock.n = 1, clock.m1 = 2; target *= 5; /* fast clock */ for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { unsigned int error_ppm; clock.p = clock.p1 * clock.p2; m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, refclk * clock.m1); if (m2 > INT_MAX/clock.m1) continue; clock.m2 = m2; chv_calc_dpll_params(refclk, &clock); if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) continue; if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, best_error_ppm, &error_ppm)) continue; *best_clock = clock; best_error_ppm = error_ppm; found = true; } } return found; } bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, struct dpll *best_clock) { int refclk = 100000; const struct intel_limit *limit = &intel_limits_bxt; return chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, best_clock); } bool intel_crtc_active(struct intel_crtc *crtc) { /* Be paranoid as we can arrive here with only partial * state retrieved from the hardware during setup. * * We can ditch the adjusted_mode.crtc_clock check as soon * as Haswell has gained clock readout/fastboot support. * * We can ditch the crtc->primary->state->fb check as soon as we can * properly reconstruct framebuffers. * * FIXME: The intel_crtc->active here should be switched to * crtc->state->active once we have proper CRTC states wired up * for atomic. */ return crtc->active && crtc->base.primary->state->fb && crtc->config->base.adjusted_mode.crtc_clock; } enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); return crtc->config->cpu_transcoder; } static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t reg = PIPEDSL(pipe); u32 line1, line2; u32 line_mask; if (IS_GEN(dev_priv, 2)) line_mask = DSL_LINEMASK_GEN2; else line_mask = DSL_LINEMASK_GEN3; line1 = I915_READ(reg) & line_mask; msleep(5); line2 = I915_READ(reg) & line_mask; return line1 != line2; } static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Wait for the display line to settle/start moving */ if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) DRM_ERROR("pipe %c scanline %s wait timed out\n", pipe_name(pipe), onoff(state)); } static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, false); } static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, true); } static void intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (INTEL_GEN(dev_priv) >= 4) { enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; i915_reg_t reg = PIPECONF(cpu_transcoder); /* Wait for the Pipe State to go off */ if (intel_de_wait_for_clear(dev_priv, reg, I965_PIPECONF_ACTIVE, 100)) WARN(1, "pipe_off wait timed out\n"); } else { intel_wait_for_pipe_scanline_stopped(crtc); } } /* Only for pre-ILK configs */ void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(DPLL(pipe)); cur_state = !!(val & DPLL_VCO_ENABLE); I915_STATE_WARN(cur_state != state, "PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } /* XXX: the dsi pll is shared between MIPI DSI ports */ void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) { u32 val; bool cur_state; vlv_cck_get(dev_priv); val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); vlv_cck_put(dev_priv); cur_state = val & DSI_PLL_VCO_EN; I915_STATE_WARN(cur_state != state, "DSI PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } static void assert_fdi_tx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (HAS_DDI(dev_priv)) { /* DDI does not have a specific FDI_TX register */ u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); } else { u32 val = I915_READ(FDI_TX_CTL(pipe)); cur_state = !!(val & FDI_TX_ENABLE); } I915_STATE_WARN(cur_state != state, "FDI TX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) static void assert_fdi_rx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* ILK FDI PLL is always enabled */ if (IS_GEN(dev_priv, 5)) return; /* On Haswell, DDI ports are responsible for the FDI PLL setup */ if (HAS_DDI(dev_priv)) return; val = I915_READ(FDI_TX_CTL(pipe)); I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); } void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { u32 val; bool cur_state; val = I915_READ(FDI_RX_CTL(pipe)); cur_state = !!(val & FDI_RX_PLL_ENABLE); I915_STATE_WARN(cur_state != state, "FDI RX PLL assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t pp_reg; u32 val; enum pipe panel_pipe = INVALID_PIPE; bool locked = true; if (WARN_ON(HAS_DDI(dev_priv))) return; if (HAS_PCH_SPLIT(dev_priv)) { u32 port_sel; pp_reg = PP_CONTROL(0); port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; switch (port_sel) { case PANEL_PORT_SELECT_LVDS: intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); break; case PANEL_PORT_SELECT_DPA: intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); break; case PANEL_PORT_SELECT_DPC: intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); break; case PANEL_PORT_SELECT_DPD: intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); break; default: MISSING_CASE(port_sel); break; } } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* presumably write lock depends on pipe, not port select */ pp_reg = PP_CONTROL(pipe); panel_pipe = pipe; } else { u32 port_sel; pp_reg = PP_CONTROL(0); port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS); intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); } val = I915_READ(pp_reg); if (!(val & PANEL_POWER_ON) || ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) locked = false; I915_STATE_WARN(panel_pipe == pipe && locked, "panel assertion failure, pipe %c regs locked\n", pipe_name(pipe)); } void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) state = true; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (wakeref) { u32 val = I915_READ(PIPECONF(cpu_transcoder)); cur_state = !!(val & PIPECONF_ENABLE); intel_display_power_put(dev_priv, power_domain, wakeref); } else { cur_state = false; } I915_STATE_WARN(cur_state != state, "pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), onoff(state), onoff(cur_state)); } static void assert_plane(struct intel_plane *plane, bool state) { enum pipe pipe; bool cur_state; cur_state = plane->get_hw_state(plane, &pipe); I915_STATE_WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", plane->base.name, onoff(state), onoff(cur_state)); } #define assert_plane_enabled(p) assert_plane(p, true) #define assert_plane_disabled(p) assert_plane(p, false) static void assert_planes_disabled(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) assert_plane_disabled(plane); } static void assert_vblank_disabled(struct drm_crtc *crtc) { if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) drm_crtc_vblank_put(crtc); } void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; bool enabled; val = I915_READ(PCH_TRANSCONF(pipe)); enabled = !!(val & TRANS_ENABLE); I915_STATE_WARN(enabled, "transcoder assertion failed, should be off on pipe %c but is still active\n", pipe_name(pipe)); } static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, enum port port, i915_reg_t dp_reg) { enum pipe port_pipe; bool state; state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); I915_STATE_WARN(state && port_pipe == pipe, "PCH DP %c enabled on transcoder %c, should be disabled\n", port_name(port), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, "IBX PCH DP %c still using transcoder B\n", port_name(port)); } static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, enum port port, i915_reg_t hdmi_reg) { enum pipe port_pipe; bool state; state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); I915_STATE_WARN(state && port_pipe == pipe, "PCH HDMI %c enabled on transcoder %c, should be disabled\n", port_name(port), pipe_name(pipe)); I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, "IBX PCH HDMI %c still using transcoder B\n", port_name(port)); } static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { enum pipe port_pipe; assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && port_pipe == pipe, "PCH VGA enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && port_pipe == pipe, "PCH LVDS enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); /* PCH SDVOB multiplex with HDMIB */ assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); } static void _vlv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); POSTING_READ(DPLL(pipe)); udelay(150); if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) DRM_ERROR("DPLL %d failed to lock\n", pipe); } static void vlv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; assert_pipe_disabled(dev_priv, pipe); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) _vlv_enable_pll(crtc, pipe_config); I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(pipe)); } static void _chv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 tmp; vlv_dpio_get(dev_priv); /* Enable back the 10bit clock to display controller */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); tmp |= DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); vlv_dpio_put(dev_priv); /* * Need to wait > 100ns between dclkp clock enable bit and PLL enable. */ udelay(1); /* Enable PLL */ I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); /* Check PLL is locked */ if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) DRM_ERROR("PLL %d failed to lock\n", pipe); } static void chv_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; assert_pipe_disabled(dev_priv, pipe); /* PLL is protected by panel, make sure we can write it */ assert_panel_unlocked(dev_priv, pipe); if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) _chv_enable_pll(crtc, pipe_config); if (pipe != PIPE_A) { /* * WaPixelRepeatModeFixForC0:chv * * DPLLCMD is AWOL. Use chicken bits to propagate * the value from DPLLBMD to either pipe B or C. */ I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); I915_WRITE(CBR4_VLV, 0); dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; /* * DPLLB VGA mode also seems to cause problems. * We should always have it disabled. */ WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); } else { I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(pipe)); } } static bool i9xx_has_pps(struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return false; return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } static void i9xx_enable_pll(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); i915_reg_t reg = DPLL(crtc->pipe); u32 dpll = crtc_state->dpll_hw_state.dpll; int i; assert_pipe_disabled(dev_priv, crtc->pipe); /* PLL is protected by panel, make sure we can write it */ if (i9xx_has_pps(dev_priv)) assert_panel_unlocked(dev_priv, crtc->pipe); /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS); I915_WRITE(reg, dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(reg); udelay(150); if (INTEL_GEN(dev_priv) >= 4) { I915_WRITE(DPLL_MD(crtc->pipe), crtc_state->dpll_hw_state.dpll_md); } else { /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(reg, dpll); } /* We do this three times for luck */ for (i = 0; i < 3; i++) { I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ } } static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Don't disable pipe or pipe PLLs if needed */ if (IS_I830(dev_priv)) return; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); POSTING_READ(DPLL(pipe)); } static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); val = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); } static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); val = DPLL_SSC_REF_CLK_CHV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); vlv_dpio_get(dev_priv); /* Disable 10bit clock to display controller */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); val &= ~DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); vlv_dpio_put(dev_priv); } void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dport, unsigned int expected_mask) { u32 port_mask; i915_reg_t dpll_reg; switch (dport->base.port) { case PORT_B: port_mask = DPLL_PORTB_READY_MASK; dpll_reg = DPLL(0); break; case PORT_C: port_mask = DPLL_PORTC_READY_MASK; dpll_reg = DPLL(0); expected_mask <<= 4; break; case PORT_D: port_mask = DPLL_PORTD_READY_MASK; dpll_reg = DPIO_PHY_STATUS; break; default: BUG(); } if (intel_de_wait_for_register(dev_priv, dpll_reg, port_mask, expected_mask, 1000)) WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n", port_name(dport->base.port), I915_READ(dpll_reg) & port_mask, expected_mask); } static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val, pipeconf_val; /* Make sure PCH DPLL is enabled */ assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, pipe); assert_fdi_rx_enabled(dev_priv, pipe); if (HAS_PCH_CPT(dev_priv)) { /* Workaround: Set the timing override bit before enabling the * pch transcoder. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); pipeconf_val = I915_READ(PIPECONF(pipe)); if (HAS_PCH_IBX(dev_priv)) { /* * Make the BPC in transcoder be consistent with * that in pipeconf reg. For HDMI we must use 8bpc * here for both 8bpc and 12bpc. */ val &= ~PIPECONF_BPC_MASK; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) val |= PIPECONF_8BPC; else val |= pipeconf_val & PIPECONF_BPC_MASK; } val &= ~TRANS_INTERLACE_MASK; if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { if (HAS_PCH_IBX(dev_priv) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) val |= TRANS_LEGACY_INTERLACED_ILK; else val |= TRANS_INTERLACED; } else { val |= TRANS_PROGRESSIVE; } I915_WRITE(reg, val | TRANS_ENABLE); if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); } static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 val, pipeconf_val; /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); assert_fdi_rx_enabled(dev_priv, PIPE_A); /* Workaround: set timing override bit. */ val = I915_READ(TRANS_CHICKEN2(PIPE_A)); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); val = TRANS_ENABLE; pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == PIPECONF_INTERLACED_ILK) val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(LPT_TRANSCONF, val); if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, TRANS_STATE_ENABLE, 100)) DRM_ERROR("Failed to enable PCH transcoder\n"); } static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t reg; u32 val; /* FDI relies on the transcoder */ assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); /* Ports must be off as well */ assert_pch_ports_disabled(dev_priv, pipe); reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); val &= ~TRANS_ENABLE; I915_WRITE(reg, val); /* wait for PCH transcoder off, transcoder state */ if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); if (HAS_PCH_CPT(dev_priv)) { /* Workaround: Clear the timing override chicken bit again. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } } void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(LPT_TRANSCONF); val &= ~TRANS_ENABLE; I915_WRITE(LPT_TRANSCONF, val); /* wait for PCH transcoder off, transcoder state */ if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, TRANS_STATE_ENABLE, 50)) DRM_ERROR("Failed to disable PCH transcoder\n"); /* Workaround: clear timing override bit. */ val = I915_READ(TRANS_CHICKEN2(PIPE_A)); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); } enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (HAS_PCH_LPT(dev_priv)) return PIPE_A; else return crtc->pipe; } static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); /* * On i965gm the hardware frame counter reads * zero when the TV encoder is enabled :( */ if (IS_I965GM(dev_priv) && (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) return 0; if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) return 0xffffffff; /* full 32 bit counter */ else if (INTEL_GEN(dev_priv) >= 3) return 0xffffff; /* only 24 bits of frame count */ else return 0; /* Gen2 doesn't have a hardware frame counter */ } static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); drm_crtc_set_max_vblank_count(&crtc->base, intel_crtc_max_vblank_count(crtc_state)); drm_crtc_vblank_on(&crtc->base); } static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); assert_planes_disabled(crtc); /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (HAS_GMCH(dev_priv)) { if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); } else { if (new_crtc_state->has_pch_encoder) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, intel_crtc_pch_transcoder(crtc)); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } trace_intel_pipe_enable(crtc); reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if (val & PIPECONF_ENABLE) { /* we keep both pipes enabled on 830 */ WARN_ON(!IS_I830(dev_priv)); return; } I915_WRITE(reg, val | PIPECONF_ENABLE); POSTING_READ(reg); /* * Until the pipe starts PIPEDSL reads will return a stale value, * which causes an apparent vblank timestamp jump when PIPEDSL * resets to its proper value. That also messes up the frame count * when it's derived from the timestamps. So let's wait for the * pipe to start properly before we call drm_crtc_vblank_on() */ if (intel_crtc_max_vblank_count(new_crtc_state) == 0) intel_wait_for_pipe_scanline_moving(crtc); } static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(crtc); trace_intel_pipe_disable(crtc); reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if ((val & PIPECONF_ENABLE) == 0) return; /* * Double wide has implications for planes * so best keep it disabled when not needed. */ if (old_crtc_state->double_wide) val &= ~PIPECONF_DOUBLE_WIDE; /* Don't disable pipe or pipe PLLs if needed */ if (!IS_I830(dev_priv)) val &= ~PIPECONF_ENABLE; I915_WRITE(reg, val); if ((val & PIPECONF_ENABLE) == 0) intel_wait_for_pipe_off(old_crtc_state); } static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) { return IS_GEN(dev_priv, 2) ? 2048 : 4096; } static unsigned int intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_tile_size(dev_priv); case I915_FORMAT_MOD_X_TILED: if (IS_GEN(dev_priv, 2)) return 128; else return 512; case I915_FORMAT_MOD_Y_TILED_CCS: if (color_plane == 1) return 128; /* fall through */ case I915_FORMAT_MOD_Y_TILED: if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) return 128; else return 512; case I915_FORMAT_MOD_Yf_TILED_CCS: if (color_plane == 1) return 128; /* fall through */ case I915_FORMAT_MOD_Yf_TILED: switch (cpp) { case 1: return 64; case 2: case 4: return 128; case 8: case 16: return 256; default: MISSING_CASE(cpp); return cpp; } break; default: MISSING_CASE(fb->modifier); return cpp; } } static unsigned int intel_tile_height(const struct drm_framebuffer *fb, int color_plane) { return intel_tile_size(to_i915(fb->dev)) / intel_tile_width_bytes(fb, color_plane); } /* Return the tile dimensions in pixel units */ static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, unsigned int *tile_width, unsigned int *tile_height) { unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); unsigned int cpp = fb->format->cpp[color_plane]; *tile_width = tile_width_bytes / cpp; *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes; } unsigned int intel_fb_align_height(const struct drm_framebuffer *fb, int color_plane, unsigned int height) { unsigned int tile_height = intel_tile_height(fb, color_plane); return ALIGN(height, tile_height); } unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) size += rot_info->plane[i].width * rot_info->plane[i].height; return size; } unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) size += rem_info->plane[i].width * rem_info->plane[i].height; return size; } static void intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, const struct drm_framebuffer *fb, unsigned int rotation) { view->type = I915_GGTT_VIEW_NORMAL; if (drm_rotation_90_or_270(rotation)) { view->type = I915_GGTT_VIEW_ROTATED; view->rotated = to_intel_framebuffer(fb)->rot_info; } } static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return 16 * 1024; else if (IS_I85X(dev_priv)) return 256; else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) return 32; else return 4 * 1024; } static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) return 256 * 1024; else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return 128 * 1024; else if (INTEL_GEN(dev_priv) >= 4) return 4 * 1024; else return 0; } static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); /* AUX_DIST needs only 4K alignment */ if (color_plane == 1) return 4096; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_linear_alignment(dev_priv); case I915_FORMAT_MOD_X_TILED: if (INTEL_GEN(dev_priv) >= 9) return 256 * 1024; return 0; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: return 1 * 1024 * 1024; default: MISSING_CASE(fb->modifier); return 0; } } static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); return INTEL_GEN(dev_priv) < 4 || (plane->has_fbc && plane_state->view.type == I915_GGTT_VIEW_NORMAL); } struct i915_vma * intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, const struct i915_ggtt_view *view, bool uses_fence, unsigned long *out_flags) { struct drm_device *dev = fb->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_object *obj = intel_fb_obj(fb); intel_wakeref_t wakeref; struct i915_vma *vma; unsigned int pinctl; u32 alignment; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); alignment = intel_surf_alignment(fb, 0); /* Note that the w/a also requires 64 PTE of padding following the * bo. We currently fill all unused PTE with the shadow page and so * we should always have valid PTE following the scanout preventing * the VT-d warning. */ if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) alignment = 256 * 1024; /* * Global gtt pte registers are special registers which actually forward * writes to a chunk of system memory. Which means that there is no risk * that the register values disappear as soon as we call * intel_runtime_pm_put(), so it is correct to wrap only the * pin/unpin/fence and not more. */ wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); i915_gem_object_lock(obj); atomic_inc(&dev_priv->gpu_error.pending_fb_pin); pinctl = 0; /* Valleyview is definitely limited to scanning out the first * 512MiB. Lets presume this behaviour was inherited from the * g4x display engine and that all earlier gen are similarly * limited. Testing suggests that it is a little more * complicated than this. For example, Cherryview appears quite * happy to scanout from anywhere within its global aperture. */ if (HAS_GMCH(dev_priv)) pinctl |= PIN_MAPPABLE; vma = i915_gem_object_pin_to_display_plane(obj, alignment, view, pinctl); if (IS_ERR(vma)) goto err; if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { int ret; /* Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always, when * possible, install a fence as the cost is not that onerous. * * If we fail to fence the tiled scanout, then either the * modeset will reject the change (which is highly unlikely as * the affected systems, all but one, do not have unmappable * space) or we will not be able to enable full powersaving * techniques (also likely not to apply due to various limits * FBC and the like impose on the size of the buffer, which * presumably we violated anyway with this unmappable buffer). * Anyway, it is presumably better to stumble onwards with * something and try to run the system in a "less than optimal" * mode that matches the user configuration. */ ret = i915_vma_pin_fence(vma); if (ret != 0 && INTEL_GEN(dev_priv) < 4) { i915_gem_object_unpin_from_display_plane(vma); vma = ERR_PTR(ret); goto err; } if (ret == 0 && vma->fence) *out_flags |= PLANE_HAS_FENCE; } i915_vma_get(vma); err: atomic_dec(&dev_priv->gpu_error.pending_fb_pin); i915_gem_object_unlock(obj); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return vma; } void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) { lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); i915_gem_object_lock(vma->obj); if (flags & PLANE_HAS_FENCE) i915_vma_unpin_fence(vma); i915_gem_object_unpin_from_display_plane(vma); i915_gem_object_unlock(vma->obj); i915_vma_put(vma); } static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { if (drm_rotation_90_or_270(rotation)) return to_intel_framebuffer(fb)->rotated[color_plane].pitch; else return fb->pitches[color_plane]; } /* * Convert the x/y offsets into a linear offset. * Only valid with 0/180 degree rotation, which is fine since linear * offset is only used with linear buffers on pre-hsw and tiled buffers * with gen2/3, and 90/270 degree rotations isn't supported on any of them. */ u32 intel_fb_xy_to_linear(int x, int y, const struct intel_plane_state *state, int color_plane) { const struct drm_framebuffer *fb = state->base.fb; unsigned int cpp = fb->format->cpp[color_plane]; unsigned int pitch = state->color_plane[color_plane].stride; return y * pitch + x * cpp; } /* * Add the x/y offsets derived from fb->offsets[] to the user * specified plane src x/y offsets. The resulting x/y offsets * specify the start of scanout from the beginning of the gtt mapping. */ void intel_add_fb_offsets(int *x, int *y, const struct intel_plane_state *state, int color_plane) { *x += state->color_plane[color_plane].x; *y += state->color_plane[color_plane].y; } static u32 intel_adjust_tile_offset(int *x, int *y, unsigned int tile_width, unsigned int tile_height, unsigned int tile_size, unsigned int pitch_tiles, u32 old_offset, u32 new_offset) { unsigned int pitch_pixels = pitch_tiles * tile_width; unsigned int tiles; WARN_ON(old_offset & (tile_size - 1)); WARN_ON(new_offset & (tile_size - 1)); WARN_ON(new_offset > old_offset); tiles = (old_offset - new_offset) / tile_size; *y += tiles / pitch_tiles * tile_height; *x += tiles % pitch_tiles * tile_width; /* minimize x in case it got needlessly big */ *y += *x / pitch_pixels * tile_height; *x %= pitch_pixels; return new_offset; } static bool is_surface_linear(u64 modifier, int color_plane) { return modifier == DRM_FORMAT_MOD_LINEAR; } static u32 intel_adjust_aligned_offset(int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation, unsigned int pitch, u32 old_offset, u32 new_offset) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; WARN_ON(new_offset > old_offset); if (!is_surface_linear(fb->modifier, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int pitch_tiles; tile_size = intel_tile_size(dev_priv); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, old_offset, new_offset); } else { old_offset += *y * pitch + *x * cpp; *y = (old_offset - new_offset) / pitch; *x = ((old_offset - new_offset) - *y * pitch) / cpp; } return new_offset; } /* * Adjust the tile offset by moving the difference into * the x/y offsets. */ static u32 intel_plane_adjust_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane, u32 old_offset, u32 new_offset) { return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane, state->base.rotation, state->color_plane[color_plane].stride, old_offset, new_offset); } /* * Computes the aligned offset to the base tile and adjusts * x, y. bytes per pixel is assumed to be a power-of-two. * * In the 90/270 rotated case, x and y are assumed * to be already rotated to match the rotated GTT view, and * pitch is the tile_height aligned framebuffer height. * * This function is used when computing the derived information * under intel_framebuffer, so using any of that information * here is not allowed. Anything under drm_framebuffer can be * used. This is why the user has to pass in the pitch since it * is specified in the rotated orientation. */ static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int pitch, unsigned int rotation, u32 alignment) { unsigned int cpp = fb->format->cpp[color_plane]; u32 offset, offset_aligned; if (alignment) alignment--; if (!is_surface_linear(fb->modifier, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int tile_rows, tiles, pitch_tiles; tile_size = intel_tile_size(dev_priv); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } tile_rows = *y / tile_height; *y %= tile_height; tiles = *x / tile_width; *x %= tile_width; offset = (tile_rows * pitch_tiles + tiles) * tile_size; offset_aligned = offset & ~alignment; intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, offset, offset_aligned); } else { offset = *y * pitch + *x * cpp; offset_aligned = offset & ~alignment; *y = (offset & alignment) / pitch; *x = ((offset & alignment) - *y * pitch) / cpp; } return offset_aligned; } static u32 intel_plane_compute_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane) { struct intel_plane *intel_plane = to_intel_plane(state->base.plane); struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); const struct drm_framebuffer *fb = state->base.fb; unsigned int rotation = state->base.rotation; int pitch = state->color_plane[color_plane].stride; u32 alignment; if (intel_plane->id == PLANE_CURSOR) alignment = intel_cursor_alignment(dev_priv); else alignment = intel_surf_alignment(fb, color_plane); return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, pitch, rotation, alignment); } /* Convert the fb->offset[] into x/y offsets */ static int intel_fb_offset_to_xy(int *x, int *y, const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int height; if (fb->modifier != DRM_FORMAT_MOD_LINEAR && fb->offsets[color_plane] % intel_tile_size(dev_priv)) { DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n", fb->offsets[color_plane], color_plane); return -EINVAL; } height = drm_framebuffer_plane_height(fb->height, fb, color_plane); height = ALIGN(height, intel_tile_height(fb, color_plane)); /* Catch potential overflows early */ if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), fb->offsets[color_plane])) { DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n", fb->offsets[color_plane], fb->pitches[color_plane], color_plane); return -ERANGE; } *x = 0; *y = 0; intel_adjust_aligned_offset(x, y, fb, color_plane, DRM_MODE_ROTATE_0, fb->pitches[color_plane], fb->offsets[color_plane], 0); return 0; } static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) { switch (fb_modifier) { case I915_FORMAT_MOD_X_TILED: return I915_TILING_X; case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Y_TILED_CCS: return I915_TILING_Y; default: return I915_TILING_NONE; } } /* * From the Sky Lake PRM: * "The Color Control Surface (CCS) contains the compression status of * the cache-line pairs. The compression state of the cache-line pair * is specified by 2 bits in the CCS. Each CCS cache-line represents * an area on the main surface of 16 x16 sets of 128 byte Y-tiled * cache-line-pairs. CCS is always Y tiled." * * Since cache line pairs refers to horizontally adjacent cache lines, * each cache line in the CCS corresponds to an area of 32x16 cache * lines on the main surface. Since each pixel is 4 bytes, this gives * us a ratio of one byte in the CCS for each 8x16 pixels in the * main surface. */ static const struct drm_format_info ccs_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, }; static const struct drm_format_info * lookup_format_info(const struct drm_format_info formats[], int num_formats, u32 format) { int i; for (i = 0; i < num_formats; i++) { if (formats[i].format == format) return &formats[i]; } return NULL; } static const struct drm_format_info * intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) { switch (cmd->modifier[0]) { case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: return lookup_format_info(ccs_formats, ARRAY_SIZE(ccs_formats), cmd->pixel_format); default: return NULL; } } bool is_ccs_modifier(u64 modifier) { return modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS; } u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { struct intel_crtc *crtc; struct intel_plane *plane; /* * We assume the primary plane for pipe A has * the highest stride limits of them all. */ crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A); if (!crtc) return 0; plane = to_intel_plane(crtc->base.primary); return plane->max_stride(plane, pixel_format, modifier, DRM_MODE_ROTATE_0); } static u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { /* * Arbitrary limit for gen4+ chosen to match the * render engine max stride. * * The new CCS hash mode makes remapping impossible */ if (!is_ccs_modifier(modifier)) { if (INTEL_GEN(dev_priv) >= 7) return 256*1024; else if (INTEL_GEN(dev_priv) >= 4) return 128*1024; } return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); } static u32 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { u32 max_stride = intel_plane_fb_max_stride(dev_priv, fb->format->format, fb->modifier); /* * To make remapping with linear generally feasible * we need the stride to be page aligned. */ if (fb->pitches[color_plane] > max_stride) return intel_tile_size(dev_priv); else return 64; } else { return intel_tile_width_bytes(fb, color_plane); } } bool intel_plane_can_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->base.fb; int i; /* We don't want to deal with remapping with cursors */ if (plane->id == PLANE_CURSOR) return false; /* * The display engine limits already match/exceed the * render engine limits, so not much point in remapping. * Would also need to deal with the fence POT alignment * and gen2 2KiB GTT tile size. */ if (INTEL_GEN(dev_priv) < 4) return false; /* * The new CCS hash mode isn't compatible with remapping as * the virtual address of the pages affects the compressed data. */ if (is_ccs_modifier(fb->modifier)) return false; /* Linear needs a page aligned stride for remapping */ if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { unsigned int alignment = intel_tile_size(dev_priv) - 1; for (i = 0; i < fb->format->num_planes; i++) { if (fb->pitches[i] & alignment) return false; } } return true; } static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; u32 stride, max_stride; /* * No remapping for invisible planes since we don't have * an actual source viewport to remap. */ if (!plane_state->base.visible) return false; if (!intel_plane_can_remap(plane_state)) return false; /* * FIXME: aux plane limits on gen9+ are * unclear in Bspec, for now no checking. */ stride = intel_fb_pitch(fb, 0, rotation); max_stride = plane->max_stride(plane, fb->format->format, fb->modifier, rotation); return stride > max_stride; } static int intel_fill_fb_info(struct drm_i915_private *dev_priv, struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct intel_rotation_info *rot_info = &intel_fb->rot_info; struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 gtt_offset_rotated = 0; unsigned int max_size = 0; int i, num_planes = fb->format->num_planes; unsigned int tile_size = intel_tile_size(dev_priv); for (i = 0; i < num_planes; i++) { unsigned int width, height; unsigned int cpp, size; u32 offset; int x, y; int ret; cpp = fb->format->cpp[i]; width = drm_framebuffer_plane_width(fb->width, fb, i); height = drm_framebuffer_plane_height(fb->height, fb, i); ret = intel_fb_offset_to_xy(&x, &y, fb, i); if (ret) { DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", i, fb->offsets[i]); return ret; } if (is_ccs_modifier(fb->modifier) && i == 1) { int hsub = fb->format->hsub; int vsub = fb->format->vsub; int tile_width, tile_height; int main_x, main_y; int ccs_x, ccs_y; intel_tile_dims(fb, i, &tile_width, &tile_height); tile_width *= hsub; tile_height *= vsub; ccs_x = (x * hsub) % tile_width; ccs_y = (y * vsub) % tile_height; main_x = intel_fb->normal[0].x % tile_width; main_y = intel_fb->normal[0].y % tile_height; /* * CCS doesn't have its own x/y offset register, so the intra CCS tile * x/y offsets must match between CCS and the main surface. */ if (main_x != ccs_x || main_y != ccs_y) { DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", main_x, main_y, ccs_x, ccs_y, intel_fb->normal[0].x, intel_fb->normal[0].y, x, y); return -EINVAL; } } /* * The fence (if used) is aligned to the start of the object * so having the framebuffer wrap around across the edge of the * fenced region doesn't really work. We have no API to configure * the fence start offset within the object (nor could we probably * on gen2/3). So it's just easier if we just require that the * fb layout agrees with the fence layout. We already check that the * fb stride matches the fence stride elsewhere. */ if (i == 0 && i915_gem_object_is_tiled(obj) && (x + width) * cpp > fb->pitches[i]) { DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", i, fb->offsets[i]); return -EINVAL; } /* * First pixel of the framebuffer from * the start of the normal gtt mapping. */ intel_fb->normal[i].x = x; intel_fb->normal[i].y = y; offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, fb->pitches[i], DRM_MODE_ROTATE_0, tile_size); offset /= tile_size; if (!is_surface_linear(fb->modifier, i)) { unsigned int tile_width, tile_height; unsigned int pitch_tiles; struct drm_rect r; intel_tile_dims(fb, i, &tile_width, &tile_height); rot_info->plane[i].offset = offset; rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); intel_fb->rotated[i].pitch = rot_info->plane[i].height * tile_height; /* how many tiles does this plane need */ size = rot_info->plane[i].stride * rot_info->plane[i].height; /* * If the plane isn't horizontally tile aligned, * we need one more tile. */ if (x != 0) size++; /* rotate the x/y offsets to match the GTT view */ r.x1 = x; r.y1 = y; r.x2 = x + width; r.y2 = y + height; drm_rect_rotate(&r, rot_info->plane[i].width * tile_width, rot_info->plane[i].height * tile_height, DRM_MODE_ROTATE_270); x = r.x1; y = r.y1; /* rotate the tile dimensions to match the GTT view */ pitch_tiles = intel_fb->rotated[i].pitch / tile_height; swap(tile_width, tile_height); /* * We only keep the x/y offsets, so push all of the * gtt offset into the x/y offsets. */ intel_adjust_tile_offset(&x, &y, tile_width, tile_height, tile_size, pitch_tiles, gtt_offset_rotated * tile_size, 0); gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height; /* * First pixel of the framebuffer from * the start of the rotated gtt mapping. */ intel_fb->rotated[i].x = x; intel_fb->rotated[i].y = y; } else { size = DIV_ROUND_UP((y + height) * fb->pitches[i] + x * cpp, tile_size); } /* how many tiles in total needed in the bo */ max_size = max(max_size, offset + size); } if (mul_u32_u32(max_size, tile_size) > obj->base.size) { DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n", mul_u32_u32(max_size, tile_size), obj->base.size); return -EINVAL; } return 0; } static void intel_plane_remap_gtt(struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); struct drm_framebuffer *fb = plane_state->base.fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct intel_rotation_info *info = &plane_state->view.rotated; unsigned int rotation = plane_state->base.rotation; int i, num_planes = fb->format->num_planes; unsigned int tile_size = intel_tile_size(dev_priv); unsigned int src_x, src_y; unsigned int src_w, src_h; u32 gtt_offset = 0; memset(&plane_state->view, 0, sizeof(plane_state->view)); plane_state->view.type = drm_rotation_90_or_270(rotation) ? I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; src_x = plane_state->base.src.x1 >> 16; src_y = plane_state->base.src.y1 >> 16; src_w = drm_rect_width(&plane_state->base.src) >> 16; src_h = drm_rect_height(&plane_state->base.src) >> 16; WARN_ON(is_ccs_modifier(fb->modifier)); /* Make src coordinates relative to the viewport */ drm_rect_translate(&plane_state->base.src, -(src_x << 16), -(src_y << 16)); /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->base.src, src_w << 16, src_h << 16, DRM_MODE_ROTATE_270); for (i = 0; i < num_planes; i++) { unsigned int hsub = i ? fb->format->hsub : 1; unsigned int vsub = i ? fb->format->vsub : 1; unsigned int cpp = fb->format->cpp[i]; unsigned int tile_width, tile_height; unsigned int width, height; unsigned int pitch_tiles; unsigned int x, y; u32 offset; intel_tile_dims(fb, i, &tile_width, &tile_height); x = src_x / hsub; y = src_y / vsub; width = src_w / hsub; height = src_h / vsub; /* * First pixel of the src viewport from the * start of the normal gtt mapping. */ x += intel_fb->normal[i].x; y += intel_fb->normal[i].y; offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, fb->pitches[i], DRM_MODE_ROTATE_0, tile_size); offset /= tile_size; info->plane[i].offset = offset; info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); if (drm_rotation_90_or_270(rotation)) { struct drm_rect r; /* rotate the x/y offsets to match the GTT view */ r.x1 = x; r.y1 = y; r.x2 = x + width; r.y2 = y + height; drm_rect_rotate(&r, info->plane[i].width * tile_width, info->plane[i].height * tile_height, DRM_MODE_ROTATE_270); x = r.x1; y = r.y1; pitch_tiles = info->plane[i].height; plane_state->color_plane[i].stride = pitch_tiles * tile_height; /* rotate the tile dimensions to match the GTT view */ swap(tile_width, tile_height); } else { pitch_tiles = info->plane[i].width; plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; } /* * We only keep the x/y offsets, so push all of the * gtt offset into the x/y offsets. */ intel_adjust_tile_offset(&x, &y, tile_width, tile_height, tile_size, pitch_tiles, gtt_offset * tile_size, 0); gtt_offset += info->plane[i].width * info->plane[i].height; plane_state->color_plane[i].offset = 0; plane_state->color_plane[i].x = x; plane_state->color_plane[i].y = y; } } static int intel_plane_compute_gtt(struct intel_plane_state *plane_state) { const struct intel_framebuffer *fb = to_intel_framebuffer(plane_state->base.fb); unsigned int rotation = plane_state->base.rotation; int i, num_planes; if (!fb) return 0; num_planes = fb->base.format->num_planes; if (intel_plane_needs_remap(plane_state)) { intel_plane_remap_gtt(plane_state); /* * Sometimes even remapping can't overcome * the stride limitations :( Can happen with * big plane sizes and suitably misaligned * offsets. */ return intel_plane_check_stride(plane_state); } intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); for (i = 0; i < num_planes; i++) { plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); plane_state->color_plane[i].offset = 0; if (drm_rotation_90_or_270(rotation)) { plane_state->color_plane[i].x = fb->rotated[i].x; plane_state->color_plane[i].y = fb->rotated[i].y; } else { plane_state->color_plane[i].x = fb->normal[i].x; plane_state->color_plane[i].y = fb->normal[i].y; } } /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->base.src, fb->base.width << 16, fb->base.height << 16, DRM_MODE_ROTATE_270); return intel_plane_check_stride(plane_state); } static int i9xx_format_to_fourcc(int format) { switch (format) { case DISPPLANE_8BPP: return DRM_FORMAT_C8; case DISPPLANE_BGRX555: return DRM_FORMAT_XRGB1555; case DISPPLANE_BGRX565: return DRM_FORMAT_RGB565; default: case DISPPLANE_BGRX888: return DRM_FORMAT_XRGB8888; case DISPPLANE_RGBX888: return DRM_FORMAT_XBGR8888; case DISPPLANE_BGRX101010: return DRM_FORMAT_XRGB2101010; case DISPPLANE_RGBX101010: return DRM_FORMAT_XBGR2101010; } } int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) { switch (format) { case PLANE_CTL_FORMAT_RGB_565: return DRM_FORMAT_RGB565; case PLANE_CTL_FORMAT_NV12: return DRM_FORMAT_NV12; case PLANE_CTL_FORMAT_P010: return DRM_FORMAT_P010; case PLANE_CTL_FORMAT_P012: return DRM_FORMAT_P012; case PLANE_CTL_FORMAT_P016: return DRM_FORMAT_P016; case PLANE_CTL_FORMAT_Y210: return DRM_FORMAT_Y210; case PLANE_CTL_FORMAT_Y212: return DRM_FORMAT_Y212; case PLANE_CTL_FORMAT_Y216: return DRM_FORMAT_Y216; case PLANE_CTL_FORMAT_Y410: return DRM_FORMAT_XVYU2101010; case PLANE_CTL_FORMAT_Y412: return DRM_FORMAT_XVYU12_16161616; case PLANE_CTL_FORMAT_Y416: return DRM_FORMAT_XVYU16161616; default: case PLANE_CTL_FORMAT_XRGB_8888: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR8888; else return DRM_FORMAT_XBGR8888; } else { if (alpha) return DRM_FORMAT_ARGB8888; else return DRM_FORMAT_XRGB8888; } case PLANE_CTL_FORMAT_XRGB_2101010: if (rgb_order) return DRM_FORMAT_XBGR2101010; else return DRM_FORMAT_XRGB2101010; case PLANE_CTL_FORMAT_XRGB_16161616F: if (rgb_order) { if (alpha) return DRM_FORMAT_ABGR16161616F; else return DRM_FORMAT_XBGR16161616F; } else { if (alpha) return DRM_FORMAT_ARGB16161616F; else return DRM_FORMAT_XRGB16161616F; } } } static bool intel_alloc_initial_plane_obj(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_mode_fb_cmd2 mode_cmd = { 0 }; struct drm_framebuffer *fb = &plane_config->fb->base; u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); u32 size_aligned = round_up(plane_config->base + plane_config->size, PAGE_SIZE); struct drm_i915_gem_object *obj; bool ret = false; size_aligned -= base_aligned; if (plane_config->size == 0) return false; /* If the FB is too big, just don't use it since fbdev is not very * important and we should probably use that space with FBC or other * features. */ if (size_aligned * 2 > dev_priv->stolen_usable_size) return false; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: case I915_FORMAT_MOD_Y_TILED: break; default: DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n", fb->modifier); return false; } mutex_lock(&dev->struct_mutex); obj = i915_gem_object_create_stolen_for_preallocated(dev_priv, base_aligned, base_aligned, size_aligned); mutex_unlock(&dev->struct_mutex); if (!obj) return false; switch (plane_config->tiling) { case I915_TILING_NONE: break; case I915_TILING_X: case I915_TILING_Y: obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling; break; default: MISSING_CASE(plane_config->tiling); goto out; } mode_cmd.pixel_format = fb->format->format; mode_cmd.width = fb->width; mode_cmd.height = fb->height; mode_cmd.pitches[0] = fb->pitches[0]; mode_cmd.modifier[0] = fb->modifier; mode_cmd.flags = DRM_MODE_FB_MODIFIERS; if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) { DRM_DEBUG_KMS("intel fb init failed\n"); goto out; } DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); ret = true; out: i915_gem_object_put(obj); return ret; } static void intel_set_plane_visible(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state, bool visible) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); plane_state->base.visible = visible; if (visible) crtc_state->base.plane_mask |= drm_plane_mask(&plane->base); else crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base); } static void fixup_active_planes(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct drm_plane *plane; /* * Active_planes aliases if multiple "primary" or cursor planes * have been used on the same (or wrong) pipe. plane_mask uses * unique ids, hence we can use that to reconstruct active_planes. */ crtc_state->active_planes = 0; drm_for_each_plane_mask(plane, &dev_priv->drm, crtc_state->base.plane_mask) crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); } static void intel_plane_disable_noatomic(struct intel_crtc *crtc, struct intel_plane *plane) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", plane->base.base.id, plane->base.name, crtc->base.base.id, crtc->base.name); intel_set_plane_visible(crtc_state, plane_state, false); fixup_active_planes(crtc_state); crtc_state->data_rate[plane->id] = 0; if (plane->id == PLANE_PRIMARY) intel_pre_disable_primary_noatomic(&crtc->base); intel_disable_plane(plane, crtc_state); } static struct intel_frontbuffer * to_intel_frontbuffer(struct drm_framebuffer *fb) { return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; } static void intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_crtc *c; struct drm_plane *primary = intel_crtc->base.primary; struct drm_plane_state *plane_state = primary->state; struct intel_plane *intel_plane = to_intel_plane(primary); struct intel_plane_state *intel_state = to_intel_plane_state(plane_state); struct drm_framebuffer *fb; if (!plane_config->fb) return; if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { fb = &plane_config->fb->base; goto valid_fb; } kfree(plane_config->fb); /* * Failed to alloc the obj, check to see if we should share * an fb with another CRTC instead */ for_each_crtc(dev, c) { struct intel_plane_state *state; if (c == &intel_crtc->base) continue; if (!to_intel_crtc(c)->active) continue; state = to_intel_plane_state(c->primary->state); if (!state->vma) continue; if (intel_plane_ggtt_offset(state) == plane_config->base) { fb = state->base.fb; drm_framebuffer_get(fb); goto valid_fb; } } /* * We've failed to reconstruct the BIOS FB. Current display state * indicates that the primary plane is visible, but has a NULL FB, * which will lead to problems later if we don't fix it up. The * simplest solution is to just disable the primary plane now and * pretend the BIOS never had it enabled. */ intel_plane_disable_noatomic(intel_crtc, intel_plane); return; valid_fb: intel_state->base.rotation = plane_config->rotation; intel_fill_fb_ggtt_view(&intel_state->view, fb, intel_state->base.rotation); intel_state->color_plane[0].stride = intel_fb_pitch(fb, 0, intel_state->base.rotation); mutex_lock(&dev->struct_mutex); intel_state->vma = intel_pin_and_fence_fb_obj(fb, &intel_state->view, intel_plane_uses_fence(intel_state), &intel_state->flags); mutex_unlock(&dev->struct_mutex); if (IS_ERR(intel_state->vma)) { DRM_ERROR("failed to pin boot fb on pipe %d: %li\n", intel_crtc->pipe, PTR_ERR(intel_state->vma)); intel_state->vma = NULL; drm_framebuffer_put(fb); return; } intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); plane_state->src_x = 0; plane_state->src_y = 0; plane_state->src_w = fb->width << 16; plane_state->src_h = fb->height << 16; plane_state->crtc_x = 0; plane_state->crtc_y = 0; plane_state->crtc_w = fb->width; plane_state->crtc_h = fb->height; intel_state->base.src = drm_plane_state_src(plane_state); intel_state->base.dst = drm_plane_state_dest(plane_state); if (plane_config->tiling) dev_priv->preserve_bios_swizzle = true; plane_state->fb = fb; plane_state->crtc = &intel_crtc->base; atomic_or(to_intel_plane(primary)->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); } static int skl_max_plane_width(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { int cpp = fb->format->cpp[color_plane]; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: /* * Validated limit is 4k, but has 5k should * work apart from the following features: * - Ytile (already limited to 4k) * - FP16 (already limited to 4k) * - render compression (already limited to 4k) * - KVMR sprite and cursor (don't care) * - horizontal panning (TODO verify this) * - pipe and plane scaling (TODO verify this) */ if (cpp == 8) return 4096; else return 5120; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: /* FIXME AUX plane? */ case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: if (cpp == 8) return 2048; else return 4096; default: MISSING_CASE(fb->modifier); return 2048; } } static int glk_max_plane_width(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { int cpp = fb->format->cpp[color_plane]; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: if (cpp == 8) return 4096; else return 5120; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: /* FIXME AUX plane? */ case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: if (cpp == 8) return 2048; else return 5120; default: MISSING_CASE(fb->modifier); return 2048; } } static int icl_max_plane_width(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { return 5120; } static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, int main_x, int main_y, u32 main_offset) { const struct drm_framebuffer *fb = plane_state->base.fb; int hsub = fb->format->hsub; int vsub = fb->format->vsub; int aux_x = plane_state->color_plane[1].x; int aux_y = plane_state->color_plane[1].y; u32 aux_offset = plane_state->color_plane[1].offset; u32 alignment = intel_surf_alignment(fb, 1); while (aux_offset >= main_offset && aux_y <= main_y) { int x, y; if (aux_x == main_x && aux_y == main_y) break; if (aux_offset == 0) break; x = aux_x / hsub; y = aux_y / vsub; aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1, aux_offset, aux_offset - alignment); aux_x = x * hsub + aux_x % hsub; aux_y = y * vsub + aux_y % vsub; } if (aux_x != main_x || aux_y != main_y) return false; plane_state->color_plane[1].offset = aux_offset; plane_state->color_plane[1].x = aux_x; plane_state->color_plane[1].y = aux_y; return true; } static int skl_check_main_surface(struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; int x = plane_state->base.src.x1 >> 16; int y = plane_state->base.src.y1 >> 16; int w = drm_rect_width(&plane_state->base.src) >> 16; int h = drm_rect_height(&plane_state->base.src) >> 16; int max_width; int max_height = 4096; u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset; if (INTEL_GEN(dev_priv) >= 11) max_width = icl_max_plane_width(fb, 0, rotation); else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) max_width = glk_max_plane_width(fb, 0, rotation); else max_width = skl_max_plane_width(fb, 0, rotation); if (w > max_width || h > max_height) { DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n", w, h, max_width, max_height); return -EINVAL; } intel_add_fb_offsets(&x, &y, plane_state, 0); offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); alignment = intel_surf_alignment(fb, 0); /* * AUX surface offset is specified as the distance from the * main surface offset, and it must be non-negative. Make * sure that is what we will get. */ if (offset > aux_offset) offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, offset, aux_offset & ~(alignment - 1)); /* * When using an X-tiled surface, the plane blows up * if the x offset + width exceed the stride. * * TODO: linear and Y-tiled seem fine, Yf untested, */ if (fb->modifier == I915_FORMAT_MOD_X_TILED) { int cpp = fb->format->cpp[0]; while ((x + w) * cpp > plane_state->color_plane[0].stride) { if (offset == 0) { DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n"); return -EINVAL; } offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, offset, offset - alignment); } } /* * CCS AUX surface doesn't have its own x/y offsets, we must make sure * they match with the main surface x/y offsets. */ if (is_ccs_modifier(fb->modifier)) { while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) { if (offset == 0) break; offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, offset, offset - alignment); } if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) { DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n"); return -EINVAL; } } plane_state->color_plane[0].offset = offset; plane_state->color_plane[0].x = x; plane_state->color_plane[0].y = y; /* * Put the final coordinates back so that the src * coordinate checks will see the right values. */ drm_rect_translate(&plane_state->base.src, (x << 16) - plane_state->base.src.x1, (y << 16) - plane_state->base.src.y1); return 0; } static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; int max_width = skl_max_plane_width(fb, 1, rotation); int max_height = 4096; int x = plane_state->base.src.x1 >> 17; int y = plane_state->base.src.y1 >> 17; int w = drm_rect_width(&plane_state->base.src) >> 17; int h = drm_rect_height(&plane_state->base.src) >> 17; u32 offset; intel_add_fb_offsets(&x, &y, plane_state, 1); offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); /* FIXME not quite sure how/if these apply to the chroma plane */ if (w > max_width || h > max_height) { DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n", w, h, max_width, max_height); return -EINVAL; } plane_state->color_plane[1].offset = offset; plane_state->color_plane[1].x = x; plane_state->color_plane[1].y = y; return 0; } static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->base.fb; int src_x = plane_state->base.src.x1 >> 16; int src_y = plane_state->base.src.y1 >> 16; int hsub = fb->format->hsub; int vsub = fb->format->vsub; int x = src_x / hsub; int y = src_y / vsub; u32 offset; intel_add_fb_offsets(&x, &y, plane_state, 1); offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); plane_state->color_plane[1].offset = offset; plane_state->color_plane[1].x = x * hsub + src_x % hsub; plane_state->color_plane[1].y = y * vsub + src_y % vsub; return 0; } int skl_check_plane_surface(struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->base.fb; int ret; ret = intel_plane_compute_gtt(plane_state); if (ret) return ret; if (!plane_state->base.visible) return 0; /* * Handle the AUX surface first since * the main surface setup depends on it. */ if (is_planar_yuv_format(fb->format->format)) { ret = skl_check_nv12_aux_surface(plane_state); if (ret) return ret; } else if (is_ccs_modifier(fb->modifier)) { ret = skl_check_ccs_aux_surface(plane_state); if (ret) return ret; } else { plane_state->color_plane[1].offset = ~0xfff; plane_state->color_plane[1].x = 0; plane_state->color_plane[1].y = 0; } ret = skl_check_main_surface(plane_state); if (ret) return ret; return 0; } unsigned int i9xx_plane_max_stride(struct intel_plane *plane, u32 pixel_format, u64 modifier, unsigned int rotation) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); if (!HAS_GMCH(dev_priv)) { return 32*1024; } else if (INTEL_GEN(dev_priv) >= 4) { if (modifier == I915_FORMAT_MOD_X_TILED) return 16*1024; else return 32*1024; } else if (INTEL_GEN(dev_priv) >= 3) { if (modifier == I915_FORMAT_MOD_X_TILED) return 8*1024; else return 16*1024; } else { if (plane->i9xx_plane == PLANE_C) return 4*1024; else return 8*1024; } } static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 dspcntr = 0; if (crtc_state->gamma_enable) dspcntr |= DISPPLANE_GAMMA_ENABLE; if (crtc_state->csc_enable) dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; if (INTEL_GEN(dev_priv) < 5) dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); return dspcntr; } static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; u32 dspcntr; dspcntr = DISPLAY_PLANE_ENABLE; if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; switch (fb->format->format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_XRGB1555: dspcntr |= DISPPLANE_BGRX555; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: MISSING_CASE(fb->format->format); return 0; } if (INTEL_GEN(dev_priv) >= 4 && fb->modifier == I915_FORMAT_MOD_X_TILED) dspcntr |= DISPPLANE_TILED; if (rotation & DRM_MODE_ROTATE_180) dspcntr |= DISPPLANE_ROTATE_180; if (rotation & DRM_MODE_REFLECT_X) dspcntr |= DISPPLANE_MIRROR; return dspcntr; } int i9xx_check_plane_surface(struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); int src_x, src_y; u32 offset; int ret; ret = intel_plane_compute_gtt(plane_state); if (ret) return ret; if (!plane_state->base.visible) return 0; src_x = plane_state->base.src.x1 >> 16; src_y = plane_state->base.src.y1 >> 16; intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); if (INTEL_GEN(dev_priv) >= 4) offset = intel_plane_compute_aligned_offset(&src_x, &src_y, plane_state, 0); else offset = 0; /* * Put the final coordinates back so that the src * coordinate checks will see the right values. */ drm_rect_translate(&plane_state->base.src, (src_x << 16) - plane_state->base.src.x1, (src_y << 16) - plane_state->base.src.y1); /* HSW/BDW do this automagically in hardware */ if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { unsigned int rotation = plane_state->base.rotation; int src_w = drm_rect_width(&plane_state->base.src) >> 16; int src_h = drm_rect_height(&plane_state->base.src) >> 16; if (rotation & DRM_MODE_ROTATE_180) { src_x += src_w - 1; src_y += src_h - 1; } else if (rotation & DRM_MODE_REFLECT_X) { src_x += src_w - 1; } } plane_state->color_plane[0].offset = offset; plane_state->color_plane[0].x = src_x; plane_state->color_plane[0].y = src_y; return 0; } static bool i9xx_plane_has_windowing(struct intel_plane *plane) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; if (IS_CHERRYVIEW(dev_priv)) return i9xx_plane == PLANE_B; else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) return false; else if (IS_GEN(dev_priv, 4)) return i9xx_plane == PLANE_C; else return i9xx_plane == PLANE_B || i9xx_plane == PLANE_C; } static int i9xx_plane_check(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); int ret; ret = chv_plane_check_rotation(plane_state); if (ret) return ret; ret = drm_atomic_helper_check_plane_state(&plane_state->base, &crtc_state->base, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, i9xx_plane_has_windowing(plane), true); if (ret) return ret; ret = i9xx_check_plane_surface(plane_state); if (ret) return ret; if (!plane_state->base.visible) return 0; ret = intel_plane_check_src_coordinates(plane_state); if (ret) return ret; plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); return 0; } static void i9xx_update_plane(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; u32 linear_offset; int x = plane_state->color_plane[0].x; int y = plane_state->color_plane[0].y; int crtc_x = plane_state->base.dst.x1; int crtc_y = plane_state->base.dst.y1; int crtc_w = drm_rect_width(&plane_state->base.dst); int crtc_h = drm_rect_height(&plane_state->base.dst); unsigned long irqflags; u32 dspaddr_offset; u32 dspcntr; dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); if (INTEL_GEN(dev_priv) >= 4) dspaddr_offset = plane_state->color_plane[0].offset; else dspaddr_offset = linear_offset; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride); if (INTEL_GEN(dev_priv) < 4) { /* * PLANE_A doesn't actually have a full window * generator but let's assume we still need to * program whatever is there. */ I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x); I915_WRITE_FW(DSPSIZE(i9xx_plane), ((crtc_h - 1) << 16) | (crtc_w - 1)); } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x); I915_WRITE_FW(PRIMSIZE(i9xx_plane), ((crtc_h - 1) << 16) | (crtc_w - 1)); I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0); } if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x); } else if (INTEL_GEN(dev_priv) >= 4) { I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset); I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x); } /* * The control register self-arms if the plane was previously * disabled. Try to make the plane enable atomic by writing * the control register just before the surface register. */ I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); if (INTEL_GEN(dev_priv) >= 4) I915_WRITE_FW(DSPSURF(i9xx_plane), intel_plane_ggtt_offset(plane_state) + dspaddr_offset); else I915_WRITE_FW(DSPADDR(i9xx_plane), intel_plane_ggtt_offset(plane_state) + dspaddr_offset); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } static void i9xx_disable_plane(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; unsigned long irqflags; u32 dspcntr; /* * DSPCNTR pipe gamma enable on g4x+ and pipe csc * enable on ilk+ affect the pipe bottom color as * well, so we must configure them even if the plane * is disabled. * * On pre-g4x there is no way to gamma correct the * pipe bottom color but we'll keep on doing this * anyway so that the crtc state readout works correctly. */ dspcntr = i9xx_plane_ctl_crtc(crtc_state); spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); if (INTEL_GEN(dev_priv) >= 4) I915_WRITE_FW(DSPSURF(i9xx_plane), 0); else I915_WRITE_FW(DSPADDR(i9xx_plane), 0); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } static bool i9xx_plane_get_hw_state(struct intel_plane *plane, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum intel_display_power_domain power_domain; enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; intel_wakeref_t wakeref; bool ret; u32 val; /* * Not 100% correct for planes that can move between pipes, * but that's only the case for gen2-4 which don't have any * display power wells. */ power_domain = POWER_DOMAIN_PIPE(plane->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; val = I915_READ(DSPCNTR(i9xx_plane)); ret = val & DISPLAY_PLANE_ENABLE; if (INTEL_GEN(dev_priv) >= 5) *pipe = plane->pipe; else *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> DISPPLANE_SEL_PIPE_SHIFT; intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); } /* * This function detaches (aka. unbinds) unused scalers in hardware */ static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); const struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; int i; /* loop through and disable scalers that aren't in use */ for (i = 0; i < intel_crtc->num_scalers; i++) { if (!scaler_state->scalers[i].in_use) skl_detach_scaler(intel_crtc, i); } } static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, int color_plane, unsigned int rotation) { /* * The stride is either expressed as a multiple of 64 bytes chunks for * linear buffers or in number of tiles for tiled buffers. */ if (fb->modifier == DRM_FORMAT_MOD_LINEAR) return 64; else if (drm_rotation_90_or_270(rotation)) return intel_tile_height(fb, color_plane); else return intel_tile_width_bytes(fb, color_plane); } u32 skl_plane_stride(const struct intel_plane_state *plane_state, int color_plane) { const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; u32 stride = plane_state->color_plane[color_plane].stride; if (color_plane >= fb->format->num_planes) return 0; return stride / skl_plane_stride_mult(fb, color_plane, rotation); } static u32 skl_plane_ctl_format(u32 pixel_format) { switch (pixel_format) { case DRM_FORMAT_C8: return PLANE_CTL_FORMAT_INDEXED; case DRM_FORMAT_RGB565: return PLANE_CTL_FORMAT_RGB_565; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: return PLANE_CTL_FORMAT_XRGB_8888; case DRM_FORMAT_XBGR2101010: return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB2101010: return PLANE_CTL_FORMAT_XRGB_2101010; case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: return PLANE_CTL_FORMAT_XRGB_16161616F; case DRM_FORMAT_YUYV: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; case DRM_FORMAT_YVYU: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; case DRM_FORMAT_UYVY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; case DRM_FORMAT_VYUY: return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; case DRM_FORMAT_NV12: return PLANE_CTL_FORMAT_NV12; case DRM_FORMAT_P010: return PLANE_CTL_FORMAT_P010; case DRM_FORMAT_P012: return PLANE_CTL_FORMAT_P012; case DRM_FORMAT_P016: return PLANE_CTL_FORMAT_P016; case DRM_FORMAT_Y210: return PLANE_CTL_FORMAT_Y210; case DRM_FORMAT_Y212: return PLANE_CTL_FORMAT_Y212; case DRM_FORMAT_Y216: return PLANE_CTL_FORMAT_Y216; case DRM_FORMAT_XVYU2101010: return PLANE_CTL_FORMAT_Y410; case DRM_FORMAT_XVYU12_16161616: return PLANE_CTL_FORMAT_Y412; case DRM_FORMAT_XVYU16161616: return PLANE_CTL_FORMAT_Y416; default: MISSING_CASE(pixel_format); } return 0; } static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) { if (!plane_state->base.fb->format->has_alpha) return PLANE_CTL_ALPHA_DISABLE; switch (plane_state->base.pixel_blend_mode) { case DRM_MODE_BLEND_PIXEL_NONE: return PLANE_CTL_ALPHA_DISABLE; case DRM_MODE_BLEND_PREMULTI: return PLANE_CTL_ALPHA_SW_PREMULTIPLY; case DRM_MODE_BLEND_COVERAGE: return PLANE_CTL_ALPHA_HW_PREMULTIPLY; default: MISSING_CASE(plane_state->base.pixel_blend_mode); return PLANE_CTL_ALPHA_DISABLE; } } static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) { if (!plane_state->base.fb->format->has_alpha) return PLANE_COLOR_ALPHA_DISABLE; switch (plane_state->base.pixel_blend_mode) { case DRM_MODE_BLEND_PIXEL_NONE: return PLANE_COLOR_ALPHA_DISABLE; case DRM_MODE_BLEND_PREMULTI: return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; case DRM_MODE_BLEND_COVERAGE: return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; default: MISSING_CASE(plane_state->base.pixel_blend_mode); return PLANE_COLOR_ALPHA_DISABLE; } } static u32 skl_plane_ctl_tiling(u64 fb_modifier) { switch (fb_modifier) { case DRM_FORMAT_MOD_LINEAR: break; case I915_FORMAT_MOD_X_TILED: return PLANE_CTL_TILED_X; case I915_FORMAT_MOD_Y_TILED: return PLANE_CTL_TILED_Y; case I915_FORMAT_MOD_Y_TILED_CCS: return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; case I915_FORMAT_MOD_Yf_TILED: return PLANE_CTL_TILED_YF; case I915_FORMAT_MOD_Yf_TILED_CCS: return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; default: MISSING_CASE(fb_modifier); } return 0; } static u32 skl_plane_ctl_rotate(unsigned int rotate) { switch (rotate) { case DRM_MODE_ROTATE_0: break; /* * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr * while i915 HW rotation is clockwise, thats why this swapping. */ case DRM_MODE_ROTATE_90: return PLANE_CTL_ROTATE_270; case DRM_MODE_ROTATE_180: return PLANE_CTL_ROTATE_180; case DRM_MODE_ROTATE_270: return PLANE_CTL_ROTATE_90; default: MISSING_CASE(rotate); } return 0; } static u32 cnl_plane_ctl_flip(unsigned int reflect) { switch (reflect) { case 0: break; case DRM_MODE_REFLECT_X: return PLANE_CTL_FLIP_HORIZONTAL; case DRM_MODE_REFLECT_Y: default: MISSING_CASE(reflect); } return 0; } u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); u32 plane_ctl = 0; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) return plane_ctl; if (crtc_state->gamma_enable) plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; if (crtc_state->csc_enable) plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; return plane_ctl; } u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); const struct drm_framebuffer *fb = plane_state->base.fb; unsigned int rotation = plane_state->base.rotation; const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; u32 plane_ctl; plane_ctl = PLANE_CTL_ENABLE; if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { plane_ctl |= skl_plane_ctl_alpha(plane_state); plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; } plane_ctl |= skl_plane_ctl_format(fb->format->format); plane_ctl |= skl_plane_ctl_tiling(fb->modifier); plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); if (INTEL_GEN(dev_priv) >= 10) plane_ctl |= cnl_plane_ctl_flip(rotation & DRM_MODE_REFLECT_MASK); if (key->flags & I915_SET_COLORKEY_DESTINATION) plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; else if (key->flags & I915_SET_COLORKEY_SOURCE) plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; return plane_ctl; } u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); u32 plane_color_ctl = 0; if (INTEL_GEN(dev_priv) >= 11) return plane_color_ctl; if (crtc_state->gamma_enable) plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; if (crtc_state->csc_enable) plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; return plane_color_ctl; } u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); const struct drm_framebuffer *fb = plane_state->base.fb; struct intel_plane *plane = to_intel_plane(plane_state->base.plane); u32 plane_color_ctl = 0; plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; else plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; } else if (fb->format->is_yuv) { plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; } return plane_color_ctl; } static int __intel_display_resume(struct drm_device *dev, struct drm_atomic_state *state, struct drm_modeset_acquire_ctx *ctx) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i, ret; intel_modeset_setup_hw_state(dev, ctx); i915_redisable_vga(to_i915(dev)); if (!state) return 0; /* * We've duplicated the state, pointers to the old state are invalid. * * Don't attempt to use the old state until we commit the duplicated state. */ for_each_new_crtc_in_state(state, crtc, crtc_state, i) { /* * Force recalculation even if we restore * current state. With fast modeset this may not result * in a modeset when the state is compatible. */ crtc_state->mode_changed = true; } /* ignore any reset values/BIOS leftovers in the WM registers */ if (!HAS_GMCH(to_i915(dev))) to_intel_atomic_state(state)->skip_intermediate_wm = true; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); WARN_ON(ret == -EDEADLK); return ret; } static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) { return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && intel_has_gpu_reset(dev_priv)); } void intel_prepare_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; struct drm_atomic_state *state; int ret; /* reset doesn't touch the display */ if (!i915_modparams.force_reset_modeset_test && !gpu_reset_clobbers_display(dev_priv)) return; /* We have a modeset vs reset deadlock, defensively unbreak it. */ set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); smp_mb__after_atomic(); wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n"); intel_gt_set_wedged(&dev_priv->gt); } /* * Need mode_config.mutex so that we don't * trample ongoing ->detect() and whatnot. */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(ctx); } /* * Disabling the crtcs gracefully seems nicer. Also the * g33 docs say we should at least disable all the planes. */ state = drm_atomic_helper_duplicate_state(dev, ctx); if (IS_ERR(state)) { ret = PTR_ERR(state); DRM_ERROR("Duplicating state failed with %i\n", ret); return; } ret = drm_atomic_helper_disable_all(dev, ctx); if (ret) { DRM_ERROR("Suspending crtc's failed with %i\n", ret); drm_atomic_state_put(state); return; } dev_priv->modeset_restore_state = state; state->acquire_ctx = ctx; } void intel_finish_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; struct drm_atomic_state *state; int ret; /* reset doesn't touch the display */ if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) return; state = fetch_and_zero(&dev_priv->modeset_restore_state); if (!state) goto unlock; /* reset doesn't touch the display */ if (!gpu_reset_clobbers_display(dev_priv)) { /* for testing only restore the display */ ret = __intel_display_resume(dev, state, ctx); if (ret) DRM_ERROR("Restoring old state failed with %i\n", ret); } else { /* * The display has been reset as well, * so need a full re-initialization. */ intel_pps_unlock_regs_wa(dev_priv); intel_modeset_init_hw(dev); intel_init_clock_gating(dev_priv); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); ret = __intel_display_resume(dev, state, ctx); if (ret) DRM_ERROR("Restoring old state failed with %i\n", ret); intel_hpd_init(dev_priv); } drm_atomic_state_put(state); unlock: drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx); mutex_unlock(&dev->mode_config.mutex); clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); } static void icl_set_pipe_chicken(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tmp; tmp = I915_READ(PIPE_CHICKEN(pipe)); /* * Display WA #1153: icl * enable hardware to bypass the alpha math * and rounding for per-pixel values 00 and 0xff */ tmp |= PER_PIXEL_ALPHA_BYPASS_EN; /* * Display WA # 1605353570: icl * Set the pixel rounding bit to 1 for allowing * passthrough of Frame buffer pixels unmodified * across pipe */ tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; I915_WRITE(PIPE_CHICKEN(pipe), tmp); } static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* drm_atomic_helper_update_legacy_modeset_state might not be called. */ crtc->base.mode = new_crtc_state->base.mode; /* * Update pipe size and adjust fitter if needed: the reason for this is * that in compute_mode_changes we check the native mode (not the pfit * mode) to see if we can flip rather than do a full mode set. In the * fastboot case, we'll flip, but if we don't update the pipesrc and * pfit state, we'll end up with a big fb scanned out into the wrong * sized surface. */ I915_WRITE(PIPESRC(crtc->pipe), ((new_crtc_state->pipe_src_w - 1) << 16) | (new_crtc_state->pipe_src_h - 1)); /* on skylake this is done by detaching scalers */ if (INTEL_GEN(dev_priv) >= 9) { skl_detach_scalers(new_crtc_state); if (new_crtc_state->pch_pfit.enabled) skylake_pfit_enable(new_crtc_state); } else if (HAS_PCH_SPLIT(dev_priv)) { if (new_crtc_state->pch_pfit.enabled) ironlake_pfit_enable(new_crtc_state); else if (old_crtc_state->pch_pfit.enabled) ironlake_pfit_disable(old_crtc_state); } if (INTEL_GEN(dev_priv) >= 11) icl_set_pipe_chicken(crtc); } static void intel_fdi_normal_train(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = crtc->pipe; i915_reg_t reg; u32 temp; /* enable normal train */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if (IS_IVYBRIDGE(dev_priv)) { temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev_priv)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_NORMAL_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE; } I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); /* wait one idle pattern time */ POSTING_READ(reg); udelay(1000); /* IVB wants error correction enabled */ if (IS_IVYBRIDGE(dev_priv)) I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); } /* The FDI link training functions for ILK/Ibexpeak. */ static void ironlake_fdi_link_train(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = crtc->pipe; i915_reg_t reg; u32 temp, tries; /* FDI needs bits from pipe first */ assert_pipe_enabled(dev_priv, pipe); /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); I915_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_TX_ENABLE); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); /* Ironlake workaround, enable clock pointer after FDI enable*/ I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if ((temp & FDI_RX_BIT_LOCK)) { DRM_DEBUG_KMS("FDI train 1 done.\n"); I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); break; } } if (tries == 5) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (tries == 5) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done\n"); } static const int snb_b_fdi_train_param[] = { FDI_LINK_TRAIN_400MV_0DB_SNB_B, FDI_LINK_TRAIN_400MV_6DB_SNB_B, FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, FDI_LINK_TRAIN_800MV_0DB_SNB_B, }; /* The FDI link training functions for SNB/Cougarpoint. */ static void gen6_fdi_link_train(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = crtc->pipe; i915_reg_t reg; u32 temp, i, retry; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev_priv)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; if (IS_GEN(dev_priv, 6)) { temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev_priv)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; } I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } /* Manual link training for Ivy Bridge A0 parts */ static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = crtc->pipe; i915_reg_t reg; u32 temp, i, j; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", I915_READ(FDI_RX_IIR(pipe))); /* Try each vswing and preemphasis setting twice before moving on */ for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { /* disable first in case we need to retry */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); temp &= ~FDI_TX_ENABLE; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_AUTO; temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp &= ~FDI_RX_ENABLE; I915_WRITE(reg, temp); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[j/2]; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(1); /* should be 0.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK || (I915_READ(reg) & FDI_RX_BIT_LOCK)) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i); break; } udelay(1); /* should be 0.5us */ } if (i == 4) { DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); continue; } /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(2); /* should be 1.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK || (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i); goto train_done; } udelay(2); /* should be 1.5us */ } if (i == 4) DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); } train_done: DRM_DEBUG_KMS("FDI train done.\n"); } static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); POSTING_READ(reg); udelay(200); /* Switch from Rawclk to PCDclk */ temp = I915_READ(reg); I915_WRITE(reg, temp | FDI_PCDCLK); POSTING_READ(reg); udelay(200); /* Enable CPU FDI TX PLL, always on for Ironlake */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if ((temp & FDI_TX_PLL_ENABLE) == 0) { I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); } } static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* Switch from PCDclk to Rawclk */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_PCDCLK); /* Disable CPU FDI TX PLL */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); /* Wait for the clocks to turn off. */ POSTING_READ(reg); udelay(100); } static void ironlake_fdi_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; i915_reg_t reg; u32 temp; /* disable CPU FDI tx and PCH FDI rx */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_ENABLE); POSTING_READ(reg); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(0x7 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp & ~FDI_RX_ENABLE); POSTING_READ(reg); udelay(100); /* Ironlake workaround, disable clock pointer after downing FDI */ if (HAS_PCH_IBX(dev_priv)) I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); /* still set train pattern 1 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev_priv)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } /* BPC in FDI rx is consistent with that in PIPECONF */ temp &= ~(0x07 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(100); } bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) { struct drm_crtc *crtc; bool cleanup_done; drm_for_each_crtc(crtc, &dev_priv->drm) { struct drm_crtc_commit *commit; spin_lock(&crtc->commit_lock); commit = list_first_entry_or_null(&crtc->commit_list, struct drm_crtc_commit, commit_entry); cleanup_done = commit ? try_wait_for_completion(&commit->cleanup_done) : true; spin_unlock(&crtc->commit_lock); if (cleanup_done) continue; drm_crtc_wait_one_vblank(crtc); return true; } return false; } void lpt_disable_iclkip(struct drm_i915_private *dev_priv) { u32 temp; I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Program iCLKIP clock to the desired frequency */ static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int clock = crtc_state->base.adjusted_mode.crtc_clock; u32 divsel, phaseinc, auxdiv, phasedir = 0; u32 temp; lpt_disable_iclkip(dev_priv); /* The iCLK virtual clock root frequency is in MHz, * but the adjusted_mode->crtc_clock in in KHz. To get the * divisors, it is necessary to divide one by another, so we * convert the virtual clock precision to KHz here for higher * precision. */ for (auxdiv = 0; auxdiv < 2; auxdiv++) { u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock << auxdiv); divsel = (desired_divisor / iclk_pi_range) - 2; phaseinc = desired_divisor % iclk_pi_range; /* * Near 20MHz is a corner case which is * out of range for the 7-bit divisor */ if (divsel <= 0x7f) break; } /* This should not happen with any sane values */ WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & ~SBI_SSCDIVINTPHASE_INCVAL_MASK); DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", clock, auxdiv, divsel, phasedir, phaseinc); mutex_lock(&dev_priv->sb_lock); /* Program SSCDIVINTPHASE6 */ temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); temp |= SBI_SSCDIVINTPHASE_PROPAGATE; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); /* Program SSCAUXDIV */ temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); /* Enable modulator and associated divider */ temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp &= ~SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); /* Wait for initialization time */ udelay(24); I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); } int lpt_get_iclkip(struct drm_i915_private *dev_priv) { u32 divsel, phaseinc, auxdiv; u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor; u32 temp; if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) return 0; mutex_lock(&dev_priv->sb_lock); temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); if (temp & SBI_SSCCTL_DISABLE) { mutex_unlock(&dev_priv->sb_lock); return 0; } temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> SBI_SSCDIVINTPHASE_INCVAL_SHIFT; temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; mutex_unlock(&dev_priv->sb_lock); desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, desired_divisor << auxdiv); } static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, enum pipe pch_transcoder) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), I915_READ(HTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), I915_READ(HBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), I915_READ(HSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), I915_READ(VTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), I915_READ(VBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), I915_READ(VSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), I915_READ(VSYNCSHIFT(cpu_transcoder))); } static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) { u32 temp; temp = I915_READ(SOUTH_CHICKEN1); if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) return; WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp &= ~FDI_BC_BIFURCATION_SELECT; if (enable) temp |= FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); I915_WRITE(SOUTH_CHICKEN1, temp); POSTING_READ(SOUTH_CHICKEN1); } static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); switch (crtc->pipe) { case PIPE_A: break; case PIPE_B: if (crtc_state->fdi_lanes > 2) cpt_set_fdi_bc_bifurcation(dev_priv, false); else cpt_set_fdi_bc_bifurcation(dev_priv, true); break; case PIPE_C: cpt_set_fdi_bc_bifurcation(dev_priv, true); break; default: BUG(); } } /* * Finds the encoder associated with the given CRTC. This can only be * used when we know that the CRTC isn't feeding multiple encoders! */ static struct intel_encoder * intel_get_crtc_new_encoder(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); const struct drm_connector_state *connector_state; const struct drm_connector *connector; struct intel_encoder *encoder = NULL; int num_encoders = 0; int i; for_each_new_connector_in_state(&state->base, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; encoder = to_intel_encoder(connector_state->best_encoder); num_encoders++; } WARN(num_encoders != 1, "%d encoders for pipe %c\n", num_encoders, pipe_name(crtc->pipe)); return encoder; } /* * Enable PCH resources required for PCH ports: * - PCH PLLs * - FDI training & RX/TX * - update transcoder timings * - DP transcoding bits * - transcoder */ static void ironlake_pch_enable(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = crtc->pipe; u32 temp; assert_pch_transcoder_disabled(dev_priv, pipe); if (IS_IVYBRIDGE(dev_priv)) ivybridge_update_fdi_bc_bifurcation(crtc_state); /* Write the TU size bits before fdi link training, so that error * detection works. */ I915_WRITE(FDI_RX_TUSIZE1(pipe), I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); /* For PCH output, training FDI link */ dev_priv->display.fdi_link_train(crtc, crtc_state); /* We need to program the right clock selection before writing the pixel * mutliplier into the DPLL. */ if (HAS_PCH_CPT(dev_priv)) { u32 sel; temp = I915_READ(PCH_DPLL_SEL); temp |= TRANS_DPLL_ENABLE(pipe); sel = TRANS_DPLLB_SEL(pipe); if (crtc_state->shared_dpll == intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) temp |= sel; else temp &= ~sel; I915_WRITE(PCH_DPLL_SEL, temp); } /* XXX: pch pll's can be enabled any time before we enable the PCH * transcoder, and we actually should do this to not upset any PCH * transcoder that already use the clock when we share it. * * Note that enable_shared_dpll tries to do the right thing, but * get_shared_dpll unconditionally resets the pll - we need that to have * the right LVDS enable sequence. */ intel_enable_shared_dpll(crtc_state); /* set transcoder timing, panel must allow it */ assert_panel_unlocked(dev_priv, pipe); ironlake_pch_transcoder_set_timings(crtc_state, pipe); intel_fdi_normal_train(crtc); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev_priv) && intel_crtc_has_dp_encoder(crtc_state)) { const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; i915_reg_t reg = TRANS_DP_CTL(pipe); enum port port; temp = I915_READ(reg); temp &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK | TRANS_DP_BPC_MASK); temp |= TRANS_DP_OUTPUT_ENABLE; temp |= bpc << 9; /* same format but at 11:9 */ if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; port = intel_get_crtc_new_encoder(state, crtc_state)->port; WARN_ON(port < PORT_B || port > PORT_D); temp |= TRANS_DP_PORT_SEL(port); I915_WRITE(reg, temp); } ironlake_enable_pch_transcoder(crtc_state); } static void lpt_pch_enable(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; assert_pch_transcoder_disabled(dev_priv, PIPE_A); lpt_program_iclkip(crtc_state); /* Set transcoder timing. */ ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A); lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); } static void cpt_verify_modeset(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); i915_reg_t dslreg = PIPEDSL(pipe); u32 temp; temp = I915_READ(dslreg); udelay(500); if (wait_for(I915_READ(dslreg) != temp, 5)) { if (wait_for(I915_READ(dslreg) != temp, 5)) DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); } } /* * The hardware phase 0.0 refers to the center of the pixel. * We want to start from the top/left edge which is phase * -0.5. That matches how the hardware calculates the scaling * factors (from top-left of the first pixel to bottom-right * of the last pixel, as opposed to the pixel centers). * * For 4:2:0 subsampled chroma planes we obviously have to * adjust that so that the chroma sample position lands in * the right spot. * * Note that for packed YCbCr 4:2:2 formats there is no way to * control chroma siting. The hardware simply replicates the * chroma samples for both of the luma samples, and thus we don't * actually get the expected MPEG2 chroma siting convention :( * The same behaviour is observed on pre-SKL platforms as well. * * Theory behind the formula (note that we ignore sub-pixel * source coordinates): * s = source sample position * d = destination sample position * * Downscaling 4:1: * -0.5 * | 0.0 * | | 1.5 (initial phase) * | | | * v v v * | s | s | s | s | * | d | * * Upscaling 1:4: * -0.5 * | -0.375 (initial phase) * | | 0.0 * | | | * v v v * | s | * | d | d | d | d | */ u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) { int phase = -0x8000; u16 trip = 0; if (chroma_cosited) phase += (sub - 1) * 0x8000 / sub; phase += scale / (2 * sub); /* * Hardware initial phase limited to [-0.5:1.5]. * Since the max hardware scale factor is 3.0, we * should never actually excdeed 1.0 here. */ WARN_ON(phase < -0x8000 || phase > 0x18000); if (phase < 0) phase = 0x10000 + phase; else trip = PS_PHASE_TRIP; return ((phase >> 2) & PS_PHASE_MASK) | trip; } #define SKL_MIN_SRC_W 8 #define SKL_MAX_SRC_W 4096 #define SKL_MIN_SRC_H 8 #define SKL_MAX_SRC_H 4096 #define SKL_MIN_DST_W 8 #define SKL_MAX_DST_W 4096 #define SKL_MIN_DST_H 8 #define SKL_MAX_DST_H 4096 #define ICL_MAX_SRC_W 5120 #define ICL_MAX_SRC_H 4096 #define ICL_MAX_DST_W 5120 #define ICL_MAX_DST_H 4096 #define SKL_MIN_YUV_420_SRC_W 16 #define SKL_MIN_YUV_420_SRC_H 16 static int skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, unsigned int scaler_user, int *scaler_id, int src_w, int src_h, int dst_w, int dst_h, const struct drm_format_info *format, bool need_scaler) { struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ if (src_w != dst_w || src_h != dst_h) need_scaler = true; /* * Scaling/fitting not supported in IF-ID mode in GEN9+ * TODO: Interlace fetch mode doesn't support YUV420 planar formats. * Once NV12 is enabled, handle it here while allocating scaler * for NV12. */ if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable && need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n"); return -EINVAL; } /* * if plane is being disabled or scaler is no more required or force detach * - free scaler binded to this plane/crtc * - in order to do this, update crtc->scaler_usage * * Here scaler state in crtc_state is set free so that * scaler can be assigned to other user. Actual register * update to free the scaler is done in plane/panel-fit programming. * For this purpose crtc/plane_state->scaler_id isn't reset here. */ if (force_detach || !need_scaler) { if (*scaler_id >= 0) { scaler_state->scaler_users &= ~(1 << scaler_user); scaler_state->scalers[*scaler_id].in_use = 0; DRM_DEBUG_KMS("scaler_user index %u.%u: " "Staged freeing scaler id %d scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, *scaler_id, scaler_state->scaler_users); *scaler_id = -1; } return 0; } if (format && is_planar_yuv_format(format->format) && (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n"); return -EINVAL; } /* range checks */ if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || (INTEL_GEN(dev_priv) >= 11 && (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || (INTEL_GEN(dev_priv) < 11 && (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " "size is out of scaler range\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); return -EINVAL; } /* mark this plane as a scaler user in crtc_state */ scaler_state->scaler_users |= (1 << scaler_user); DRM_DEBUG_KMS("scaler_user index %u.%u: " "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, scaler_state->scaler_users); return 0; } /** * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. * * @state: crtc's scaler state * * Return * 0 - scaler_usage updated successfully * error - requested scaling cannot be supported or other error condition */ int skl_update_scaler_crtc(struct intel_crtc_state *state) { const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; bool need_scaler = false; if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) need_scaler = true; return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, &state->scaler_state.scaler_id, state->pipe_src_w, state->pipe_src_h, adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay, NULL, need_scaler); } /** * skl_update_scaler_plane - Stages update to scaler state for a given plane. * @crtc_state: crtc's scaler state * @plane_state: atomic plane state to update * * Return * 0 - scaler_usage updated successfully * error - requested scaling cannot be supported or other error condition */ static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); struct drm_framebuffer *fb = plane_state->base.fb; int ret; bool force_detach = !fb || !plane_state->base.visible; bool need_scaler = false; /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && fb && is_planar_yuv_format(fb->format->format)) need_scaler = true; ret = skl_update_scaler(crtc_state, force_detach, drm_plane_index(&intel_plane->base), &plane_state->scaler_id, drm_rect_width(&plane_state->base.src) >> 16, drm_rect_height(&plane_state->base.src) >> 16, drm_rect_width(&plane_state->base.dst), drm_rect_height(&plane_state->base.dst), fb ? fb->format : NULL, need_scaler); if (ret || plane_state->scaler_id < 0) return ret; /* check colorkey */ if (plane_state->ckey.flags) { DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed", intel_plane->base.base.id, intel_plane->base.name); return -EINVAL; } /* Check src format */ switch (fb->format->format) { case DRM_FORMAT_RGB565: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: case DRM_FORMAT_YUYV: case DRM_FORMAT_YVYU: case DRM_FORMAT_UYVY: case DRM_FORMAT_VYUY: case DRM_FORMAT_NV12: case DRM_FORMAT_P010: case DRM_FORMAT_P012: case DRM_FORMAT_P016: case DRM_FORMAT_Y210: case DRM_FORMAT_Y212: case DRM_FORMAT_Y216: case DRM_FORMAT_XVYU2101010: case DRM_FORMAT_XVYU12_16161616: case DRM_FORMAT_XVYU16161616: break; default: DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", intel_plane->base.base.id, intel_plane->base.name, fb->base.id, fb->format->format); return -EINVAL; } return 0; } static void skylake_scaler_disable(struct intel_crtc *crtc) { int i; for (i = 0; i < crtc->num_scalers; i++) skl_detach_scaler(crtc, i); } static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; const struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; if (crtc_state->pch_pfit.enabled) { u16 uv_rgb_hphase, uv_rgb_vphase; int pfit_w, pfit_h, hscale, vscale; int id; if (WARN_ON(crtc_state->scaler_state.scaler_id < 0)) return; pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; pfit_h = crtc_state->pch_pfit.size & 0xFFFF; hscale = (crtc_state->pipe_src_w << 16) / pfit_w; vscale = (crtc_state->pipe_src_h << 16) / pfit_h; uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); id = scaler_state->scaler_id; I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); I915_WRITE_FW(SKL_PS_VPHASE(pipe, id), PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); I915_WRITE_FW(SKL_PS_HPHASE(pipe, id), PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos); I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size); } } static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int pipe = crtc->pipe; if (crtc_state->pch_pfit.enabled) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos); I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size); } } void hsw_enable_ips(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!crtc_state->ips_enabled) return; /* * We can only enable IPS after we enable a plane and wait for a vblank * This function is called from post_plane_update, which is run after * a vblank wait. */ WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); if (IS_BROADWELL(dev_priv)) { WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, IPS_ENABLE | IPS_PCODE_CONTROL)); /* Quoting Art Runyan: "its not safe to expect any particular * value in IPS_CTL bit 31 after enabling IPS through the * mailbox." Moreover, the mailbox may return a bogus state, * so we need to just enable it and continue on. */ } else { I915_WRITE(IPS_CTL, IPS_ENABLE); /* The bit only becomes 1 in the next vblank, so this wait here * is essentially intel_wait_for_vblank. If we don't have this * and don't wait for vblanks until the end of crtc_enable, then * the HW state readout code will complain that the expected * IPS_CTL value is not the one we read. */ if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) DRM_ERROR("Timed out waiting for IPS enable\n"); } } void hsw_disable_ips(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!crtc_state->ips_enabled) return; if (IS_BROADWELL(dev_priv)) { WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); /* * Wait for PCODE to finish disabling IPS. The BSpec specified * 42ms timeout value leads to occasional timeouts so use 100ms * instead. */ if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) DRM_ERROR("Timed out waiting for IPS disable\n"); } else { I915_WRITE(IPS_CTL, 0); POSTING_READ(IPS_CTL); } /* We need to wait for a vblank before we can disable the plane. */ intel_wait_for_vblank(dev_priv, crtc->pipe); } static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) { if (intel_crtc->overlay) { struct drm_device *dev = intel_crtc->base.dev; mutex_lock(&dev->struct_mutex); (void) intel_overlay_switch_off(intel_crtc->overlay); mutex_unlock(&dev->struct_mutex); } /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } /** * intel_post_enable_primary - Perform operations after enabling primary plane * @crtc: the CRTC whose primary plane was just enabled * @new_crtc_state: the enabling state * * Performs potentially sleeping operations that must be done after the primary * plane is enabled, such as updating FBC and IPS. Note that this may be * called due to an explicit primary plane update, or due to an implicit * re-enable that is caused when a sprite plane is updated to no longer * completely hide the primary plane. */ static void intel_post_enable_primary(struct drm_crtc *crtc, const struct intel_crtc_state *new_crtc_state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * Gen2 reports pipe underruns whenever all planes are disabled. * So don't enable underrun reporting before at least some planes * are enabled. * FIXME: Need to fix the logic to work when we turn off all planes * but leave the pipe running. */ if (IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); /* Underruns don't always raise interrupts, so check manually. */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); } /* FIXME get rid of this and use pre_plane_update */ static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. */ if (IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); hsw_disable_ips(to_intel_crtc_state(crtc->state)); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && intel_set_memory_cxsr(dev_priv, false)) intel_wait_for_vblank(dev_priv, pipe); } static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!old_crtc_state->ips_enabled) return false; if (needs_modeset(new_crtc_state)) return true; /* * Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. * * Disable IPS before we program the LUT. */ if (IS_HASWELL(dev_priv) && (new_crtc_state->base.color_mgmt_changed || new_crtc_state->update_pipe) && new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return true; return !new_crtc_state->ips_enabled; } static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!new_crtc_state->ips_enabled) return false; if (needs_modeset(new_crtc_state)) return true; /* * Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. * * Re-enable IPS after the LUT has been programmed. */ if (IS_HASWELL(dev_priv) && (new_crtc_state->base.color_mgmt_changed || new_crtc_state->update_pipe) && new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return true; /* * We can't read out IPS on broadwell, assume the worst and * forcibly enable IPS on the first fastset. */ if (new_crtc_state->update_pipe && old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) return true; return !old_crtc_state->ips_enabled; } static bool needs_nv12_wa(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { if (!crtc_state->nv12_planes) return false; /* WA Display #0827: Gen9:all */ if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) return true; return false; } static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { /* Wa_2006604312:icl */ if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) return true; return false; } static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = old_crtc_state->base.state; struct intel_crtc_state *pipe_config = intel_atomic_get_new_crtc_state(to_intel_atomic_state(state), crtc); struct drm_plane *primary = crtc->base.primary; struct drm_plane_state *old_primary_state = drm_atomic_get_old_plane_state(state, primary); intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits); if (pipe_config->update_wm_post && pipe_config->base.active) intel_update_watermarks(crtc); if (hsw_post_update_enable_ips(old_crtc_state, pipe_config)) hsw_enable_ips(pipe_config); if (old_primary_state) { struct drm_plane_state *new_primary_state = drm_atomic_get_new_plane_state(state, primary); intel_fbc_post_update(crtc); if (new_primary_state->visible && (needs_modeset(pipe_config) || !old_primary_state->visible)) intel_post_enable_primary(&crtc->base, pipe_config); } if (needs_nv12_wa(dev_priv, old_crtc_state) && !needs_nv12_wa(dev_priv, pipe_config)) skl_wa_827(dev_priv, crtc->pipe, false); if (needs_scalerclk_wa(dev_priv, old_crtc_state) && !needs_scalerclk_wa(dev_priv, pipe_config)) icl_wa_scalerclkgating(dev_priv, crtc->pipe, false); } static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *pipe_config) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = old_crtc_state->base.state; struct drm_plane *primary = crtc->base.primary; struct drm_plane_state *old_primary_state = drm_atomic_get_old_plane_state(state, primary); bool modeset = needs_modeset(pipe_config); struct intel_atomic_state *intel_state = to_intel_atomic_state(state); if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config)) hsw_disable_ips(old_crtc_state); if (old_primary_state) { struct intel_plane_state *new_primary_state = intel_atomic_get_new_plane_state(intel_state, to_intel_plane(primary)); intel_fbc_pre_update(crtc, pipe_config, new_primary_state); /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. */ if (IS_GEN(dev_priv, 2) && old_primary_state->visible && (modeset || !new_primary_state->base.visible)) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); } /* Display WA 827 */ if (!needs_nv12_wa(dev_priv, old_crtc_state) && needs_nv12_wa(dev_priv, pipe_config)) skl_wa_827(dev_priv, crtc->pipe, true); /* Wa_2006604312:icl */ if (!needs_scalerclk_wa(dev_priv, old_crtc_state) && needs_scalerclk_wa(dev_priv, pipe_config)) icl_wa_scalerclkgating(dev_priv, crtc->pipe, true); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && old_crtc_state->base.active && pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) intel_wait_for_vblank(dev_priv, crtc->pipe); /* * IVB workaround: must disable low power watermarks for at least * one frame before enabling scaling. LP watermarks can be re-enabled * when scaling is disabled. * * WaCxSRDisabledForSpriteScaling:ivb */ if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) && old_crtc_state->base.active) intel_wait_for_vblank(dev_priv, crtc->pipe); /* * If we're doing a modeset, we're done. No need to do any pre-vblank * watermark programming here. */ if (needs_modeset(pipe_config)) return; /* * For platforms that support atomic watermarks, program the * 'intermediate' watermarks immediately. On pre-gen9 platforms, these * will be the intermediate values that are safe for both pre- and * post- vblank; when vblank happens, the 'active' values will be set * to the final 'target' values and we'll do this again to get the * optimal watermarks. For gen9+ platforms, the values we program here * will be the final target values which will get automatically latched * at vblank time; no further programming will be necessary. * * If a platform hasn't been transitioned to atomic watermarks yet, * we'll continue to update watermarks the old way, if flags tell * us to. */ if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(intel_state, pipe_config); else if (pipe_config->update_wm_pre) intel_update_watermarks(crtc); } static void intel_crtc_disable_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); unsigned int update_mask = new_crtc_state->update_planes; const struct intel_plane_state *old_plane_state; struct intel_plane *plane; unsigned fb_bits = 0; int i; intel_crtc_dpms_overlay_disable(crtc); for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { if (crtc->pipe != plane->pipe || !(update_mask & BIT(plane->id))) continue; intel_disable_plane(plane, new_crtc_state); if (old_plane_state->base.visible) fb_bits |= plane->frontbuffer_bit; } intel_frontbuffer_flip(dev_priv, fb_bits); } /* * intel_connector_primary_encoder - get the primary encoder for a connector * @connector: connector for which to return the encoder * * Returns the primary encoder for a connector. There is a 1:1 mapping from * all connectors to their encoder, except for DP-MST connectors which have * both a virtual and a primary encoder. These DP-MST primary encoders can be * pointed to by as many DP-MST connectors as there are pipes. */ static struct intel_encoder * intel_connector_primary_encoder(struct intel_connector *connector) { struct intel_encoder *encoder; if (connector->mst_port) return &dp_to_dig_port(connector->mst_port)->base; encoder = intel_attached_encoder(&connector->base); WARN_ON(!encoder); return encoder; } static bool intel_connector_needs_modeset(struct intel_atomic_state *state, const struct drm_connector_state *old_conn_state, const struct drm_connector_state *new_conn_state) { struct intel_crtc *old_crtc = old_conn_state->crtc ? to_intel_crtc(old_conn_state->crtc) : NULL; struct intel_crtc *new_crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; return new_crtc != old_crtc || (new_crtc && needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc))); } static void intel_encoders_update_prepare(struct intel_atomic_state *state) { struct drm_connector_state *old_conn_state; struct drm_connector_state *new_conn_state; struct drm_connector *conn; int i; for_each_oldnew_connector_in_state(&state->base, conn, old_conn_state, new_conn_state, i) { struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, old_conn_state, new_conn_state)) continue; encoder = intel_connector_primary_encoder(to_intel_connector(conn)); if (!encoder->update_prepare) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_prepare(state, encoder, crtc); } } static void intel_encoders_update_complete(struct intel_atomic_state *state) { struct drm_connector_state *old_conn_state; struct drm_connector_state *new_conn_state; struct drm_connector *conn; int i; for_each_oldnew_connector_in_state(&state->base, conn, old_conn_state, new_conn_state, i) { struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, old_conn_state, new_conn_state)) continue; encoder = intel_connector_primary_encoder(to_intel_connector(conn)); if (!encoder->update_complete) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_complete(state, encoder, crtc); } } static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder, crtc_state, conn_state); } } static void intel_encoders_pre_enable(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_enable) encoder->pre_enable(encoder, crtc_state, conn_state); } } static void intel_encoders_enable(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->enable) encoder->enable(encoder, crtc_state, conn_state); intel_opregion_notify_encoder(encoder, true); } } static void intel_encoders_disable(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; intel_opregion_notify_encoder(encoder, false); if (encoder->disable) encoder->disable(encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_disable(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_disable) encoder->post_disable(encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_pll_disable(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_pll_disable) encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_update_pipe(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_atomic_state *state) { struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->update_pipe) encoder->update_pipe(encoder, crtc_state, conn_state); } } static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); plane->disable_plane(plane, crtc_state); } static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config, struct intel_atomic_state *state) { struct drm_crtc *crtc = pipe_config->base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; if (WARN_ON(intel_crtc->active)) return; /* * Sometimes spurious CPU pipe underruns happen during FDI * training, at least with VGA+HDMI cloning. Suppress them. * * On ILK we get an occasional spurious CPU pipe underruns * between eDP port A enable and vdd enable. Also PCH port * enable seems to result in the occasional CPU pipe underrun. * * Spurious PCH underruns also occur during PCH enabling. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); if (pipe_config->has_pch_encoder) intel_prepare_shared_dpll(pipe_config); if (intel_crtc_has_dp_encoder(pipe_config)) intel_dp_set_m_n(pipe_config, M1_N1); intel_set_pipe_timings(pipe_config); intel_set_pipe_src_size(pipe_config); if (pipe_config->has_pch_encoder) { intel_cpu_transcoder_set_m_n(pipe_config, &pipe_config->fdi_m_n, NULL); } ironlake_set_pipeconf(pipe_config); intel_crtc->active = true; intel_encoders_pre_enable(intel_crtc, pipe_config, state); if (pipe_config->has_pch_encoder) { /* Note: FDI PLL enabling _must_ be done before we enable the * cpu pipes, hence this is separate from all the other fdi/pch * enabling. */ ironlake_fdi_pll_enable(pipe_config); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } ironlake_pfit_enable(pipe_config); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(pipe_config); intel_color_commit(pipe_config); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(pipe_config); if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(state, pipe_config); intel_enable_pipe(pipe_config); if (pipe_config->has_pch_encoder) ironlake_pch_enable(state, pipe_config); assert_vblank_disabled(crtc); intel_crtc_vblank_on(pipe_config); intel_encoders_enable(intel_crtc, pipe_config, state); if (HAS_PCH_CPT(dev_priv)) cpt_verify_modeset(dev, intel_crtc->pipe); /* * Must wait for vblank to avoid spurious PCH FIFO underruns. * And a second vblank wait is needed at least on ILK with * some interlaced HDMI modes. Let's do the double wait always * in case there are more corner cases we don't know about. */ if (pipe_config->has_pch_encoder) { intel_wait_for_vblank(dev_priv, pipe); intel_wait_for_vblank(dev_priv, pipe); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } /* IPS only exists on ULT machines and is tied to pipe A. */ static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) { return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; } static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, enum pipe pipe, bool apply) { u32 val = I915_READ(CLKGATE_DIS_PSL(pipe)); u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; if (apply) val |= mask; else val &= ~mask; I915_WRITE(CLKGATE_DIS_PSL(pipe), val); } static void icl_pipe_mbus_enable(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = MBUS_DBOX_A_CREDIT(2); if (INTEL_GEN(dev_priv) >= 12) { val |= MBUS_DBOX_BW_CREDIT(2); val |= MBUS_DBOX_B_CREDIT(12); } else { val |= MBUS_DBOX_BW_CREDIT(1); val |= MBUS_DBOX_B_CREDIT(8); } I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val); } static void haswell_crtc_enable(struct intel_crtc_state *pipe_config, struct intel_atomic_state *state) { struct drm_crtc *crtc = pipe_config->base.crtc; struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe, hsw_workaround_pipe; enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; bool psl_clkgate_wa; if (WARN_ON(intel_crtc->active)) return; intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); if (pipe_config->shared_dpll) intel_enable_shared_dpll(pipe_config); intel_encoders_pre_enable(intel_crtc, pipe_config, state); if (intel_crtc_has_dp_encoder(pipe_config)) intel_dp_set_m_n(pipe_config, M1_N1); if (!transcoder_is_dsi(cpu_transcoder)) intel_set_pipe_timings(pipe_config); intel_set_pipe_src_size(pipe_config); if (cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(cpu_transcoder)) { I915_WRITE(PIPE_MULT(cpu_transcoder), pipe_config->pixel_multiplier - 1); } if (pipe_config->has_pch_encoder) { intel_cpu_transcoder_set_m_n(pipe_config, &pipe_config->fdi_m_n, NULL); } if (!transcoder_is_dsi(cpu_transcoder)) haswell_set_pipeconf(pipe_config); if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(pipe_config); intel_crtc->active = true; /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && pipe_config->pch_pfit.enabled; if (psl_clkgate_wa) glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); if (INTEL_GEN(dev_priv) >= 9) skylake_pfit_enable(pipe_config); else ironlake_pfit_enable(pipe_config); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(pipe_config); intel_color_commit(pipe_config); /* update DSPCNTR to configure gamma/csc for pipe bottom color */ if (INTEL_GEN(dev_priv) < 9) intel_disable_primary_plane(pipe_config); if (INTEL_GEN(dev_priv) >= 11) icl_set_pipe_chicken(intel_crtc); intel_ddi_set_pipe_settings(pipe_config); if (!transcoder_is_dsi(cpu_transcoder)) intel_ddi_enable_transcoder_func(pipe_config); if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(state, pipe_config); if (INTEL_GEN(dev_priv) >= 11) icl_pipe_mbus_enable(intel_crtc); /* XXX: Do the pipe assertions at the right place for BXT DSI. */ if (!transcoder_is_dsi(cpu_transcoder)) intel_enable_pipe(pipe_config); if (pipe_config->has_pch_encoder) lpt_pch_enable(state, pipe_config); if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) intel_ddi_set_vc_payload_alloc(pipe_config, true); assert_vblank_disabled(crtc); intel_crtc_vblank_on(pipe_config); intel_encoders_enable(intel_crtc, pipe_config, state); if (psl_clkgate_wa) { intel_wait_for_vblank(dev_priv, pipe); glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); } /* If we change the relative order between pipe/planes enabling, we need * to change the workaround. */ hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); } } static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* To avoid upsetting the power well on haswell only disable the pfit if * it's in use. The hw state code will make sure we get this right. */ if (old_crtc_state->pch_pfit.enabled) { I915_WRITE(PF_CTL(pipe), 0); I915_WRITE(PF_WIN_POS(pipe), 0); I915_WRITE(PF_WIN_SZ(pipe), 0); } } static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_crtc *crtc = old_crtc_state->base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * Sometimes spurious CPU pipe underruns happen when the * pipe is already disabled, but FDI RX/TX is still enabled. * Happens at least with VGA+HDMI cloning. Suppress them. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); intel_encoders_disable(intel_crtc, old_crtc_state, state); drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); intel_disable_pipe(old_crtc_state); ironlake_pfit_disable(old_crtc_state); if (old_crtc_state->has_pch_encoder) ironlake_fdi_disable(crtc); intel_encoders_post_disable(intel_crtc, old_crtc_state, state); if (old_crtc_state->has_pch_encoder) { ironlake_disable_pch_transcoder(dev_priv, pipe); if (HAS_PCH_CPT(dev_priv)) { i915_reg_t reg; u32 temp; /* disable TRANS_DP_CTL */ reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); temp |= TRANS_DP_PORT_SEL_NONE; I915_WRITE(reg, temp); /* disable DPLL_SEL */ temp = I915_READ(PCH_DPLL_SEL); temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); I915_WRITE(PCH_DPLL_SEL, temp); } ironlake_fdi_pll_disable(intel_crtc); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_crtc *crtc = old_crtc_state->base.crtc; struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; intel_encoders_disable(intel_crtc, old_crtc_state, state); drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); /* XXX: Do the pipe assertions at the right place for BXT DSI. */ if (!transcoder_is_dsi(cpu_transcoder)) intel_disable_pipe(old_crtc_state); if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) intel_ddi_set_vc_payload_alloc(old_crtc_state, false); if (!transcoder_is_dsi(cpu_transcoder)) intel_ddi_disable_transcoder_func(old_crtc_state); intel_dsc_disable(old_crtc_state); if (INTEL_GEN(dev_priv) >= 9) skylake_scaler_disable(intel_crtc); else ironlake_pfit_disable(old_crtc_state); intel_encoders_post_disable(intel_crtc, old_crtc_state, state); intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); } static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!crtc_state->gmch_pfit.control) return; /* * The panel fitter should only be adjusted whilst the pipe is disabled, * according to register description and PRM. */ WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); assert_pipe_disabled(dev_priv, crtc->pipe); I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control); /* Border color in case we don't scale up to the full screen. Black by * default, change to something else for debugging. */ I915_WRITE(BCLRPAT(crtc->pipe), 0); } bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) { if (phy == PHY_NONE) return false; if (IS_ELKHARTLAKE(dev_priv)) return phy <= PHY_C; if (INTEL_GEN(dev_priv) >= 11) return phy <= PHY_B; return false; } bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) { if (INTEL_GEN(dev_priv) >= 12) return phy >= PHY_D && phy <= PHY_I; if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) return phy >= PHY_C && phy <= PHY_F; return false; } enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) { if (IS_ELKHARTLAKE(i915) && port == PORT_D) return PHY_A; return (enum phy)port; } enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) { if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) return PORT_TC_NONE; if (INTEL_GEN(dev_priv) >= 12) return port - PORT_D; return port - PORT_C; } enum intel_display_power_domain intel_port_to_power_domain(enum port port) { switch (port) { case PORT_A: return POWER_DOMAIN_PORT_DDI_A_LANES; case PORT_B: return POWER_DOMAIN_PORT_DDI_B_LANES; case PORT_C: return POWER_DOMAIN_PORT_DDI_C_LANES; case PORT_D: return POWER_DOMAIN_PORT_DDI_D_LANES; case PORT_E: return POWER_DOMAIN_PORT_DDI_E_LANES; case PORT_F: return POWER_DOMAIN_PORT_DDI_F_LANES; default: MISSING_CASE(port); return POWER_DOMAIN_PORT_OTHER; } } enum intel_display_power_domain intel_aux_power_domain(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); if (intel_phy_is_tc(dev_priv, phy) && dig_port->tc_mode == TC_PORT_TBT_ALT) { switch (dig_port->aux_ch) { case AUX_CH_C: return POWER_DOMAIN_AUX_TBT1; case AUX_CH_D: return POWER_DOMAIN_AUX_TBT2; case AUX_CH_E: return POWER_DOMAIN_AUX_TBT3; case AUX_CH_F: return POWER_DOMAIN_AUX_TBT4; default: MISSING_CASE(dig_port->aux_ch); return POWER_DOMAIN_AUX_TBT1; } } switch (dig_port->aux_ch) { case AUX_CH_A: return POWER_DOMAIN_AUX_A; case AUX_CH_B: return POWER_DOMAIN_AUX_B; case AUX_CH_C: return POWER_DOMAIN_AUX_C; case AUX_CH_D: return POWER_DOMAIN_AUX_D; case AUX_CH_E: return POWER_DOMAIN_AUX_E; case AUX_CH_F: return POWER_DOMAIN_AUX_F; default: MISSING_CASE(dig_port->aux_ch); return POWER_DOMAIN_AUX_A; } } static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_encoder *encoder; enum pipe pipe = crtc->pipe; u64 mask; enum transcoder transcoder = crtc_state->cpu_transcoder; if (!crtc_state->base.active) return 0; mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); if (crtc_state->pch_pfit.enabled || crtc_state->pch_pfit.force_thru) mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); drm_for_each_encoder_mask(encoder, &dev_priv->drm, crtc_state->base.encoder_mask) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); mask |= BIT_ULL(intel_encoder->power_domain); } if (HAS_DDI(dev_priv) && crtc_state->has_audio) mask |= BIT_ULL(POWER_DOMAIN_AUDIO); if (crtc_state->shared_dpll) mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); return mask; } static u64 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain domain; u64 domains, new_domains, old_domains; old_domains = crtc->enabled_power_domains; crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc_state); domains = new_domains & ~old_domains; for_each_power_domain(domain, domains) intel_display_power_get(dev_priv, domain); return old_domains & ~new_domains; } static void modeset_put_power_domains(struct drm_i915_private *dev_priv, u64 domains) { enum intel_display_power_domain domain; for_each_power_domain(domain, domains) intel_display_power_put_unchecked(dev_priv, domain); } static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config, struct intel_atomic_state *state) { struct drm_crtc *crtc = pipe_config->base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; if (WARN_ON(intel_crtc->active)) return; if (intel_crtc_has_dp_encoder(pipe_config)) intel_dp_set_m_n(pipe_config, M1_N1); intel_set_pipe_timings(pipe_config); intel_set_pipe_src_size(pipe_config); if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); I915_WRITE(CHV_CANVAS(pipe), 0); } i9xx_set_pipeconf(pipe_config); intel_crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); if (IS_CHERRYVIEW(dev_priv)) { chv_prepare_pll(intel_crtc, pipe_config); chv_enable_pll(intel_crtc, pipe_config); } else { vlv_prepare_pll(intel_crtc, pipe_config); vlv_enable_pll(intel_crtc, pipe_config); } intel_encoders_pre_enable(intel_crtc, pipe_config, state); i9xx_pfit_enable(pipe_config); intel_color_load_luts(pipe_config); intel_color_commit(pipe_config); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(pipe_config); dev_priv->display.initial_watermarks(state, pipe_config); intel_enable_pipe(pipe_config); assert_vblank_disabled(crtc); intel_crtc_vblank_on(pipe_config); intel_encoders_enable(intel_crtc, pipe_config, state); } static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0); I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1); } static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config, struct intel_atomic_state *state) { struct drm_crtc *crtc = pipe_config->base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; if (WARN_ON(intel_crtc->active)) return; i9xx_set_pll_dividers(pipe_config); if (intel_crtc_has_dp_encoder(pipe_config)) intel_dp_set_m_n(pipe_config, M1_N1); intel_set_pipe_timings(pipe_config); intel_set_pipe_src_size(pipe_config); i9xx_set_pipeconf(pipe_config); intel_crtc->active = true; if (!IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_enable(intel_crtc, pipe_config, state); i9xx_enable_pll(intel_crtc, pipe_config); i9xx_pfit_enable(pipe_config); intel_color_load_luts(pipe_config); intel_color_commit(pipe_config); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(pipe_config); if (dev_priv->display.initial_watermarks != NULL) dev_priv->display.initial_watermarks(state, pipe_config); else intel_update_watermarks(intel_crtc); intel_enable_pipe(pipe_config); assert_vblank_disabled(crtc); intel_crtc_vblank_on(pipe_config); intel_encoders_enable(intel_crtc, pipe_config, state); } static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!old_crtc_state->gmch_pfit.control) return; assert_pipe_disabled(dev_priv, crtc->pipe); DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n", I915_READ(PFIT_CONTROL)); I915_WRITE(PFIT_CONTROL, 0); } static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state, struct intel_atomic_state *state) { struct drm_crtc *crtc = old_crtc_state->base.crtc; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; /* * On gen2 planes are double buffered but the pipe isn't, so we must * wait for planes to fully turn off before disabling the pipe. */ if (IS_GEN(dev_priv, 2)) intel_wait_for_vblank(dev_priv, pipe); intel_encoders_disable(intel_crtc, old_crtc_state, state); drm_crtc_vblank_off(crtc); assert_vblank_disabled(crtc); intel_disable_pipe(old_crtc_state); i9xx_pfit_disable(old_crtc_state); intel_encoders_post_disable(intel_crtc, old_crtc_state, state); if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { if (IS_CHERRYVIEW(dev_priv)) chv_disable_pll(dev_priv, pipe); else if (IS_VALLEYVIEW(dev_priv)) vlv_disable_pll(dev_priv, pipe); else i9xx_disable_pll(old_crtc_state); } intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); if (!IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); if (!dev_priv->display.initial_watermarks) intel_update_watermarks(intel_crtc); /* clock the pipe down to 640x480@60 to potentially save power */ if (IS_I830(dev_priv)) i830_enable_pipe(dev_priv, pipe); } static void intel_crtc_disable_noatomic(struct drm_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_bw_state *bw_state = to_intel_bw_state(dev_priv->bw_obj.state); enum intel_display_power_domain domain; struct intel_plane *plane; u64 domains; struct drm_atomic_state *state; struct intel_crtc_state *crtc_state; int ret; if (!intel_crtc->active) return; for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); if (plane_state->base.visible) intel_plane_disable_noatomic(intel_crtc, plane); } state = drm_atomic_state_alloc(crtc->dev); if (!state) { DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory", crtc->base.id, crtc->name); return; } state->acquire_ctx = ctx; /* Everything's already locked, -EDEADLK can't happen. */ crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); ret = drm_atomic_add_affected_connectors(state, crtc); WARN_ON(IS_ERR(crtc_state) || ret); dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state)); drm_atomic_state_put(state); DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", crtc->base.id, crtc->name); WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); crtc->state->active = false; intel_crtc->active = false; crtc->enabled = false; crtc->state->connector_mask = 0; crtc->state->encoder_mask = 0; for_each_encoder_on_crtc(crtc->dev, crtc, encoder) encoder->base.crtc = NULL; intel_fbc_disable(intel_crtc); intel_update_watermarks(intel_crtc); intel_disable_shared_dpll(to_intel_crtc_state(crtc->state)); domains = intel_crtc->enabled_power_domains; for_each_power_domain(domain, domains) intel_display_power_put_unchecked(dev_priv, domain); intel_crtc->enabled_power_domains = 0; dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe); dev_priv->min_cdclk[intel_crtc->pipe] = 0; dev_priv->min_voltage_level[intel_crtc->pipe] = 0; bw_state->data_rate[intel_crtc->pipe] = 0; bw_state->num_active_planes[intel_crtc->pipe] = 0; } /* * turn all crtc's off, but do not adjust state * This has to be paired with a call to intel_modeset_setup_hw_state. */ int intel_display_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; int ret; state = drm_atomic_helper_suspend(dev); ret = PTR_ERR_OR_ZERO(state); if (ret) DRM_ERROR("Suspending crtc's failed with %i\n", ret); else dev_priv->modeset_restore_state = state; return ret; } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Cross check the actual hw state with our own modeset state tracking (and it's * internal consistency). */ static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_connector *connector = to_intel_connector(conn_state->connector); DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.base.id, connector->base.name); if (connector->get_hw_state(connector)) { struct intel_encoder *encoder = connector->encoder; I915_STATE_WARN(!crtc_state, "connector enabled without attached crtc\n"); if (!crtc_state) return; I915_STATE_WARN(!crtc_state->base.active, "connector is active, but attached crtc isn't\n"); if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) return; I915_STATE_WARN(conn_state->best_encoder != &encoder->base, "atomic encoder doesn't match attached encoder\n"); I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, "attached encoder crtc differs from connector crtc\n"); } else { I915_STATE_WARN(crtc_state && crtc_state->base.active, "attached crtc is active, but connector isn't\n"); I915_STATE_WARN(!crtc_state && conn_state->best_encoder, "best encoder set without crtc!\n"); } } static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) { if (crtc_state->base.enable && crtc_state->has_pch_encoder) return crtc_state->fdi_lanes; return 0; } static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = pipe_config->base.state; struct intel_crtc *other_crtc; struct intel_crtc_state *other_crtc_state; DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", pipe_name(pipe), pipe_config->fdi_lanes); if (pipe_config->fdi_lanes > 4) { DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", pipe_config->fdi_lanes); return -EINVAL; } else { return 0; } } if (INTEL_INFO(dev_priv)->num_pipes == 2) return 0; /* Ivybridge 3 pipe is really complicated */ switch (pipe) { case PIPE_A: return 0; case PIPE_B: if (pipe_config->fdi_lanes <= 2) return 0; other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); other_crtc_state = intel_atomic_get_crtc_state(state, other_crtc); if (IS_ERR(other_crtc_state)) return PTR_ERR(other_crtc_state); if (pipe_required_fdi_lanes(other_crtc_state) > 0) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } return 0; case PIPE_C: if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return -EINVAL; } other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); other_crtc_state = intel_atomic_get_crtc_state(state, other_crtc); if (IS_ERR(other_crtc_state)) return PTR_ERR(other_crtc_state); if (pipe_required_fdi_lanes(other_crtc_state) > 2) { DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); return -EINVAL; } return 0; default: BUG(); } } #define RETRY 1 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = intel_crtc->base.dev; const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; int lane, link_bw, fdi_dotclock, ret; bool needs_recompute = false; retry: /* FDI is a binary signal running at ~2.7GHz, encoding * each output octet as 10 bits. The actual frequency * is stored as a divider into a 100MHz clock, and the * mode pixel clock is stored in units of 1KHz. * Hence the bw of each lane in terms of the mode signal * is: */ link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); fdi_dotclock = adjusted_mode->crtc_clock; lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, pipe_config->pipe_bpp); pipe_config->fdi_lanes = lane; intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, link_bw, &pipe_config->fdi_m_n, false, false); ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); if (ret == -EDEADLK) return ret; if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { pipe_config->pipe_bpp -= 2*3; DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", pipe_config->pipe_bpp); needs_recompute = true; pipe_config->bw_constrained = true; goto retry; } if (needs_recompute) return RETRY; return ret; } bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* IPS only exists on ULT machines and is tied to pipe A. */ if (!hsw_crtc_supports_ips(crtc)) return false; if (!i915_modparams.enable_ips) return false; if (crtc_state->pipe_bpp > 24) return false; /* * We compare against max which means we must take * the increased cdclk requirement into account when * calculating the new cdclk. * * Should measure whether using a lower cdclk w/o IPS */ if (IS_BROADWELL(dev_priv) && crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) return false; return true; } static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_atomic_state *intel_state = to_intel_atomic_state(crtc_state->base.state); if (!hsw_crtc_state_ips_capable(crtc_state)) return false; /* * When IPS gets enabled, the pipe CRC changes. Since IPS gets * enabled and disabled dynamically based on package C states, * user space can't make reliable use of the CRCs, so let's just * completely disable it. */ if (crtc_state->crc_enabled) return false; /* IPS should be fine as long as at least one plane is enabled. */ if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) return false; /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (IS_BROADWELL(dev_priv) && crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100) return false; return true; } static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) { const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* GDG double wide on either pipe, otherwise pipe A only */ return INTEL_GEN(dev_priv) < 4 && (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); } static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) { u32 pixel_rate; pixel_rate = pipe_config->base.adjusted_mode.crtc_clock; /* * We only use IF-ID interlacing. If we ever use * PF-ID we'll need to adjust the pixel_rate here. */ if (pipe_config->pch_pfit.enabled) { u64 pipe_w, pipe_h, pfit_w, pfit_h; u32 pfit_size = pipe_config->pch_pfit.size; pipe_w = pipe_config->pipe_src_w; pipe_h = pipe_config->pipe_src_h; pfit_w = (pfit_size >> 16) & 0xFFFF; pfit_h = pfit_size & 0xFFFF; if (pipe_w < pfit_w) pipe_w = pfit_w; if (pipe_h < pfit_h) pipe_h = pfit_h; if (WARN_ON(!pfit_w || !pfit_h)) return pixel_rate; pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), pfit_w * pfit_h); } return pixel_rate; } static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); if (HAS_GMCH(dev_priv)) /* FIXME calculate proper pipe pixel rate for GMCH pfit */ crtc_state->pixel_rate = crtc_state->base.adjusted_mode.crtc_clock; else crtc_state->pixel_rate = ilk_pipe_pixel_rate(crtc_state); } static int intel_crtc_compute_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; int clock_limit = dev_priv->max_dotclk_freq; if (INTEL_GEN(dev_priv) < 4) { clock_limit = dev_priv->max_cdclk_freq * 9 / 10; /* * Enable double wide mode when the dot clock * is > 90% of the (display) core speed. */ if (intel_crtc_supports_double_wide(crtc) && adjusted_mode->crtc_clock > clock_limit) { clock_limit = dev_priv->max_dotclk_freq; pipe_config->double_wide = true; } } if (adjusted_mode->crtc_clock > clock_limit) { DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", adjusted_mode->crtc_clock, clock_limit, yesno(pipe_config->double_wide)); return -EINVAL; } if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && pipe_config->base.ctm) { /* * There is only one pipe CSC unit per pipe, and we need that * for output conversion from RGB->YCBCR. So if CTM is already * applied we can't support YCBCR420 output. */ DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n"); return -EINVAL; } /* * Pipe horizontal size must be even in: * - DVO ganged mode * - LVDS dual channel mode * - Double wide pipe */ if (pipe_config->pipe_src_w & 1) { if (pipe_config->double_wide) { DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n"); return -EINVAL; } if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && intel_is_dual_link_lvds(dev_priv)) { DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n"); return -EINVAL; } } /* Cantiga+ cannot handle modes with a hsync front porch of 0. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. */ if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) return -EINVAL; intel_crtc_compute_pixel_rate(pipe_config); if (pipe_config->has_pch_encoder) return ironlake_fdi_compute_config(crtc, pipe_config); return 0; } static void intel_reduce_m_n_ratio(u32 *num, u32 *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } static void compute_m_n(unsigned int m, unsigned int n, u32 *ret_m, u32 *ret_n, bool constant_n) { /* * Several DP dongles in particular seem to be fussy about * too large link M/N values. Give N value as 0x8000 that * should be acceptable by specific devices. 0x8000 is the * specified fixed N value for asynchronous clock mode, * which the devices expect also in synchronous clock mode. */ if (constant_n) *ret_n = 0x8000; else *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n, bool constant_n, bool fec_enable) { u32 data_clock = bits_per_pixel * pixel_clock; if (fec_enable) data_clock = intel_dp_mode_to_fec_clock(data_clock); m_n->tu = 64; compute_m_n(data_clock, link_clock * nlanes * 8, &m_n->gmch_m, &m_n->gmch_n, constant_n); compute_m_n(pixel_clock, link_clock, &m_n->link_m, &m_n->link_n, constant_n); } static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) { if (i915_modparams.panel_use_ssc >= 0) return i915_modparams.panel_use_ssc != 0; return dev_priv->vbt.lvds_use_ssc && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); } static u32 pnv_dpll_compute_fp(struct dpll *dpll) { return (1 << dpll->n) << 16 | dpll->m2; } static u32 i9xx_dpll_compute_fp(struct dpll *dpll) { return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; } static void i9xx_update_pll_dividers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct dpll *reduced_clock) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 fp, fp2 = 0; if (IS_PINEVIEW(dev_priv)) { fp = pnv_dpll_compute_fp(&crtc_state->dpll); if (reduced_clock) fp2 = pnv_dpll_compute_fp(reduced_clock); } else { fp = i9xx_dpll_compute_fp(&crtc_state->dpll); if (reduced_clock) fp2 = i9xx_dpll_compute_fp(reduced_clock); } crtc_state->dpll_hw_state.fp0 = fp; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && reduced_clock) { crtc_state->dpll_hw_state.fp1 = fp2; } else { crtc_state->dpll_hw_state.fp1 = fp; } } static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 reg_val; /* * PLLB opamp always calibrates to max value of 0x3f, force enable it * and set it to a reasonable value instead. */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; reg_val |= 0x00000030; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0x8c000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0xb0000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); } static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); } static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, enum transcoder transcoder) { if (IS_HASWELL(dev_priv)) return transcoder == TRANSCODER_EDP; /* * Strictly speaking some registers are available before * gen7, but we only support DRRS on gen7+ */ return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); } static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder transcoder = crtc_state->cpu_transcoder; if (INTEL_GEN(dev_priv) >= 5) { I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); /* * M2_N2 registers are set only if DRRS is supported * (to make sure the registers are not unnecessarily accessed). */ if (m2_n2 && crtc_state->has_drrs && transcoder_has_m2_n2(dev_priv, transcoder)) { I915_WRITE(PIPE_DATA_M2(transcoder), TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); } } else { I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); } } void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) { const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; if (m_n == M1_N1) { dp_m_n = &crtc_state->dp_m_n; dp_m2_n2 = &crtc_state->dp_m2_n2; } else if (m_n == M2_N2) { /* * M2_N2 registers are not supported. Hence m2_n2 divider value * needs to be programmed into M1_N1. */ dp_m_n = &crtc_state->dp_m2_n2; } else { DRM_ERROR("Unsupported divider value\n"); return; } if (crtc_state->has_pch_encoder) intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); else intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); } static void vlv_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (crtc->pipe != PIPE_A) pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; /* DPLL not used with DSI, but still need the rest set up */ if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; pipe_config->dpll_hw_state.dpll_md = (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; } static void chv_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; if (crtc->pipe != PIPE_A) pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; /* DPLL not used with DSI, but still need the rest set up */ if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; pipe_config->dpll_hw_state.dpll_md = (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; } static void vlv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; u32 mdiv; u32 bestn, bestm1, bestm2, bestp1, bestp2; u32 coreclk, reg_val; /* Enable Refclk */ I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); /* No need to actually set up the DPLL with DSI */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); bestn = pipe_config->dpll.n; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; /* See eDP HDMI DPIO driver vbios notes doc */ /* PLL B needs special handling */ if (pipe == PIPE_B) vlv_pllb_recal_opamp(dev_priv, pipe); /* Set up Tx target for periodic Rcomp update */ vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); /* Disable target IRef on PLL */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); reg_val &= 0x00ffffff; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); /* Disable fast lock */ vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); /* Set idtafcrecal before PLL is enabled */ mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); mdiv |= ((bestn << DPIO_N_SHIFT)); mdiv |= (1 << DPIO_K_SHIFT); /* * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, * but we don't support that). * Note: don't use the DAC post divider as it seems unstable. */ mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); mdiv |= DPIO_ENABLE_CALIBRATION; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); /* Set HBR and RBR LPF coefficients */ if (pipe_config->port_clock == 162000 || intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x009f0003); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x00d0000f); if (intel_crtc_has_dp_encoder(pipe_config)) { /* Use SSC source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); } else { /* HDMI or VGA */ /* Use bend source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); } coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); coreclk = (coreclk & 0x0000ff00) | 0x01c00000; if (intel_crtc_has_dp_encoder(pipe_config)) coreclk |= 0x01000000; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); vlv_dpio_put(dev_priv); } static void chv_prepare_pll(struct intel_crtc *crtc, const struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 loopfilter, tribuf_calcntr; u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; u32 dpio_val; int vco; /* Enable Refclk and SSC */ I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); /* No need to actually set up the DPLL with DSI */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; bestn = pipe_config->dpll.n; bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; bestm1 = pipe_config->dpll.m1; bestm2 = pipe_config->dpll.m2 >> 22; bestp1 = pipe_config->dpll.p1; bestp2 = pipe_config->dpll.p2; vco = pipe_config->dpll.vco; dpio_val = 0; loopfilter = 0; vlv_dpio_get(dev_priv); /* p1 and p2 divider */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 5 << DPIO_CHV_S1_DIV_SHIFT | bestp1 << DPIO_CHV_P1_DIV_SHIFT | bestp2 << DPIO_CHV_P2_DIV_SHIFT | 1 << DPIO_CHV_K_DIV_SHIFT); /* Feedback post-divider - m2 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); /* Feedback refclk divider - n and m1 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), DPIO_CHV_M1_DIV_BY_2 | 1 << DPIO_CHV_N_DIV_SHIFT); /* M2 fraction division */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); /* M2 fraction division enable */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); if (bestm2_frac) dpio_val |= DPIO_CHV_FRAC_DIV_EN; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); /* Program digital lock detect threshold */ dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); if (!bestm2_frac) dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); /* Loop filter */ if (vco == 5400000) { loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6200000) { loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x9; } else if (vco <= 6480000) { loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0x8; } else { /* Not supported. Apply the same limits as in the max case */ loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); tribuf_calcntr = 0; } vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); /* AFC Recal */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | DPIO_AFC_RECAL); vlv_dpio_put(dev_priv); } /** * vlv_force_pll_on - forcibly enable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * @dpll: PLL configuration * * Enable the PLL for @pipe using the supplied @dpll config. To be used * in cases where we need the PLL enabled even when @pipe is not going to * be enabled. */ int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, const struct dpll *dpll) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); struct intel_crtc_state *pipe_config; pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); if (!pipe_config) return -ENOMEM; pipe_config->base.crtc = &crtc->base; pipe_config->pixel_multiplier = 1; pipe_config->dpll = *dpll; if (IS_CHERRYVIEW(dev_priv)) { chv_compute_dpll(crtc, pipe_config); chv_prepare_pll(crtc, pipe_config); chv_enable_pll(crtc, pipe_config); } else { vlv_compute_dpll(crtc, pipe_config); vlv_prepare_pll(crtc, pipe_config); vlv_enable_pll(crtc, pipe_config); } kfree(pipe_config); return 0; } /** * vlv_force_pll_off - forcibly disable just the PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe. To be used in cases where we need * the PLL enabled even when @pipe is not going to be enabled. */ void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) { if (IS_CHERRYVIEW(dev_priv)) chv_disable_pll(dev_priv, pipe); else vlv_disable_pll(dev_priv, pipe); } static void i9xx_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct dpll *reduced_clock) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 dpll; struct dpll *clock = &crtc_state->dpll; i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); dpll = DPLL_VGA_MODE_DIS; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { dpll |= (crtc_state->pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) dpll |= DPLL_SDVO_HIGH_SPEED; if (intel_crtc_has_dp_encoder(crtc_state)) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ if (IS_PINEVIEW(dev_priv)) dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; else { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (IS_G4X(dev_priv) && reduced_clock) dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; } switch (clock->p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (INTEL_GEN(dev_priv) >= 4) dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); if (crtc_state->sdvo_tv_clock) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; if (INTEL_GEN(dev_priv) >= 4) { u32 dpll_md = (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; crtc_state->dpll_hw_state.dpll_md = dpll_md; } } static void i8xx_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct dpll *reduced_clock) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 dpll; struct dpll *clock = &crtc_state->dpll; i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); dpll = DPLL_VGA_MODE_DIS; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; } else { if (clock->p1 == 2) dpll |= PLL_P1_DIVIDE_BY_TWO; else dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (clock->p2 == 4) dpll |= PLL_P2_DIVIDE_BY_4; } /* * Bspec: * "[Almador Errata}: For the correct operation of the muxed DVO pins * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock * Enable) must be set to “1” in both the DPLL A Control Register * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." * * For simplicity We simply keep both bits always enabled in * both DPLLS. The spec says we should disable the DVO 2X clock * when not needed, but this seems to work fine in practice. */ if (IS_I830(dev_priv) || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) dpll |= DPLL_DVO_2X_MODE; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; } static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; u32 crtc_vtotal, crtc_vblank_end; int vsyncshift = 0; /* We need to be careful not to changed the adjusted mode, for otherwise * the hw state checker will get angry at the mismatch. */ crtc_vtotal = adjusted_mode->crtc_vtotal; crtc_vblank_end = adjusted_mode->crtc_vblank_end; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ crtc_vtotal -= 1; crtc_vblank_end -= 1; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; else vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; if (vsyncshift < 0) vsyncshift += adjusted_mode->crtc_htotal; } if (INTEL_GEN(dev_priv) > 3) I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); I915_WRITE(HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); I915_WRITE(HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); I915_WRITE(HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); I915_WRITE(VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); I915_WRITE(VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); I915_WRITE(VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); } static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ I915_WRITE(PIPESRC(pipe), ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); } static void intel_get_pipe_timings(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; u32 tmp; tmp = I915_READ(HTOTAL(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = I915_READ(HBLANK(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = I915_READ(HSYNC(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VTOTAL(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = I915_READ(VBLANK(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = I915_READ(VSYNC(cpu_transcoder)); pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; pipe_config->base.adjusted_mode.crtc_vtotal += 1; pipe_config->base.adjusted_mode.crtc_vblank_end += 1; } } static void intel_get_pipe_src_size(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp; tmp = I915_READ(PIPESRC(crtc->pipe)); pipe_config->pipe_src_h = (tmp & 0xffff) + 1; pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; } void intel_mode_from_pipe_config(struct drm_display_mode *mode, struct intel_crtc_state *pipe_config) { mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; mode->flags = pipe_config->base.adjusted_mode.flags; mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = pipe_config->base.adjusted_mode.crtc_clock; mode->hsync = drm_mode_hsync(mode); mode->vrefresh = drm_mode_vrefresh(mode); drm_mode_set_name(mode); } static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 pipeconf; pipeconf = 0; /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; if (crtc_state->double_wide) pipeconf |= PIPECONF_DOUBLE_WIDE; /* only g4x and later have fancy bpc/dither controls */ if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* Bspec claims that we can't use dithering for 30bpp pipes. */ if (crtc_state->dither && crtc_state->pipe_bpp != 30) pipeconf |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; switch (crtc_state->pipe_bpp) { case 18: pipeconf |= PIPECONF_6BPC; break; case 24: pipeconf |= PIPECONF_8BPC; break; case 30: pipeconf |= PIPECONF_10BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } } if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { if (INTEL_GEN(dev_priv) < 4 || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; } else { pipeconf |= PIPECONF_PROGRESSIVE; } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && crtc_state->limited_color_range) pipeconf |= PIPECONF_COLOR_RANGE_SELECT; pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); I915_WRITE(PIPECONF(crtc->pipe), pipeconf); POSTING_READ(PIPECONF(crtc->pipe)); } static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); const struct intel_limit *limit; int refclk = 48000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_i8xx_lvds; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { limit = &intel_limits_i8xx_dvo; } else { limit = &intel_limits_i8xx_dac; } if (!crtc_state->clock_set && !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i8xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int g4x_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_limit *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } if (intel_is_dual_link_lvds(dev_priv)) limit = &intel_limits_g4x_dual_channel_lvds; else limit = &intel_limits_g4x_single_channel_lvds; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { limit = &intel_limits_g4x_hdmi; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { limit = &intel_limits_g4x_sdvo; } else { /* The option is for other outputs */ limit = &intel_limits_i9xx_sdvo; } if (!crtc_state->clock_set && !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int pnv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); const struct intel_limit *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_pineview_lvds; } else { limit = &intel_limits_pineview_sdvo; } if (!crtc_state->clock_set && !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); const struct intel_limit *limit; int refclk = 96000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } limit = &intel_limits_i9xx_lvds; } else { limit = &intel_limits_i9xx_sdvo; } if (!crtc_state->clock_set && !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } i9xx_compute_dpll(crtc, crtc_state, NULL); return 0; } static int chv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { int refclk = 100000; const struct intel_limit *limit = &intel_limits_chv; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (!crtc_state->clock_set && !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } chv_compute_dpll(crtc, crtc_state); return 0; } static int vlv_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { int refclk = 100000; const struct intel_limit *limit = &intel_limits_vlv; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (!crtc_state->clock_set && !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } vlv_compute_dpll(crtc, crtc_state); return 0; } static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return false; return INTEL_GEN(dev_priv) >= 4 || IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } static void i9xx_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; if (!i9xx_has_pfit(dev_priv)) return; tmp = I915_READ(PFIT_CONTROL); if (!(tmp & PFIT_ENABLE)) return; /* Check whether the pfit is attached to our pipe. */ if (INTEL_GEN(dev_priv) < 4) { if (crtc->pipe != PIPE_B) return; } else { if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) return; } pipe_config->gmch_pfit.control = tmp; pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); } static void vlv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = pipe_config->cpu_transcoder; struct dpll clock; u32 mdiv; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); vlv_dpio_put(dev_priv); clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; clock.m2 = mdiv & DPIO_M2DIV_MASK; clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); } static void i9xx_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; enum pipe pipe; u32 val, base, offset; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; if (!plane->get_hw_state(plane, &pipe)) return; WARN_ON(pipe != crtc->pipe); intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } fb = &intel_fb->base; fb->dev = dev; val = I915_READ(DSPCNTR(i9xx_plane)); if (INTEL_GEN(dev_priv) >= 4) { if (val & DISPPLANE_TILED) { plane_config->tiling = I915_TILING_X; fb->modifier = I915_FORMAT_MOD_X_TILED; } if (val & DISPPLANE_ROTATE_180) plane_config->rotation = DRM_MODE_ROTATE_180; } if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && val & DISPPLANE_MIRROR) plane_config->rotation |= DRM_MODE_REFLECT_X; pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = i9xx_format_to_fourcc(pixel_format); fb->format = drm_format_info(fourcc); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { offset = I915_READ(DSPOFFSET(i9xx_plane)); base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; } else if (INTEL_GEN(dev_priv) >= 4) { if (plane_config->tiling) offset = I915_READ(DSPTILEOFF(i9xx_plane)); else offset = I915_READ(DSPLINOFF(i9xx_plane)); base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; } else { base = I915_READ(DSPADDR(i9xx_plane)); } plane_config->base = base; val = I915_READ(PIPESRC(pipe)); fb->width = ((val >> 16) & 0xfff) + 1; fb->height = ((val >> 0) & 0xfff) + 1; val = I915_READ(DSPSTRIDE(i9xx_plane)); fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_fb_align_height(fb, 0, fb->height); plane_config->size = fb->pitches[0] * aligned_height; DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", crtc->base.name, plane->base.name, fb->width, fb->height, fb->format->cpp[0] * 8, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; } static void chv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = pipe_config->cpu_transcoder; enum dpio_channel port = vlv_pipe_to_channel(pipe); struct dpll clock; u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); vlv_dpio_put(dev_priv); clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; clock.m2 = (pll_dw0 & 0xff) << 22; if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) clock.m2 |= pll_dw2 & 0x3fffff; clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); } static void intel_get_crtc_ycbcr_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_output_format output = INTEL_OUTPUT_FORMAT_RGB; pipe_config->lspcon_downsampling = false; if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) { u32 tmp = I915_READ(PIPEMISC(crtc->pipe)); if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { bool ycbcr420_enabled = tmp & PIPEMISC_YUV420_ENABLE; bool blend = tmp & PIPEMISC_YUV420_MODE_FULL_BLEND; if (ycbcr420_enabled) { /* We support 4:2:0 in full blend mode only */ if (!blend) output = INTEL_OUTPUT_FORMAT_INVALID; else if (!(IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)) output = INTEL_OUTPUT_FORMAT_INVALID; else output = INTEL_OUTPUT_FORMAT_YCBCR420; } else { /* * Currently there is no interface defined to * check user preference between RGB/YCBCR444 * or YCBCR420. So the only possible case for * YCBCR444 usage is driving YCBCR420 output * with LSPCON, when pipe is configured for * YCBCR444 output and LSPCON takes care of * downsampling it. */ pipe_config->lspcon_downsampling = true; output = INTEL_OUTPUT_FORMAT_YCBCR444; } } } pipe_config->output_format = output; } static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; u32 tmp; tmp = I915_READ(DSPCNTR(i9xx_plane)); if (tmp & DISPPLANE_GAMMA_ENABLE) crtc_state->gamma_enable = true; if (!HAS_GMCH(dev_priv) && tmp & DISPPLANE_PIPE_CSC_ENABLE) crtc_state->csc_enable = true; } static bool i9xx_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; default: break; } } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) pipe_config->limited_color_range = true; pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> PIPECONF_GAMMA_MODE_SHIFT; if (IS_CHERRYVIEW(dev_priv)) pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); if (INTEL_GEN(dev_priv) < 4) pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; intel_get_pipe_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); i9xx_get_pfit_config(crtc, pipe_config); if (INTEL_GEN(dev_priv) >= 4) { /* No way to read it out on pipes B and C */ if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) tmp = dev_priv->chv_dpll_md[crtc->pipe]; else tmp = I915_READ(DPLL_MD(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; pipe_config->dpll_hw_state.dpll_md = tmp; } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { tmp = I915_READ(DPLL(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & SDVO_MULTIPLIER_MASK) >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; } else { /* Note that on i915G/GM the pixel multiplier is in the sdvo * port and will be fixed up in the encoder->get_config * function. */ pipe_config->pixel_multiplier = 1; } pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); } else { /* Mask out read-only status bits. */ pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | DPLL_PORTC_READY_MASK | DPLL_PORTB_READY_MASK); } if (IS_CHERRYVIEW(dev_priv)) chv_crtc_clock_get(crtc, pipe_config); else if (IS_VALLEYVIEW(dev_priv)) vlv_crtc_clock_get(crtc, pipe_config); else i9xx_crtc_clock_get(crtc, pipe_config); /* * Normally the dotclock is filled in by the encoder .get_config() * but in case the pipe is enabled w/o any ports we need a sane * default. */ pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock / pipe_config->pixel_multiplier; ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; int i; u32 val, final; bool has_lvds = false; bool has_cpu_edp = false; bool has_panel = false; bool has_ck505 = false; bool can_ssc = false; bool using_ssc_source = false; /* We need to take the global config into account */ for_each_intel_encoder(&dev_priv->drm, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: has_panel = true; has_lvds = true; break; case INTEL_OUTPUT_EDP: has_panel = true; if (encoder->port == PORT_A) has_cpu_edp = true; break; default: break; } } if (HAS_PCH_IBX(dev_priv)) { has_ck505 = dev_priv->vbt.display_clock_mode; can_ssc = has_ck505; } else { has_ck505 = false; can_ssc = true; } /* Check if any DPLLs are using the SSC source */ for (i = 0; i < dev_priv->num_shared_dpll; i++) { u32 temp = I915_READ(PCH_DPLL(i)); if (!(temp & DPLL_VCO_ENABLE)) continue; if ((temp & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { using_ssc_source = true; break; } } DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", has_panel, has_lvds, has_ck505, using_ssc_source); /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ val = I915_READ(PCH_DREF_CONTROL); /* As we must carefully and slowly disable/enable each source in turn, * compute the final state we want first and check if we need to * make any changes at all. */ final = val; final &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) final |= DREF_NONSPREAD_CK505_ENABLE; else final |= DREF_NONSPREAD_SOURCE_ENABLE; final &= ~DREF_SSC_SOURCE_MASK; final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; final &= ~DREF_SSC1_ENABLE; if (has_panel) { final |= DREF_SSC_SOURCE_ENABLE; if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_SSC1_ENABLE; if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; else final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } else if (using_ssc_source) { final |= DREF_SSC_SOURCE_ENABLE; final |= DREF_SSC1_ENABLE; } if (final == val) return; /* Always enable nonspread source */ val &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) val |= DREF_NONSPREAD_CK505_ENABLE; else val |= DREF_NONSPREAD_SOURCE_ENABLE; if (has_panel) { val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_ENABLE; /* SSC must be turned on before enabling the CPU output */ if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on panel\n"); val |= DREF_SSC1_ENABLE; } else val &= ~DREF_SSC1_ENABLE; /* Get SSC going before enabling the outputs */ I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Enable CPU source on CPU attached eDP */ if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on eDP\n"); val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } else { DRM_DEBUG_KMS("Disabling CPU source output\n"); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Turn off CPU output */ val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); if (!using_ssc_source) { DRM_DEBUG_KMS("Disabling SSC source\n"); /* Turn off the SSC source */ val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_DISABLE; /* Turn off SSC1 */ val &= ~DREF_SSC1_ENABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } } BUG_ON(val != final); } static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) { u32 tmp; tmp = I915_READ(SOUTH_CHICKEN2); tmp |= FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS, 100)) DRM_ERROR("FDI mPHY reset assert timeout\n"); tmp = I915_READ(SOUTH_CHICKEN2); tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) DRM_ERROR("FDI mPHY reset de-assert timeout\n"); } /* WaMPhyProgramming:hsw */ static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) { u32 tmp; tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); tmp &= ~(0xFF << 24); tmp |= (0x12 << 24); intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); } /* Implements 3 different sequences from BSpec chapter "Display iCLK * Programming" based on the parameters passed: * - Sequence to enable CLKOUT_DP * - Sequence to enable CLKOUT_DP without spread * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O */ static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, bool with_spread, bool with_fdi) { u32 reg, tmp; if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) with_spread = true; if (WARN(HAS_PCH_LPT_LP(dev_priv) && with_fdi, "LP PCH doesn't have FDI\n")) with_fdi = false; mutex_lock(&dev_priv->sb_lock); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_DISABLE; tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(24); if (with_spread) { tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); if (with_fdi) { lpt_reset_fdi_mphy(dev_priv); lpt_program_fdi_mphy(dev_priv); } } reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } /* Sequence to disable CLKOUT_DP */ void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) { u32 reg, tmp; mutex_lock(&dev_priv->sb_lock); reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); if (!(tmp & SBI_SSCCTL_DISABLE)) { if (!(tmp & SBI_SSCCTL_PATHALT)) { tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(32); } tmp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); } mutex_unlock(&dev_priv->sb_lock); } #define BEND_IDX(steps) ((50 + (steps)) / 5) static const u16 sscdivintphase[] = { [BEND_IDX( 50)] = 0x3B23, [BEND_IDX( 45)] = 0x3B23, [BEND_IDX( 40)] = 0x3C23, [BEND_IDX( 35)] = 0x3C23, [BEND_IDX( 30)] = 0x3D23, [BEND_IDX( 25)] = 0x3D23, [BEND_IDX( 20)] = 0x3E23, [BEND_IDX( 15)] = 0x3E23, [BEND_IDX( 10)] = 0x3F23, [BEND_IDX( 5)] = 0x3F23, [BEND_IDX( 0)] = 0x0025, [BEND_IDX( -5)] = 0x0025, [BEND_IDX(-10)] = 0x0125, [BEND_IDX(-15)] = 0x0125, [BEND_IDX(-20)] = 0x0225, [BEND_IDX(-25)] = 0x0225, [BEND_IDX(-30)] = 0x0325, [BEND_IDX(-35)] = 0x0325, [BEND_IDX(-40)] = 0x0425, [BEND_IDX(-45)] = 0x0425, [BEND_IDX(-50)] = 0x0525, }; /* * Bend CLKOUT_DP * steps -50 to 50 inclusive, in steps of 5 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) * change in clock period = -(steps / 10) * 5.787 ps */ static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) { u32 tmp; int idx = BEND_IDX(steps); if (WARN_ON(steps % 5 != 0)) return; if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) return; mutex_lock(&dev_priv->sb_lock); if (steps % 10 != 0) tmp = 0xAAAAAAAB; else tmp = 0x00000000; intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); tmp &= 0xffff0000; tmp |= sscdivintphase[idx]; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); mutex_unlock(&dev_priv->sb_lock); } #undef BEND_IDX static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) { u32 fuse_strap = I915_READ(FUSE_STRAP); u32 ctl = I915_READ(SPLL_CTL); if ((ctl & SPLL_PLL_ENABLE) == 0) return false; if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) return true; if (IS_BROADWELL(dev_priv) && (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) return true; return false; } static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, enum intel_dpll_id id) { u32 fuse_strap = I915_READ(FUSE_STRAP); u32 ctl = I915_READ(WRPLL_CTL(id)); if ((ctl & WRPLL_PLL_ENABLE) == 0) return false; if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) return true; if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) return true; return false; } static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; bool has_fdi = false; for_each_intel_encoder(&dev_priv->drm, encoder) { switch (encoder->type) { case INTEL_OUTPUT_ANALOG: has_fdi = true; break; default: break; } } /* * The BIOS may have decided to use the PCH SSC * reference so we must not disable it until the * relevant PLLs have stopped relying on it. We'll * just leave the PCH SSC reference enabled in case * any active PLL is using it. It will get disabled * after runtime suspend if we don't have FDI. * * TODO: Move the whole reference clock handling * to the modeset sequence proper so that we can * actually enable/disable/reconfigure these things * safely. To do that we need to introduce a real * clock hierarchy. That would also allow us to do * clock bending finally. */ dev_priv->pch_ssc_use = 0; if (spll_uses_pch_ssc(dev_priv)) { DRM_DEBUG_KMS("SPLL using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); } if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); } if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n"); dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); } if (dev_priv->pch_ssc_use) return; if (has_fdi) { lpt_bend_clkout_dp(dev_priv, 0); lpt_enable_clkout_dp(dev_priv, true, true); } else { lpt_disable_clkout_dp(dev_priv); } } /* * Initialize reference clocks when the driver loads */ void intel_init_pch_refclk(struct drm_i915_private *dev_priv) { if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) ironlake_init_pch_refclk(dev_priv); else if (HAS_PCH_LPT(dev_priv)) lpt_init_pch_refclk(dev_priv); } static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = 0; switch (crtc_state->pipe_bpp) { case 18: val |= PIPECONF_6BPC; break; case 24: val |= PIPECONF_8BPC; break; case 30: val |= PIPECONF_10BPC; break; case 36: val |= PIPECONF_12BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } if (crtc_state->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; if (crtc_state->limited_color_range) val |= PIPECONF_COLOR_RANGE_SELECT; val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); I915_WRITE(PIPECONF(pipe), val); POSTING_READ(PIPECONF(pipe)); } static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 val = 0; if (IS_HASWELL(dev_priv) && crtc_state->dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; I915_WRITE(PIPECONF(cpu_transcoder), val); POSTING_READ(PIPECONF(cpu_transcoder)); } static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 val = 0; switch (crtc_state->pipe_bpp) { case 18: val |= PIPEMISC_DITHER_6_BPC; break; case 24: val |= PIPEMISC_DITHER_8_BPC; break; case 30: val |= PIPEMISC_DITHER_10_BPC; break; case 36: val |= PIPEMISC_DITHER_12_BPC; break; default: MISSING_CASE(crtc_state->pipe_bpp); break; } if (crtc_state->dither) val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) val |= PIPEMISC_YUV420_ENABLE | PIPEMISC_YUV420_MODE_FULL_BLEND; if (INTEL_GEN(dev_priv) >= 11 && (crtc_state->active_planes & ~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0) val |= PIPEMISC_HDR_MODE_PRECISION; I915_WRITE(PIPEMISC(crtc->pipe), val); } int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; tmp = I915_READ(PIPEMISC(crtc->pipe)); switch (tmp & PIPEMISC_DITHER_BPC_MASK) { case PIPEMISC_DITHER_6_BPC: return 18; case PIPEMISC_DITHER_8_BPC: return 24; case PIPEMISC_DITHER_10_BPC: return 30; case PIPEMISC_DITHER_12_BPC: return 36; default: MISSING_CASE(tmp); return 0; } } int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; return DIV_ROUND_UP(bps, link_bw * 8); } static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) { return i9xx_dpll_compute_m(dpll) < factor * dpll->n; } static void ironlake_compute_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct dpll *reduced_clock) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 dpll, fp, fp2; int factor; /* Enable autotuning of the PLL clock (if permissible) */ factor = 21; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if ((intel_panel_use_ssc(dev_priv) && dev_priv->vbt.lvds_ssc_freq == 100000) || (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev_priv))) factor = 25; } else if (crtc_state->sdvo_tv_clock) { factor = 20; } fp = i9xx_dpll_compute_fp(&crtc_state->dpll); if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) fp |= FP_CB_TUNE; if (reduced_clock) { fp2 = i9xx_dpll_compute_fp(reduced_clock); if (reduced_clock->m < factor * reduced_clock->n) fp2 |= FP_CB_TUNE; } else { fp2 = fp; } dpll = 0; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; dpll |= (crtc_state->pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) dpll |= DPLL_SDVO_HIGH_SPEED; if (intel_crtc_has_dp_encoder(crtc_state)) dpll |= DPLL_SDVO_HIGH_SPEED; /* * The high speed IO clock is only really required for * SDVO/HDMI/DP, but we also enable it for CRT to make it * possible to share the DPLL between CRT and HDMI. Enabling * the clock needlessly does no real harm, except use up a * bit of power potentially. * * We'll limit this to IVB with 3 pipes, since it has only two * DPLLs and so DPLL sharing is the only way to get three pipes * driving PCH ports at the same time. On SNB we could do this, * and potentially avoid enabling the second DPLL, but it's not * clear if it''s a win or loss power wise. No point in doing * this on ILK at all since it has a fixed DPLL<->pipe mapping. */ if (INTEL_INFO(dev_priv)->num_pipes == 3 && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; /* also FPA1 */ dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; switch (crtc_state->dpll.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv)) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc_state->dpll_hw_state.dpll = dpll; crtc_state->dpll_hw_state.fp0 = fp; crtc_state->dpll_hw_state.fp1 = fp2; } static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); const struct intel_limit *limit; int refclk = 120000; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ if (!crtc_state->has_pch_encoder) return 0; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { if (intel_panel_use_ssc(dev_priv)) { DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", dev_priv->vbt.lvds_ssc_freq); refclk = dev_priv->vbt.lvds_ssc_freq; } if (intel_is_dual_link_lvds(dev_priv)) { if (refclk == 100000) limit = &intel_limits_ironlake_dual_lvds_100m; else limit = &intel_limits_ironlake_dual_lvds; } else { if (refclk == 100000) limit = &intel_limits_ironlake_single_lvds_100m; else limit = &intel_limits_ironlake_single_lvds; } } else { limit = &intel_limits_ironlake_dac; } if (!crtc_state->clock_set && !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, refclk, NULL, &crtc_state->dpll)) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } ironlake_compute_dpll(crtc, crtc_state, NULL); if (!intel_reserve_shared_dplls(state, crtc, NULL)) { DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", pipe_name(crtc->pipe)); return -EINVAL; } return 0; } static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (INTEL_GEN(dev_priv) >= 5) { m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) & ~TU_SIZE_MASK; m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } else { m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } void intel_dp_get_m_n(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); else intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->dp_m_n, &pipe_config->dp_m2_n2); } static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->fdi_m_n, NULL); } static void skylake_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; u32 ps_ctrl = 0; int id = -1; int i; /* find scaler attached to this pipe */ for (i = 0; i < crtc->num_scalers; i++) { ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { id = i; pipe_config->pch_pfit.enabled = true; pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); scaler_state->scalers[i].in_use = true; break; } } scaler_state->scaler_id = id; if (id >= 0) { scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); } else { scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); } } static void skylake_get_initial_plane_config(struct intel_crtc *crtc, struct intel_initial_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_plane *plane = to_intel_plane(crtc->base.primary); enum plane_id plane_id = plane->id; enum pipe pipe; u32 val, base, offset, stride_mult, tiling, alpha; int fourcc, pixel_format; unsigned int aligned_height; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; if (!plane->get_hw_state(plane, &pipe)) return; WARN_ON(pipe != crtc->pipe); intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } fb = &intel_fb->base; fb->dev = dev; val = I915_READ(PLANE_CTL(pipe, plane_id)); if (INTEL_GEN(dev_priv) >= 11) pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; else pixel_format = val & PLANE_CTL_FORMAT_MASK; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id)); alpha &= PLANE_COLOR_ALPHA_MASK; } else { alpha = val & PLANE_CTL_ALPHA_MASK; } fourcc = skl_format_to_fourcc(pixel_format, val & PLANE_CTL_ORDER_RGBX, alpha); fb->format = drm_format_info(fourcc); tiling = val & PLANE_CTL_TILED_MASK; switch (tiling) { case PLANE_CTL_TILED_LINEAR: fb->modifier = DRM_FORMAT_MOD_LINEAR; break; case PLANE_CTL_TILED_X: plane_config->tiling = I915_TILING_X; fb->modifier = I915_FORMAT_MOD_X_TILED; break; case PLANE_CTL_TILED_Y: plane_config->tiling = I915_TILING_Y; if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS; else fb->modifier = I915_FORMAT_MOD_Y_TILED; break; case PLANE_CTL_TILED_YF: if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; else fb->modifier = I915_FORMAT_MOD_Yf_TILED; break; default: MISSING_CASE(tiling); goto error; } /* * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr * while i915 HW rotation is clockwise, thats why this swapping. */ switch (val & PLANE_CTL_ROTATE_MASK) { case PLANE_CTL_ROTATE_0: plane_config->rotation = DRM_MODE_ROTATE_0; break; case PLANE_CTL_ROTATE_90: plane_config->rotation = DRM_MODE_ROTATE_270; break; case PLANE_CTL_ROTATE_180: plane_config->rotation = DRM_MODE_ROTATE_180; break; case PLANE_CTL_ROTATE_270: plane_config->rotation = DRM_MODE_ROTATE_90; break; } if (INTEL_GEN(dev_priv) >= 10 && val & PLANE_CTL_FLIP_HORIZONTAL) plane_config->rotation |= DRM_MODE_REFLECT_X; base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000; plane_config->base = base; offset = I915_READ(PLANE_OFFSET(pipe, plane_id)); val = I915_READ(PLANE_SIZE(pipe, plane_id)); fb->height = ((val >> 16) & 0xfff) + 1; fb->width = ((val >> 0) & 0x1fff) + 1; val = I915_READ(PLANE_STRIDE(pipe, plane_id)); stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); fb->pitches[0] = (val & 0x3ff) * stride_mult; aligned_height = intel_fb_align_height(fb, 0, fb->height); plane_config->size = fb->pitches[0] * aligned_height; DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", crtc->base.name, plane->base.name, fb->width, fb->height, fb->format->cpp[0] * 8, base, fb->pitches[0], plane_config->size); plane_config->fb = intel_fb; return; error: kfree(intel_fb); } static void ironlake_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp; tmp = I915_READ(PF_CTL(crtc->pipe)); if (tmp & PF_ENABLE) { pipe_config->pch_pfit.enabled = true; pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); /* We currently do not free assignements of panel fitters on * ivb/hsw (since we don't use the higher upscaling modes which * differentiates them) so just WARN about this case for now. */ if (IS_GEN(dev_priv, 7)) { WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); } } } static bool ironlake_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; case PIPECONF_12BPC: pipe_config->pipe_bpp = 36; break; default: break; } if (tmp & PIPECONF_COLOR_RANGE_SELECT) pipe_config->limited_color_range = true; pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> PIPECONF_GAMMA_MODE_SHIFT; pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { struct intel_shared_dpll *pll; enum intel_dpll_id pll_id; pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); if (HAS_PCH_IBX(dev_priv)) { /* * The pipe->pch transcoder and pch transcoder->pll * mapping is fixed. */ pll_id = (enum intel_dpll_id) crtc->pipe; } else { tmp = I915_READ(PCH_DPLL_SEL); if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) pll_id = DPLL_ID_PCH_PLL_B; else pll_id= DPLL_ID_PCH_PLL_A; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, pll_id); pll = pipe_config->shared_dpll; WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); tmp = pipe_config->dpll_hw_state.dpll; pipe_config->pixel_multiplier = ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; ironlake_pch_clock_get(crtc, pipe_config); } else { pipe_config->pixel_multiplier = 1; } intel_get_pipe_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); ironlake_get_pfit_config(crtc, pipe_config); ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static int haswell_crtc_compute_clock(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || INTEL_GEN(dev_priv) >= 11) { struct intel_encoder *encoder = intel_get_crtc_new_encoder(state, crtc_state); if (!intel_reserve_shared_dplls(state, crtc, encoder)) { DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", pipe_name(crtc->pipe)); return -EINVAL; } } return 0; } static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; u32 temp; temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2)) return; pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum phy phy = intel_port_to_phy(dev_priv, port); enum icl_port_dpll_id port_dpll_id; enum intel_dpll_id id; u32 temp; if (intel_phy_is_combo(dev_priv, phy)) { temp = I915_READ(ICL_DPCLKA_CFGCR0) & ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); port_dpll_id = ICL_PORT_DPLL_DEFAULT; } else if (intel_phy_is_tc(dev_priv, phy)) { u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; if (clk_sel == DDI_CLK_SEL_MG) { id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, port)); port_dpll_id = ICL_PORT_DPLL_MG_PHY; } else { WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162); id = DPLL_ID_ICL_TBTPLL; port_dpll_id = ICL_PORT_DPLL_DEFAULT; } } else { WARN(1, "Invalid port %x\n", port); return; } pipe_config->icl_port_dplls[port_dpll_id].pll = intel_get_shared_dpll_by_id(dev_priv, id); icl_set_active_port_dpll(pipe_config, port_dpll_id); } static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; switch (port) { case PORT_A: id = DPLL_ID_SKL_DPLL0; break; case PORT_B: id = DPLL_ID_SKL_DPLL1; break; case PORT_C: id = DPLL_ID_SKL_DPLL2; break; default: DRM_ERROR("Incorrect port type\n"); return; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; u32 temp; temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); id = temp >> (port * 3 + 1); if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3)) return; pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_state *pipe_config) { enum intel_dpll_id id; u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); switch (ddi_pll_sel) { case PORT_CLK_SEL_WRPLL1: id = DPLL_ID_WRPLL1; break; case PORT_CLK_SEL_WRPLL2: id = DPLL_ID_WRPLL2; break; case PORT_CLK_SEL_SPLL: id = DPLL_ID_SPLL; break; case PORT_CLK_SEL_LCPLL_810: id = DPLL_ID_LCPLL_810; break; case PORT_CLK_SEL_LCPLL_1350: id = DPLL_ID_LCPLL_1350; break; case PORT_CLK_SEL_LCPLL_2700: id = DPLL_ID_LCPLL_2700; break; default: MISSING_CASE(ddi_pll_sel); /* fall through */ case PORT_CLK_SEL_NONE: return; } pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); } static bool hsw_get_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, u64 *power_domain_mask, intel_wakeref_t *wakerefs) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum intel_display_power_domain power_domain; unsigned long panel_transcoder_mask = 0; unsigned long enabled_panel_transcoders = 0; enum transcoder panel_transcoder; intel_wakeref_t wf; u32 tmp; if (INTEL_GEN(dev_priv) >= 11) panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); if (HAS_TRANSCODER_EDP(dev_priv)) panel_transcoder_mask |= BIT(TRANSCODER_EDP); /* * The pipe->transcoder mapping is fixed with the exception of the eDP * and DSI transcoders handled below. */ pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; /* * XXX: Do intel_display_power_get_if_enabled before reading this (for * consistency and less surprising code; it's in always on power). */ for_each_set_bit(panel_transcoder, &panel_transcoder_mask, ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { bool force_thru = false; enum pipe trans_pipe; tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder)); if (!(tmp & TRANS_DDI_FUNC_ENABLE)) continue; /* * Log all enabled ones, only use the first one. * * FIXME: This won't work for two separate DSI displays. */ enabled_panel_transcoders |= BIT(panel_transcoder); if (enabled_panel_transcoders != BIT(panel_transcoder)) continue; switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: WARN(1, "unknown pipe linked to transcoder %s\n", transcoder_name(panel_transcoder)); /* fall through */ case TRANS_DDI_EDP_INPUT_A_ONOFF: force_thru = true; /* fall through */ case TRANS_DDI_EDP_INPUT_A_ON: trans_pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: trans_pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: trans_pipe = PIPE_C; break; } if (trans_pipe == crtc->pipe) { pipe_config->cpu_transcoder = panel_transcoder; pipe_config->pch_pfit.force_thru = force_thru; } } /* * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 */ WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && enabled_panel_transcoders != BIT(TRANSCODER_EDP)); power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); wf = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wf) return false; wakerefs[power_domain] = wf; *power_domain_mask |= BIT_ULL(power_domain); tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); return tmp & PIPECONF_ENABLE; } static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, u64 *power_domain_mask, intel_wakeref_t *wakerefs) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum intel_display_power_domain power_domain; enum transcoder cpu_transcoder; intel_wakeref_t wf; enum port port; u32 tmp; for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { if (port == PORT_A) cpu_transcoder = TRANSCODER_DSI_A; else cpu_transcoder = TRANSCODER_DSI_C; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); wf = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wf) continue; wakerefs[power_domain] = wf; *power_domain_mask |= BIT_ULL(power_domain); /* * The PLL needs to be enabled with a valid divider * configuration, otherwise accessing DSI registers will hang * the machine. See BSpec North Display Engine * registers/MIPI[BXT]. We can break out here early, since we * need the same DSI PLL to be enabled for both DSI ports. */ if (!bxt_dsi_pll_is_enabled(dev_priv)) break; /* XXX: this works for video mode only */ tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); if (!(tmp & DPI_ENABLE)) continue; tmp = I915_READ(MIPI_CTRL(port)); if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) continue; pipe_config->cpu_transcoder = cpu_transcoder; break; } return transcoder_is_dsi(pipe_config->cpu_transcoder); } static void haswell_get_ddi_port_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum port port; u32 tmp; tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); if (INTEL_GEN(dev_priv) >= 12) port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); else port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); if (INTEL_GEN(dev_priv) >= 11) icelake_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_CANNONLAKE(dev_priv)) cannonlake_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_GEN9_BC(dev_priv)) skylake_get_ddi_pll(dev_priv, port, pipe_config); else if (IS_GEN9_LP(dev_priv)) bxt_get_ddi_pll(dev_priv, port, pipe_config); else haswell_get_ddi_pll(dev_priv, port, pipe_config); pll = pipe_config->shared_dpll; if (pll) { WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); } /* * Haswell has only FDI/PCH transcoder A. It is which is connected to * DDI E. So just check whether this pipe is wired to DDI E and whether * the PCH transcoder is on. */ if (INTEL_GEN(dev_priv) < 9 && (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(PIPE_A)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); } } static bool haswell_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; enum intel_display_power_domain power_domain; u64 power_domain_mask; bool active; intel_crtc_init_scalers(crtc, pipe_config); power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wf = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wf) return false; wakerefs[power_domain] = wf; power_domain_mask = BIT_ULL(power_domain); pipe_config->shared_dpll = NULL; active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask, wakerefs); if (IS_GEN9_LP(dev_priv) && bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask, wakerefs)) { WARN_ON(active); active = true; } if (!active) goto out; if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || INTEL_GEN(dev_priv) >= 11) { haswell_get_ddi_port_state(crtc, pipe_config); intel_get_pipe_timings(crtc, pipe_config); } intel_get_pipe_src_size(crtc, pipe_config); intel_get_crtc_ycbcr_config(crtc, pipe_config); pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe)); pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); if (INTEL_GEN(dev_priv) >= 9) { u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe)); if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) pipe_config->gamma_enable = true; if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) pipe_config->csc_enable = true; } else { i9xx_get_pipe_color_config(pipe_config); } intel_color_get_config(pipe_config); power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); WARN_ON(power_domain_mask & BIT_ULL(power_domain)); wf = intel_display_power_get_if_enabled(dev_priv, power_domain); if (wf) { wakerefs[power_domain] = wf; power_domain_mask |= BIT_ULL(power_domain); if (INTEL_GEN(dev_priv) >= 9) skylake_get_pfit_config(crtc, pipe_config); else ironlake_get_pfit_config(crtc, pipe_config); } if (hsw_crtc_supports_ips(crtc)) { if (IS_HASWELL(dev_priv)) pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE; else { /* * We cannot readout IPS state on broadwell, set to * true so we can set it to a defined state on first * commit. */ pipe_config->ips_enabled = true; } } if (pipe_config->cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(pipe_config->cpu_transcoder)) { pipe_config->pixel_multiplier = I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; } else { pipe_config->pixel_multiplier = 1; } out: for_each_power_domain(power_domain, power_domain_mask) intel_display_power_put(dev_priv, power_domain, wakerefs[power_domain]); return active; } static u32 intel_cursor_base(const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); const struct drm_framebuffer *fb = plane_state->base.fb; const struct drm_i915_gem_object *obj = intel_fb_obj(fb); u32 base; if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) base = obj->phys_handle->busaddr; else base = intel_plane_ggtt_offset(plane_state); base += plane_state->color_plane[0].offset; /* ILK+ do this automagically */ if (HAS_GMCH(dev_priv) && plane_state->base.rotation & DRM_MODE_ROTATE_180) base += (plane_state->base.crtc_h * plane_state->base.crtc_w - 1) * fb->format->cpp[0]; return base; } static u32 intel_cursor_position(const struct intel_plane_state *plane_state) { int x = plane_state->base.crtc_x; int y = plane_state->base.crtc_y; u32 pos = 0; if (x < 0) { pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; return pos; } static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) { const struct drm_mode_config *config = &plane_state->base.plane->dev->mode_config; int width = plane_state->base.crtc_w; int height = plane_state->base.crtc_h; return width > 0 && width <= config->cursor_width && height > 0 && height <= config->cursor_height; } static int intel_cursor_check_surface(struct intel_plane_state *plane_state) { int src_x, src_y; u32 offset; int ret; ret = intel_plane_compute_gtt(plane_state); if (ret) return ret; if (!plane_state->base.visible) return 0; src_x = plane_state->base.src_x >> 16; src_y = plane_state->base.src_y >> 16; intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); offset = intel_plane_compute_aligned_offset(&src_x, &src_y, plane_state, 0); if (src_x != 0 || src_y != 0) { DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n"); return -EINVAL; } plane_state->color_plane[0].offset = offset; return 0; } static int intel_check_cursor(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->base.fb; int ret; if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { DRM_DEBUG_KMS("cursor cannot be tiled\n"); return -EINVAL; } ret = drm_atomic_helper_check_plane_state(&plane_state->base, &crtc_state->base, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, true, true); if (ret) return ret; ret = intel_cursor_check_surface(plane_state); if (ret) return ret; if (!plane_state->base.visible) return 0; ret = intel_plane_check_src_coordinates(plane_state); if (ret) return ret; return 0; } static unsigned int i845_cursor_max_stride(struct intel_plane *plane, u32 pixel_format, u64 modifier, unsigned int rotation) { return 2048; } static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) { u32 cntl = 0; if (crtc_state->gamma_enable) cntl |= CURSOR_GAMMA_ENABLE; return cntl; } static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { return CURSOR_ENABLE | CURSOR_FORMAT_ARGB | CURSOR_STRIDE(plane_state->color_plane[0].stride); } static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) { int width = plane_state->base.crtc_w; /* * 845g/865g are only limited by the width of their cursors, * the height is arbitrary up to the precision of the register. */ return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); } static int i845_check_cursor(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { const struct drm_framebuffer *fb = plane_state->base.fb; int ret; ret = intel_check_cursor(crtc_state, plane_state); if (ret) return ret; /* if we want to turn off the cursor ignore width and height */ if (!fb) return 0; /* Check for which cursor types we support */ if (!i845_cursor_size_ok(plane_state)) { DRM_DEBUG("Cursor dimension %dx%d not supported\n", plane_state->base.crtc_w, plane_state->base.crtc_h); return -EINVAL; } WARN_ON(plane_state->base.visible && plane_state->color_plane[0].stride != fb->pitches[0]); switch (fb->pitches[0]) { case 256: case 512: case 1024: case 2048: break; default: DRM_DEBUG_KMS("Invalid cursor stride (%u)\n", fb->pitches[0]); return -EINVAL; } plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); return 0; } static void i845_update_cursor(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); u32 cntl = 0, base = 0, pos = 0, size = 0; unsigned long irqflags; if (plane_state && plane_state->base.visible) { unsigned int width = plane_state->base.crtc_w; unsigned int height = plane_state->base.crtc_h; cntl = plane_state->ctl | i845_cursor_ctl_crtc(crtc_state); size = (height << 12) | width; base = intel_cursor_base(plane_state); pos = intel_cursor_position(plane_state); } spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* On these chipsets we can only modify the base/size/stride * whilst the cursor is disabled. */ if (plane->cursor.base != base || plane->cursor.size != size || plane->cursor.cntl != cntl) { I915_WRITE_FW(CURCNTR(PIPE_A), 0); I915_WRITE_FW(CURBASE(PIPE_A), base); I915_WRITE_FW(CURSIZE, size); I915_WRITE_FW(CURPOS(PIPE_A), pos); I915_WRITE_FW(CURCNTR(PIPE_A), cntl); plane->cursor.base = base; plane->cursor.size = size; plane->cursor.cntl = cntl; } else { I915_WRITE_FW(CURPOS(PIPE_A), pos); } spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } static void i845_disable_cursor(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { i845_update_cursor(plane, crtc_state, NULL); } static bool i845_cursor_get_hw_state(struct intel_plane *plane, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; bool ret; power_domain = POWER_DOMAIN_PIPE(PIPE_A); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; *pipe = PIPE_A; intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static unsigned int i9xx_cursor_max_stride(struct intel_plane *plane, u32 pixel_format, u64 modifier, unsigned int rotation) { return plane->base.dev->mode_config.cursor_width * 4; } static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 cntl = 0; if (INTEL_GEN(dev_priv) >= 11) return cntl; if (crtc_state->gamma_enable) cntl = MCURSOR_GAMMA_ENABLE; if (crtc_state->csc_enable) cntl |= MCURSOR_PIPE_CSC_ENABLE; if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); return cntl; } static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); u32 cntl = 0; if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) cntl |= MCURSOR_TRICKLE_FEED_DISABLE; switch (plane_state->base.crtc_w) { case 64: cntl |= MCURSOR_MODE_64_ARGB_AX; break; case 128: cntl |= MCURSOR_MODE_128_ARGB_AX; break; case 256: cntl |= MCURSOR_MODE_256_ARGB_AX; break; default: MISSING_CASE(plane_state->base.crtc_w); return 0; } if (plane_state->base.rotation & DRM_MODE_ROTATE_180) cntl |= MCURSOR_ROTATE_180; return cntl; } static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); int width = plane_state->base.crtc_w; int height = plane_state->base.crtc_h; if (!intel_cursor_size_ok(plane_state)) return false; /* Cursor width is limited to a few power-of-two sizes */ switch (width) { case 256: case 128: case 64: break; default: return false; } /* * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor * height from 8 lines up to the cursor width, when the * cursor is not rotated. Everything else requires square * cursors. */ if (HAS_CUR_FBC(dev_priv) && plane_state->base.rotation & DRM_MODE_ROTATE_0) { if (height < 8 || height > width) return false; } else { if (height != width) return false; } return true; } static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->base.fb; enum pipe pipe = plane->pipe; int ret; ret = intel_check_cursor(crtc_state, plane_state); if (ret) return ret; /* if we want to turn off the cursor ignore width and height */ if (!fb) return 0; /* Check for which cursor types we support */ if (!i9xx_cursor_size_ok(plane_state)) { DRM_DEBUG("Cursor dimension %dx%d not supported\n", plane_state->base.crtc_w, plane_state->base.crtc_h); return -EINVAL; } WARN_ON(plane_state->base.visible && plane_state->color_plane[0].stride != fb->pitches[0]); if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) { DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n", fb->pitches[0], plane_state->base.crtc_w); return -EINVAL; } /* * There's something wrong with the cursor on CHV pipe C. * If it straddles the left edge of the screen then * moving it away from the edge or disabling it often * results in a pipe underrun, and often that can lead to * dead pipe (constant underrun reported, and it scans * out just a solid color). To recover from that, the * display power well must be turned off and on again. * Refuse the put the cursor into that compromised position. */ if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && plane_state->base.visible && plane_state->base.crtc_x < 0) { DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); return -EINVAL; } plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); return 0; } static void i9xx_update_cursor(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum pipe pipe = plane->pipe; u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; unsigned long irqflags; if (plane_state && plane_state->base.visible) { cntl = plane_state->ctl | i9xx_cursor_ctl_crtc(crtc_state); if (plane_state->base.crtc_h != plane_state->base.crtc_w) fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1); base = intel_cursor_base(plane_state); pos = intel_cursor_position(plane_state); } spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* * On some platforms writing CURCNTR first will also * cause CURPOS to be armed by the CURBASE write. * Without the CURCNTR write the CURPOS write would * arm itself. Thus we always update CURCNTR before * CURPOS. * * On other platforms CURPOS always requires the * CURBASE write to arm the update. Additonally * a write to any of the cursor register will cancel * an already armed cursor update. Thus leaving out * the CURBASE write after CURPOS could lead to a * cursor that doesn't appear to move, or even change * shape. Thus we always write CURBASE. * * The other registers are armed by by the CURBASE write * except when the plane is getting enabled at which time * the CURCNTR write arms the update. */ if (INTEL_GEN(dev_priv) >= 9) skl_write_cursor_wm(plane, crtc_state); if (plane->cursor.base != base || plane->cursor.size != fbc_ctl || plane->cursor.cntl != cntl) { if (HAS_CUR_FBC(dev_priv)) I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl); I915_WRITE_FW(CURCNTR(pipe), cntl); I915_WRITE_FW(CURPOS(pipe), pos); I915_WRITE_FW(CURBASE(pipe), base); plane->cursor.base = base; plane->cursor.size = fbc_ctl; plane->cursor.cntl = cntl; } else { I915_WRITE_FW(CURPOS(pipe), pos); I915_WRITE_FW(CURBASE(pipe), base); } spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } static void i9xx_disable_cursor(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { i9xx_update_cursor(plane, crtc_state, NULL); } static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; bool ret; u32 val; /* * Not 100% correct for planes that can move between pipes, * but that's only the case for gen2-3 which don't have any * display power wells. */ power_domain = POWER_DOMAIN_PIPE(plane->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; val = I915_READ(CURCNTR(plane->pipe)); ret = val & MCURSOR_MODE; if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) *pipe = plane->pipe; else *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> MCURSOR_PIPE_SELECT_SHIFT; intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } /* VESA 640x480x72Hz mode to set on the pipe */ static const struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; struct drm_framebuffer * intel_framebuffer_create(struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) return ERR_PTR(-ENOMEM); ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); if (ret) goto err; return &intel_fb->base; err: kfree(intel_fb); return ERR_PTR(ret); } static int intel_modeset_disable_planes(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_plane *plane; struct drm_plane_state *plane_state; int ret, i; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; for_each_new_plane_in_state(state, plane, plane_state, i) { if (plane_state->crtc != crtc) continue; ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); if (ret) return ret; drm_atomic_set_fb_for_plane(plane_state, NULL); } return 0; } int intel_get_load_detect_pipe(struct drm_connector *connector, const struct drm_display_mode *mode, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_crtc *intel_crtc; struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_crtc *possible_crtc; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_mode_config *config = &dev->mode_config; struct drm_atomic_state *state = NULL, *restore_state = NULL; struct drm_connector_state *connector_state; struct intel_crtc_state *crtc_state; int ret, i = -1; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); old->restore_state = NULL; WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (connector->state->crtc) { crtc = connector->state->crtc; ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) goto fail; /* Make sure the crtc and connector are running */ goto found; } /* Find an unused one (if possible) */ for_each_crtc(dev, possible_crtc) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; ret = drm_modeset_lock(&possible_crtc->mutex, ctx); if (ret) goto fail; if (possible_crtc->state->enable) { drm_modeset_unlock(&possible_crtc->mutex); continue; } crtc = possible_crtc; break; } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { DRM_DEBUG_KMS("no pipe available for load-detect\n"); ret = -ENODEV; goto fail; } found: intel_crtc = to_intel_crtc(crtc); state = drm_atomic_state_alloc(dev); restore_state = drm_atomic_state_alloc(dev); if (!state || !restore_state) { ret = -ENOMEM; goto fail; } state->acquire_ctx = ctx; restore_state->acquire_ctx = ctx; connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) { ret = PTR_ERR(connector_state); goto fail; } ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); if (ret) goto fail; crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->base.active = crtc_state->base.enable = true; if (!mode) mode = &load_detect_mode; ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode); if (ret) goto fail; ret = intel_modeset_disable_planes(state, crtc); if (ret) goto fail; ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); if (!ret) ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); if (!ret) ret = drm_atomic_add_affected_planes(restore_state, crtc); if (ret) { DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); goto fail; } ret = drm_atomic_commit(state); if (ret) { DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); goto fail; } old->restore_state = restore_state; drm_atomic_state_put(state); /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev_priv, intel_crtc->pipe); return true; fail: if (state) { drm_atomic_state_put(state); state = NULL; } if (restore_state) { drm_atomic_state_put(restore_state); restore_state = NULL; } if (ret == -EDEADLK) return ret; return false; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_encoder *encoder = &intel_encoder->base; struct drm_atomic_state *state = old->restore_state; int ret; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); if (!state) return; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); if (ret) DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); drm_atomic_state_put(state); } static int i9xx_pll_refclk(struct drm_device *dev, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(dev); u32 dpll = pipe_config->dpll_hw_state.dpll; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) return dev_priv->vbt.lvds_ssc_freq; else if (HAS_PCH_SPLIT(dev_priv)) return 120000; else if (!IS_GEN(dev_priv, 2)) return 96000; else return 48000; } /* Returns the clock of the currently programmed mode of the given pipe. */ static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); int pipe = pipe_config->cpu_transcoder; u32 dpll = pipe_config->dpll_hw_state.dpll; u32 fp; struct dpll clock; int port_clock; int refclk = i9xx_pll_refclk(dev, pipe_config); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = pipe_config->dpll_hw_state.fp0; else fp = pipe_config->dpll_hw_state.fp1; clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev_priv)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (!IS_GEN(dev_priv, 2)) { if (IS_PINEVIEW(dev_priv)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return; } if (IS_PINEVIEW(dev_priv)) port_clock = pnv_calc_dpll_params(refclk, &clock); else port_clock = i9xx_calc_dpll_params(refclk, &clock); } else { u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS); bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (lvds & LVDS_CLKB_POWER_UP) clock.p2 = 7; else clock.p2 = 14; } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; } port_clock = i9xx_calc_dpll_params(refclk, &clock); } /* * This value includes pixel_multiplier. We will use * port_clock to compute adjusted_mode.crtc_clock in the * encoder's get_config() function. */ pipe_config->port_clock = port_clock; } int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n) { /* * The calculation for the data clock is: * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp * But we want to avoid losing precison if possible, so: * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) * * and the link clock is simpler: * link_clock = (m * link_clock) / n */ if (!m_n->link_n) return 0; return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); } static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* read out port_clock from the DPLL */ i9xx_crtc_clock_get(crtc, pipe_config); /* * In case there is an active pipe without active ports, * we may need some idea for the dotclock anyway. * Calculate one based on the FDI configuration. */ pipe_config->base.adjusted_mode.crtc_clock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); } /* Returns the currently programmed mode of the given encoder. */ struct drm_display_mode * intel_encoder_current_mode(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc_state *crtc_state; struct drm_display_mode *mode; struct intel_crtc *crtc; enum pipe pipe; if (!encoder->get_hw_state(encoder, &pipe)) return NULL; crtc = intel_get_crtc_for_pipe(dev_priv, pipe); mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); if (!crtc_state) { kfree(mode); return NULL; } crtc_state->base.crtc = &crtc->base; if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { kfree(crtc_state); kfree(mode); return NULL; } encoder->get_config(encoder, crtc_state); intel_mode_from_pipe_config(mode, crtc_state); kfree(crtc_state); return mode; } static void intel_crtc_destroy(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); drm_crtc_cleanup(crtc); kfree(intel_crtc); } /** * intel_wm_need_update - Check whether watermarks need updating * @cur: current plane state * @new: new plane state * * Check current plane state versus the new one to determine whether * watermarks need to be recalculated. * * Returns true or false. */ static bool intel_wm_need_update(const struct intel_plane_state *cur, struct intel_plane_state *new) { /* Update watermarks on tiling or size changes. */ if (new->base.visible != cur->base.visible) return true; if (!cur->base.fb || !new->base.fb) return false; if (cur->base.fb->modifier != new->base.fb->modifier || cur->base.rotation != new->base.rotation || drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) || drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) || drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) || drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst)) return true; return false; } static bool needs_scaling(const struct intel_plane_state *state) { int src_w = drm_rect_width(&state->base.src) >> 16; int src_h = drm_rect_height(&state->base.src) >> 16; int dst_w = drm_rect_width(&state->base.dst); int dst_h = drm_rect_height(&state->base.dst); return (src_w != dst_w || src_h != dst_h); } int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *crtc_state, const struct intel_plane_state *old_plane_state, struct intel_plane_state *plane_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); bool mode_changed = needs_modeset(crtc_state); bool was_crtc_enabled = old_crtc_state->base.active; bool is_crtc_enabled = crtc_state->base.active; bool turn_off, turn_on, visible, was_visible; struct drm_framebuffer *fb = plane_state->base.fb; int ret; if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { ret = skl_update_scaler_plane(crtc_state, plane_state); if (ret) return ret; } was_visible = old_plane_state->base.visible; visible = plane_state->base.visible; if (!was_crtc_enabled && WARN_ON(was_visible)) was_visible = false; /* * Visibility is calculated as if the crtc was on, but * after scaler setup everything depends on it being off * when the crtc isn't active. * * FIXME this is wrong for watermarks. Watermarks should also * be computed as if the pipe would be active. Perhaps move * per-plane wm computation to the .check_plane() hook, and * only combine the results from all planes in the current place? */ if (!is_crtc_enabled) { plane_state->base.visible = visible = false; crtc_state->active_planes &= ~BIT(plane->id); crtc_state->data_rate[plane->id] = 0; } if (!was_visible && !visible) return 0; if (fb != old_plane_state->base.fb) crtc_state->fb_changed = true; turn_off = was_visible && (!visible || mode_changed); turn_on = visible && (!was_visible || mode_changed); DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n", crtc->base.base.id, crtc->base.name, plane->base.base.id, plane->base.name, fb ? fb->base.id : -1); DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", plane->base.base.id, plane->base.name, was_visible, visible, turn_off, turn_on, mode_changed); if (turn_on) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) crtc_state->update_wm_pre = true; /* must disable cxsr around plane enable/disable */ if (plane->id != PLANE_CURSOR) crtc_state->disable_cxsr = true; } else if (turn_off) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) crtc_state->update_wm_post = true; /* must disable cxsr around plane enable/disable */ if (plane->id != PLANE_CURSOR) crtc_state->disable_cxsr = true; } else if (intel_wm_need_update(old_plane_state, plane_state)) { if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { /* FIXME bollocks */ crtc_state->update_wm_pre = true; crtc_state->update_wm_post = true; } } if (visible || was_visible) crtc_state->fb_bits |= plane->frontbuffer_bit; /* * ILK/SNB DVSACNTR/Sprite Enable * IVB SPR_CTL/Sprite Enable * "When in Self Refresh Big FIFO mode, a write to enable the * plane will be internally buffered and delayed while Big FIFO * mode is exiting." * * Which means that enabling the sprite can take an extra frame * when we start in big FIFO mode (LP1+). Thus we need to drop * down to LP0 and wait for vblank in order to make sure the * sprite gets enabled on the next vblank after the register write. * Doing otherwise would risk enabling the sprite one frame after * we've already signalled flip completion. We can resume LP1+ * once the sprite has been enabled. * * * WaCxSRDisabledForSpriteScaling:ivb * IVB SPR_SCALE/Scaling Enable * "Low Power watermarks must be disabled for at least one * frame before enabling sprite scaling, and kept disabled * until sprite scaling is disabled." * * ILK/SNB DVSASCALE/Scaling Enable * "When in Self Refresh Big FIFO mode, scaling enable will be * masked off while Big FIFO mode is exiting." * * Despite the w/a only being listed for IVB we assume that * the ILK/SNB note has similar ramifications, hence we apply * the w/a on all three platforms. * * With experimental results seems this is needed also for primary * plane, not only sprite plane. */ if (plane->id != PLANE_CURSOR && (IS_GEN_RANGE(dev_priv, 5, 6) || IS_IVYBRIDGE(dev_priv)) && (turn_on || (!needs_scaling(old_plane_state) && needs_scaling(plane_state)))) crtc_state->disable_lp_wm = true; return 0; } static bool encoders_cloneable(const struct intel_encoder *a, const struct intel_encoder *b) { /* masks could be asymmetric, so check both ways */ return a == b || (a->cloneable & (1 << b->type) && b->cloneable & (1 << a->type)); } static bool check_single_encoder_cloning(struct drm_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_encoder *source_encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int i; for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; source_encoder = to_intel_encoder(connector_state->best_encoder); if (!encoders_cloneable(encoder, source_encoder)) return false; } return true; } static int icl_add_linked_planes(struct intel_atomic_state *state) { struct intel_plane *plane, *linked; struct intel_plane_state *plane_state, *linked_plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { linked = plane_state->linked_plane; if (!linked) continue; linked_plane_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_plane_state)) return PTR_ERR(linked_plane_state); WARN_ON(linked_plane_state->linked_plane != plane); WARN_ON(linked_plane_state->slave == plane_state->slave); } return 0; } static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); struct intel_plane *plane, *linked; struct intel_plane_state *plane_state; int i; if (INTEL_GEN(dev_priv) < 11) return 0; /* * Destroy all old plane links and make the slave plane invisible * in the crtc_state->active_planes mask. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe != crtc->pipe || !plane_state->linked_plane) continue; plane_state->linked_plane = NULL; if (plane_state->slave && !plane_state->base.visible) { crtc_state->active_planes &= ~BIT(plane->id); crtc_state->update_planes |= BIT(plane->id); } plane_state->slave = false; } if (!crtc_state->nv12_planes) return 0; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct intel_plane_state *linked_state = NULL; if (plane->pipe != crtc->pipe || !(crtc_state->nv12_planes & BIT(plane->id))) continue; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { if (!icl_is_nv12_y_plane(linked->id)) continue; if (crtc_state->active_planes & BIT(linked->id)) continue; linked_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_state)) return PTR_ERR(linked_state); break; } if (!linked_state) { DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n", hweight8(crtc_state->nv12_planes)); return -EINVAL; } plane_state->linked_plane = linked; linked_state->slave = true; linked_state->linked_plane = plane; crtc_state->active_planes |= BIT(linked->id); crtc_state->update_planes |= BIT(linked->id); DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name); } return 0; } static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; } static int intel_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); int ret; bool mode_changed = needs_modeset(pipe_config); if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && mode_changed && !crtc_state->active) pipe_config->update_wm_post = true; if (mode_changed && crtc_state->enable && dev_priv->display.crtc_compute_clock && !WARN_ON(pipe_config->shared_dpll)) { ret = dev_priv->display.crtc_compute_clock(intel_crtc, pipe_config); if (ret) return ret; } /* * May need to update pipe gamma enable bits * when C8 planes are getting enabled/disabled. */ if (c8_planes_changed(pipe_config)) crtc_state->color_mgmt_changed = true; if (mode_changed || pipe_config->update_pipe || crtc_state->color_mgmt_changed) { ret = intel_color_check(pipe_config); if (ret) return ret; } ret = 0; if (dev_priv->display.compute_pipe_wm) { ret = dev_priv->display.compute_pipe_wm(pipe_config); if (ret) { DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); return ret; } } if (dev_priv->display.compute_intermediate_wm) { if (WARN_ON(!dev_priv->display.compute_pipe_wm)) return 0; /* * Calculate 'intermediate' watermarks that satisfy both the * old state and the new state. We can program these * immediately. */ ret = dev_priv->display.compute_intermediate_wm(pipe_config); if (ret) { DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); return ret; } } if (INTEL_GEN(dev_priv) >= 9) { if (mode_changed || pipe_config->update_pipe) ret = skl_update_scaler_crtc(pipe_config); if (!ret) ret = icl_check_nv12_planes(pipe_config); if (!ret) ret = skl_check_pipe_max_pixel_rate(intel_crtc, pipe_config); if (!ret) ret = intel_atomic_setup_scalers(dev_priv, intel_crtc, pipe_config); } if (HAS_IPS(dev_priv)) pipe_config->ips_enabled = hsw_compute_ips_config(pipe_config); return ret; } static const struct drm_crtc_helper_funcs intel_helper_funcs = { .atomic_check = intel_crtc_atomic_check, }; static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(dev, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->base.state->crtc) drm_connector_put(&connector->base); if (connector->base.encoder) { connector->base.state->best_encoder = connector->base.encoder; connector->base.state->crtc = connector->base.encoder->crtc; drm_connector_get(&connector->base); } else { connector->base.state->best_encoder = NULL; connector->base.state->crtc = NULL; } } drm_connector_list_iter_end(&conn_iter); } static int compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, struct intel_crtc_state *pipe_config) { struct drm_connector *connector = conn_state->connector; const struct drm_display_info *info = &connector->display_info; int bpp; switch (conn_state->max_bpc) { case 6 ... 7: bpp = 6 * 3; break; case 8 ... 9: bpp = 8 * 3; break; case 10 ... 11: bpp = 10 * 3; break; case 12: bpp = 12 * 3; break; default: return -EINVAL; } if (bpp < pipe_config->pipe_bpp) { DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " "EDID bpp %d, requested bpp %d, max platform bpp %d\n", connector->base.id, connector->name, bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, pipe_config->pipe_bpp); pipe_config->pipe_bpp = bpp; } return 0; } static int compute_baseline_pipe_bpp(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_atomic_state *state = pipe_config->base.state; struct drm_connector *connector; struct drm_connector_state *connector_state; int bpp, i; if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) bpp = 10*3; else if (INTEL_GEN(dev_priv) >= 5) bpp = 12*3; else bpp = 8*3; pipe_config->pipe_bpp = bpp; /* Clamp display bpp to connector max bpp */ for_each_new_connector_in_state(state, connector, connector_state, i) { int ret; if (connector_state->crtc != &crtc->base) continue; ret = compute_sink_pipe_bpp(connector_state, pipe_config); if (ret) return ret; } return 0; } static void intel_dump_crtc_timings(const struct drm_display_mode *mode) { DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " "type: 0x%x flags: 0x%x\n", mode->crtc_clock, mode->crtc_hdisplay, mode->crtc_hsync_start, mode->crtc_hsync_end, mode->crtc_htotal, mode->crtc_vdisplay, mode->crtc_vsync_start, mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); } static inline void intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, const char *id, unsigned int lane_count, const struct intel_link_m_n *m_n) { DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", id, lane_count, m_n->gmch_m, m_n->gmch_n, m_n->link_m, m_n->link_n, m_n->tu); } static void intel_dump_infoframe(struct drm_i915_private *dev_priv, const union hdmi_infoframe *frame) { if ((drm_debug & DRM_UT_KMS) == 0) return; hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); } #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x static const char * const output_type_str[] = { OUTPUT_TYPE(UNUSED), OUTPUT_TYPE(ANALOG), OUTPUT_TYPE(DVO), OUTPUT_TYPE(SDVO), OUTPUT_TYPE(LVDS), OUTPUT_TYPE(TVOUT), OUTPUT_TYPE(HDMI), OUTPUT_TYPE(DP), OUTPUT_TYPE(EDP), OUTPUT_TYPE(DSI), OUTPUT_TYPE(DDI), OUTPUT_TYPE(DP_MST), }; #undef OUTPUT_TYPE static void snprintf_output_types(char *buf, size_t len, unsigned int output_types) { char *str = buf; int i; str[0] = '\0'; for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { int r; if ((output_types & BIT(i)) == 0) continue; r = snprintf(str, len, "%s%s", str != buf ? "," : "", output_type_str[i]); if (r >= len) break; str += r; len -= r; output_types &= ~BIT(i); } WARN_ON_ONCE(output_types != 0); } static const char * const output_format_str[] = { [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", [INTEL_OUTPUT_FORMAT_RGB] = "RGB", [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", }; static const char *output_formats(enum intel_output_format format) { if (format >= ARRAY_SIZE(output_format_str)) format = INTEL_OUTPUT_FORMAT_INVALID; return output_format_str[format]; } static void intel_dump_plane_state(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); const struct drm_framebuffer *fb = plane_state->base.fb; struct drm_format_name_buf format_name; if (!fb) { DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n", plane->base.base.id, plane->base.name, yesno(plane_state->base.visible)); return; } DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", plane->base.base.id, plane->base.name, fb->base.id, fb->width, fb->height, drm_get_format_name(fb->format->format, &format_name), yesno(plane_state->base.visible)); DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n", plane_state->base.rotation, plane_state->scaler_id); if (plane_state->base.visible) DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", DRM_RECT_FP_ARG(&plane_state->base.src), DRM_RECT_ARG(&plane_state->base.dst)); } static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, struct intel_atomic_state *state, const char *context) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_plane_state *plane_state; struct intel_plane *plane; char buf[64]; int i; DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n", crtc->base.base.id, crtc->base.name, yesno(pipe_config->base.enable), context); if (!pipe_config->base.enable) goto dump_planes; snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n", yesno(pipe_config->base.active), buf, pipe_config->output_types, output_formats(pipe_config->output_format)); DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", transcoder_name(pipe_config->cpu_transcoder), pipe_config->pipe_bpp, pipe_config->dither); if (pipe_config->has_pch_encoder) intel_dump_m_n_config(pipe_config, "fdi", pipe_config->fdi_lanes, &pipe_config->fdi_m_n); if (intel_crtc_has_dp_encoder(pipe_config)) { intel_dump_m_n_config(pipe_config, "dp m_n", pipe_config->lane_count, &pipe_config->dp_m_n); if (pipe_config->has_drrs) intel_dump_m_n_config(pipe_config, "dp m2_n2", pipe_config->lane_count, &pipe_config->dp_m2_n2); } DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", pipe_config->has_audio, pipe_config->has_infoframe, pipe_config->infoframes.enable); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); if (pipe_config->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); DRM_DEBUG_KMS("requested mode:\n"); drm_mode_debug_printmodeline(&pipe_config->base.mode); DRM_DEBUG_KMS("adjusted mode:\n"); drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n", pipe_config->port_clock, pipe_config->pipe_src_w, pipe_config->pipe_src_h, pipe_config->pixel_rate); if (INTEL_GEN(dev_priv) >= 9) DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", crtc->num_scalers, pipe_config->scaler_state.scaler_users, pipe_config->scaler_state.scaler_id); if (HAS_GMCH(dev_priv)) DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", pipe_config->gmch_pfit.control, pipe_config->gmch_pfit.pgm_ratios, pipe_config->gmch_pfit.lvds_border_bits); else DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", pipe_config->pch_pfit.pos, pipe_config->pch_pfit.size, enableddisabled(pipe_config->pch_pfit.enabled), yesno(pipe_config->pch_pfit.force_thru)); DRM_DEBUG_KMS("ips: %i, double wide: %i\n", pipe_config->ips_enabled, pipe_config->double_wide); intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); dump_planes: if (!state) return; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe) intel_dump_plane_state(plane_state); } } static bool check_digital_port_conflicts(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; unsigned int used_ports = 0; unsigned int used_mst_ports = 0; bool ret = true; /* * Walk the connector list instead of the encoder * list to detect the problem on ddi platforms * where there's just one encoder per digital port. */ drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *connector_state; struct intel_encoder *encoder; connector_state = drm_atomic_get_new_connector_state(&state->base, connector); if (!connector_state) connector_state = connector->state; if (!connector_state->best_encoder) continue; encoder = to_intel_encoder(connector_state->best_encoder); WARN_ON(!connector_state->crtc); switch (encoder->type) { unsigned int port_mask; case INTEL_OUTPUT_DDI: if (WARN_ON(!HAS_DDI(to_i915(dev)))) break; /* else, fall through */ case INTEL_OUTPUT_DP: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: port_mask = 1 << encoder->port; /* the same port mustn't appear more than once */ if (used_ports & port_mask) ret = false; used_ports |= port_mask; break; case INTEL_OUTPUT_DP_MST: used_mst_ports |= 1 << encoder->port; break; default: break; } } drm_connector_list_iter_end(&conn_iter); /* can't mix MST and SST/HDMI on the same port */ if (used_ports & used_mst_ports) return false; return ret; } static int clear_intel_crtc_state(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct intel_crtc_state *saved_state; saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL); if (!saved_state) return -ENOMEM; /* FIXME: before the switch to atomic started, a new pipe_config was * kzalloc'd. Code that depends on any field being zero should be * fixed, so that the crtc_state can be safely duplicated. For now, * only fields that are know to not cause problems are preserved. */ saved_state->scaler_state = crtc_state->scaler_state; saved_state->shared_dpll = crtc_state->shared_dpll; saved_state->dpll_hw_state = crtc_state->dpll_hw_state; memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, sizeof(saved_state->icl_port_dplls)); saved_state->crc_enabled = crtc_state->crc_enabled; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) saved_state->wm = crtc_state->wm; /* Keep base drm_crtc_state intact, only clear our extended struct */ BUILD_BUG_ON(offsetof(struct intel_crtc_state, base)); memcpy(&crtc_state->base + 1, &saved_state->base + 1, sizeof(*crtc_state) - sizeof(crtc_state->base)); kfree(saved_state); return 0; } static int intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) { struct drm_crtc *crtc = pipe_config->base.crtc; struct drm_atomic_state *state = pipe_config->base.state; struct intel_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int base_bpp, ret; int i; bool retry = true; ret = clear_intel_crtc_state(pipe_config); if (ret) return ret; pipe_config->cpu_transcoder = (enum transcoder) to_intel_crtc(crtc)->pipe; /* * Sanitize sync polarity flags based on requested ones. If neither * positive or negative polarity is requested, treat this as meaning * negative polarity. */ if (!(pipe_config->base.adjusted_mode.flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (!(pipe_config->base.adjusted_mode.flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), pipe_config); if (ret) return ret; base_bpp = pipe_config->pipe_bpp; /* * Determine the real pipe dimensions. Note that stereo modes can * increase the actual pipe size due to the frame doubling and * insertion of additional space for blanks between the frame. This * is stored in the crtc timings. We use the requested mode to do this * computation to clearly distinguish it from the adjusted mode, which * can be changed by the connectors in the below retry loop. */ drm_mode_get_hv_timing(&pipe_config->base.mode, &pipe_config->pipe_src_w, &pipe_config->pipe_src_h); for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc) continue; encoder = to_intel_encoder(connector_state->best_encoder); if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); return -EINVAL; } /* * Determine output_types before calling the .compute_config() * hooks so that the hooks can use this information safely. */ if (encoder->compute_output_type) pipe_config->output_types |= BIT(encoder->compute_output_type(encoder, pipe_config, connector_state)); else pipe_config->output_types |= BIT(encoder->type); } encoder_retry: /* Ensure the port clock defaults are reset when retrying. */ pipe_config->port_clock = 0; pipe_config->pixel_multiplier = 1; /* Fill in default crtc timings, allow encoders to overwrite them. */ drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, CRTC_STEREO_DOUBLE); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc) continue; encoder = to_intel_encoder(connector_state->best_encoder); ret = encoder->compute_config(encoder, pipe_config, connector_state); if (ret < 0) { if (ret != -EDEADLK) DRM_DEBUG_KMS("Encoder config failure: %d\n", ret); return ret; } } /* Set default port clock if not overwritten by the encoder. Needs to be * done afterwards in case the encoder adjusts the mode. */ if (!pipe_config->port_clock) pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock * pipe_config->pixel_multiplier; ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); if (ret == -EDEADLK) return ret; if (ret < 0) { DRM_DEBUG_KMS("CRTC fixup failed\n"); return ret; } if (ret == RETRY) { if (WARN(!retry, "loop in pipe configuration computation\n")) return -EINVAL; DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); retry = false; goto encoder_retry; } /* Dithering seems to not pass-through bits correctly when it should, so * only enable it on 6bpc panels and when its not a compliance * test requesting 6bpc video pattern. */ pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && !pipe_config->dither_force_disable; DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", base_bpp, pipe_config->pipe_bpp, pipe_config->dither); return 0; } bool intel_fuzzy_clock_check(int clock1, int clock2) { int diff; if (clock1 == clock2) return true; if (!clock1 || !clock2) return false; diff = abs(clock1 - clock2); if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) return true; return false; } static bool intel_compare_m_n(unsigned int m, unsigned int n, unsigned int m2, unsigned int n2, bool exact) { if (m == m2 && n == n2) return true; if (exact || !m || !n || !m2 || !n2) return false; BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); if (n > n2) { while (n > n2) { m2 <<= 1; n2 <<= 1; } } else if (n < n2) { while (n < n2) { m <<= 1; n <<= 1; } } if (n != n2) return false; return intel_fuzzy_clock_check(m, m2); } static bool intel_compare_link_m_n(const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2, bool exact) { return m_n->tu == m2_n2->tu && intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, m2_n2->gmch_m, m2_n2->gmch_n, exact) && intel_compare_m_n(m_n->link_m, m_n->link_n, m2_n2->link_m, m2_n2->link_n, exact); } static bool intel_compare_infoframe(const union hdmi_infoframe *a, const union hdmi_infoframe *b) { return memcmp(a, b, sizeof(*a)) == 0; } static void pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, bool fastset, const char *name, const union hdmi_infoframe *a, const union hdmi_infoframe *b) { if (fastset) { if ((drm_debug & DRM_UT_KMS) == 0) return; drm_dbg(DRM_UT_KMS, "fastset mismatch in %s infoframe", name); drm_dbg(DRM_UT_KMS, "expected:"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); drm_dbg(DRM_UT_KMS, "found"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); } else { drm_err("mismatch in %s infoframe", name); drm_err("expected:"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); drm_err("found"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); } } static void __printf(3, 4) pipe_config_mismatch(bool fastset, const char *name, const char *format, ...) { struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; if (fastset) drm_dbg(DRM_UT_KMS, "fastset mismatch in %s %pV", name, &vaf); else drm_err("mismatch in %s %pV", name, &vaf); va_end(args); } static bool fastboot_enabled(struct drm_i915_private *dev_priv) { if (i915_modparams.fastboot != -1) return i915_modparams.fastboot; /* Enable fastboot by default on Skylake and newer */ if (INTEL_GEN(dev_priv) >= 9) return true; /* Enable fastboot by default on VLV and CHV */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return true; /* Disabled by default on all others */ return false; } static bool intel_pipe_config_compare(const struct intel_crtc_state *current_config, const struct intel_crtc_state *pipe_config, bool fastset) { struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev); bool ret = true; bool fixup_inherited = fastset && (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) && !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED); if (fixup_inherited && !fastboot_enabled(dev_priv)) { DRM_DEBUG_KMS("initial modeset and fastboot not set\n"); ret = false; } #define PIPE_CONF_CHECK_X(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected 0x%08x, found 0x%08x)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_I(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_BOOL(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected %s, found %s)\n", \ yesno(current_config->name), \ yesno(pipe_config->name)); \ ret = false; \ } \ } while (0) /* * Checks state where we only read out the enabling, but not the entire * state itself (like full infoframes or ELD for audio). These states * require a full modeset on bootup to fix up. */ #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ PIPE_CONF_CHECK_BOOL(name); \ } else { \ pipe_config_mismatch(fastset, __stringify(name), \ "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)\n", \ yesno(current_config->name), \ yesno(pipe_config->name)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_P(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected %p, found %p)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_M_N(name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name,\ !fastset)) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)\n", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) /* This is required for BDW+ where there is only one set of registers for * switching between high and low RR. * This macro can be used whenever a comparison has to be made between one * hw state and multiple sw state variables. */ #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name, !fastset) && \ !intel_compare_link_m_n(¤t_config->alt_name, \ &pipe_config->name, !fastset)) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected tu %i gmch %i/%i link %i/%i, " \ "or tu %i gmch %i/%i link %i/%i, " \ "found tu %i, gmch %i/%i link %i/%i)\n", \ current_config->name.tu, \ current_config->name.gmch_m, \ current_config->name.gmch_n, \ current_config->name.link_m, \ current_config->name.link_n, \ current_config->alt_name.tu, \ current_config->alt_name.gmch_m, \ current_config->alt_name.gmch_n, \ current_config->alt_name.link_m, \ current_config->alt_name.link_n, \ pipe_config->name.tu, \ pipe_config->name.gmch_m, \ pipe_config->name.gmch_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ if ((current_config->name ^ pipe_config->name) & (mask)) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(%x) (expected %i, found %i)\n", \ (mask), \ current_config->name & (mask), \ pipe_config->name & (mask)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ pipe_config_mismatch(fastset, __stringify(name), \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ if (!intel_compare_infoframe(¤t_config->infoframes.name, \ &pipe_config->infoframes.name)) { \ pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ ¤t_config->infoframes.name, \ &pipe_config->infoframes.name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_QUIRK(quirk) \ ((current_config->quirks | pipe_config->quirks) & (quirk)) PIPE_CONF_CHECK_I(cpu_transcoder); PIPE_CONF_CHECK_BOOL(has_pch_encoder); PIPE_CONF_CHECK_I(fdi_lanes); PIPE_CONF_CHECK_M_N(fdi_m_n); PIPE_CONF_CHECK_I(lane_count); PIPE_CONF_CHECK_X(lane_lat_optim_mask); if (INTEL_GEN(dev_priv) < 8) { PIPE_CONF_CHECK_M_N(dp_m_n); if (current_config->has_drrs) PIPE_CONF_CHECK_M_N(dp_m2_n2); } else PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); PIPE_CONF_CHECK_X(output_types); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); PIPE_CONF_CHECK_I(pixel_multiplier); PIPE_CONF_CHECK_I(output_format); PIPE_CONF_CHECK_BOOL(has_hdmi_sink); if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_BOOL(limited_color_range); PIPE_CONF_CHECK_BOOL(hdmi_scrambling); PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); PIPE_CONF_CHECK_BOOL(has_infoframe); PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_INTERLACE); if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_PHSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_NHSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_PVSYNC); PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, DRM_MODE_FLAG_NVSYNC); } PIPE_CONF_CHECK_X(gmch_pfit.control); /* pfit ratios are autocomputed by the hw on gen4+ */ if (INTEL_GEN(dev_priv) < 4) PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); /* * Changing the EDP transcoder input mux * (A_ONOFF vs. A_ON) requires a full modeset. */ PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); if (!fastset) { PIPE_CONF_CHECK_I(pipe_src_w); PIPE_CONF_CHECK_I(pipe_src_h); PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); if (current_config->pch_pfit.enabled) { PIPE_CONF_CHECK_X(pch_pfit.pos); PIPE_CONF_CHECK_X(pch_pfit.size); } PIPE_CONF_CHECK_I(scaler_state.scaler_id); PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); PIPE_CONF_CHECK_X(gamma_mode); if (IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_X(cgm_mode); else PIPE_CONF_CHECK_X(csc_mode); PIPE_CONF_CHECK_BOOL(gamma_enable); PIPE_CONF_CHECK_BOOL(csc_enable); } PIPE_CONF_CHECK_BOOL(double_wide); PIPE_CONF_CHECK_P(shared_dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); PIPE_CONF_CHECK_X(dpll_hw_state.fp0); PIPE_CONF_CHECK_X(dpll_hw_state.fp1); PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); PIPE_CONF_CHECK_X(dpll_hw_state.spll); PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); PIPE_CONF_CHECK_X(dpll_hw_state.pll0); PIPE_CONF_CHECK_X(dpll_hw_state.pll1); PIPE_CONF_CHECK_X(dpll_hw_state.pll2); PIPE_CONF_CHECK_X(dpll_hw_state.pll3); PIPE_CONF_CHECK_X(dpll_hw_state.pll6); PIPE_CONF_CHECK_X(dpll_hw_state.pll8); PIPE_CONF_CHECK_X(dpll_hw_state.pll9); PIPE_CONF_CHECK_X(dpll_hw_state.pll10); PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); PIPE_CONF_CHECK_X(dsi_pll.ctrl); PIPE_CONF_CHECK_X(dsi_pll.div); if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) PIPE_CONF_CHECK_I(pipe_bpp); PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); PIPE_CONF_CHECK_I(min_voltage_level); PIPE_CONF_CHECK_X(infoframes.enable); PIPE_CONF_CHECK_X(infoframes.gcp); PIPE_CONF_CHECK_INFOFRAME(avi); PIPE_CONF_CHECK_INFOFRAME(spd); PIPE_CONF_CHECK_INFOFRAME(hdmi); PIPE_CONF_CHECK_INFOFRAME(drm); #undef PIPE_CONF_CHECK_X #undef PIPE_CONF_CHECK_I #undef PIPE_CONF_CHECK_BOOL #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE #undef PIPE_CONF_CHECK_P #undef PIPE_CONF_CHECK_FLAGS #undef PIPE_CONF_CHECK_CLOCK_FUZZY #undef PIPE_CONF_QUIRK return ret; } static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, const struct intel_crtc_state *pipe_config) { if (pipe_config->has_pch_encoder) { int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), &pipe_config->fdi_m_n); int dotclock = pipe_config->base.adjusted_mode.crtc_clock; /* * FDI already provided one idea for the dotclock. * Yell if the encoder disagrees. */ WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", fdi_dotclock, dotclock); } } static void verify_wm_state(struct intel_crtc *crtc, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct skl_hw_state { struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; struct skl_ddb_allocation ddb; struct skl_pipe_wm wm; } *hw; struct skl_ddb_allocation *sw_ddb; struct skl_pipe_wm *sw_wm; struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; const enum pipe pipe = crtc->pipe; int plane, level, max_level = ilk_wm_max_level(dev_priv); if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active) return; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (!hw) return; skl_pipe_wm_get_hw_state(crtc, &hw->wm); sw_wm = &new_crtc_state->wm.skl.optimal; skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); skl_ddb_get_hw_state(dev_priv, &hw->ddb); sw_ddb = &dev_priv->wm.skl_hw.ddb; if (INTEL_GEN(dev_priv) >= 11 && hw->ddb.enabled_slices != sw_ddb->enabled_slices) DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n", sw_ddb->enabled_slices, hw->ddb.enabled_slices); /* planes */ for_each_universal_plane(dev_priv, pipe, plane) { struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; hw_plane_wm = &hw->wm.planes[plane]; sw_plane_wm = &sw_wm->planes[plane]; /* Watermarks */ for (level = 0; level <= max_level; level++) { if (skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->wm[level])) continue; DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), plane + 1, level, sw_plane_wm->wm[level].plane_en, sw_plane_wm->wm[level].plane_res_b, sw_plane_wm->wm[level].plane_res_l, hw_plane_wm->wm[level].plane_en, hw_plane_wm->wm[level].plane_res_b, hw_plane_wm->wm[level].plane_res_l); } if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, &sw_plane_wm->trans_wm)) { DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), plane + 1, sw_plane_wm->trans_wm.plane_en, sw_plane_wm->trans_wm.plane_res_b, sw_plane_wm->trans_wm.plane_res_l, hw_plane_wm->trans_wm.plane_en, hw_plane_wm->trans_wm.plane_res_b, hw_plane_wm->trans_wm.plane_res_l); } /* DDB */ hw_ddb_entry = &hw->ddb_y[plane]; sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), plane + 1, sw_ddb_entry->start, sw_ddb_entry->end, hw_ddb_entry->start, hw_ddb_entry->end); } } /* * cursor * If the cursor plane isn't active, we may not have updated it's ddb * allocation. In that case since the ddb allocation will be updated * once the plane becomes visible, we can skip this check */ if (1) { struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; /* Watermarks */ for (level = 0; level <= max_level; level++) { if (skl_wm_level_equals(&hw_plane_wm->wm[level], &sw_plane_wm->wm[level])) continue; DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), level, sw_plane_wm->wm[level].plane_en, sw_plane_wm->wm[level].plane_res_b, sw_plane_wm->wm[level].plane_res_l, hw_plane_wm->wm[level].plane_en, hw_plane_wm->wm[level].plane_res_b, hw_plane_wm->wm[level].plane_res_l); } if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, &sw_plane_wm->trans_wm)) { DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", pipe_name(pipe), sw_plane_wm->trans_wm.plane_en, sw_plane_wm->trans_wm.plane_res_b, sw_plane_wm->trans_wm.plane_res_l, hw_plane_wm->trans_wm.plane_en, hw_plane_wm->trans_wm.plane_res_b, hw_plane_wm->trans_wm.plane_res_l); } /* DDB */ hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", pipe_name(pipe), sw_ddb_entry->start, sw_ddb_entry->end, hw_ddb_entry->start, hw_ddb_entry->end); } } kfree(hw); } static void verify_connector_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_connector *connector; struct drm_connector_state *new_conn_state; int i; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct drm_encoder *encoder = connector->encoder; struct intel_crtc_state *crtc_state = NULL; if (new_conn_state->crtc != &crtc->base) continue; if (crtc) crtc_state = intel_atomic_get_new_crtc_state(state, crtc); intel_connector_verify_state(crtc_state, new_conn_state); I915_STATE_WARN(new_conn_state->best_encoder != encoder, "connector's atomic encoder doesn't match legacy encoder\n"); } } static void verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { struct intel_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *old_conn_state, *new_conn_state; int i; for_each_intel_encoder(&dev_priv->drm, encoder) { bool enabled = false, found = false; enum pipe pipe; DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", encoder->base.base.id, encoder->base.name); for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, new_conn_state, i) { if (old_conn_state->best_encoder == &encoder->base) found = true; if (new_conn_state->best_encoder != &encoder->base) continue; found = enabled = true; I915_STATE_WARN(new_conn_state->crtc != encoder->base.crtc, "connector's crtc doesn't match encoder crtc\n"); } if (!found) continue; I915_STATE_WARN(!!encoder->base.crtc != enabled, "encoder's enabled state mismatch " "(expected %i, found %i)\n", !!encoder->base.crtc, enabled); if (!encoder->base.crtc) { bool active; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active, "encoder detached but still enabled on pipe %c.\n", pipe_name(pipe)); } } } static void verify_crtc_state(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder; struct intel_crtc_state *pipe_config; struct drm_atomic_state *state; bool active; state = old_crtc_state->base.state; __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base); pipe_config = old_crtc_state; memset(pipe_config, 0, sizeof(*pipe_config)); pipe_config->base.crtc = &crtc->base; pipe_config->base.state = state; DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name); active = dev_priv->display.get_pipe_config(crtc, pipe_config); /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) active = new_crtc_state->base.active; I915_STATE_WARN(new_crtc_state->base.active != active, "crtc active state doesn't match with hw state " "(expected %i, found %i)\n", new_crtc_state->base.active, active); I915_STATE_WARN(crtc->active != new_crtc_state->base.active, "transitional active state does not match atomic hw state " "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active); for_each_encoder_on_crtc(dev, &crtc->base, encoder) { enum pipe pipe; active = encoder->get_hw_state(encoder, &pipe); I915_STATE_WARN(active != new_crtc_state->base.active, "[ENCODER:%i] active %i with crtc active %i\n", encoder->base.base.id, active, new_crtc_state->base.active); I915_STATE_WARN(active && crtc->pipe != pipe, "Encoder connected to wrong pipe %c\n", pipe_name(pipe)); if (active) encoder->get_config(encoder, pipe_config); } intel_crtc_compute_pixel_rate(pipe_config); if (!new_crtc_state->base.active) return; intel_pipe_config_sanity_check(dev_priv, pipe_config); if (!intel_pipe_config_compare(new_crtc_state, pipe_config, false)) { I915_STATE_WARN(1, "pipe state doesn't match!\n"); intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); } } static void intel_verify_planes(struct intel_atomic_state *state) { struct intel_plane *plane; const struct intel_plane_state *plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) assert_plane(plane, plane_state->slave || plane_state->base.visible); } static void verify_single_dpll_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_crtc *crtc, struct intel_crtc_state *new_crtc_state) { struct intel_dpll_hw_state dpll_hw_state; unsigned int crtc_mask; bool active; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); DRM_DEBUG_KMS("%s\n", pll->info->name); active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { I915_STATE_WARN(!pll->on && pll->active_mask, "pll in active use but not on in sw tracking\n"); I915_STATE_WARN(pll->on && !pll->active_mask, "pll is on but not used by any active crtc\n"); I915_STATE_WARN(pll->on != active, "pll on state mismatch (expected %i, found %i)\n", pll->on, active); } if (!crtc) { I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, "more active pll users than references: %x vs %x\n", pll->active_mask, pll->state.crtc_mask); return; } crtc_mask = drm_crtc_mask(&crtc->base); if (new_crtc_state->base.active) I915_STATE_WARN(!(pll->active_mask & crtc_mask), "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); else I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", crtc_mask, pll->state.crtc_mask); I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, &dpll_hw_state, sizeof(dpll_hw_state)), "pll hw state mismatch\n"); } static void verify_shared_dpll_state(struct intel_crtc *crtc, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (new_crtc_state->shared_dpll) verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); if (old_crtc_state->shared_dpll && old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { unsigned int crtc_mask = drm_crtc_mask(&crtc->base); struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; I915_STATE_WARN(pll->active_mask & crtc_mask, "pll active mismatch (didn't expect pipe %c in active mask)\n", pipe_name(drm_crtc_index(&crtc->base))); I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, "pll enabled crtcs mismatch (found %x in enabled mask)\n", pipe_name(drm_crtc_index(&crtc->base))); } } static void intel_modeset_verify_crtc(struct intel_crtc *crtc, struct intel_atomic_state *state, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) return; verify_wm_state(crtc, new_crtc_state); verify_connector_state(state, crtc); verify_crtc_state(crtc, old_crtc_state, new_crtc_state); verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); } static void verify_disabled_dpll_state(struct drm_i915_private *dev_priv) { int i; for (i = 0; i < dev_priv->num_shared_dpll; i++) verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); } static void intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { verify_encoder_state(dev_priv, state); verify_connector_state(state, NULL); verify_disabled_dpll_state(dev_priv); } static void update_scanline_offset(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* * The scanline counter increments at the leading edge of hsync. * * On most platforms it starts counting from vtotal-1 on the * first active line. That means the scanline counter value is * always one less than what we would expect. Ie. just after * start of vblank, which also occurs at start of hsync (on the * last active line), the scanline counter will read vblank_start-1. * * On gen2 the scanline counter starts counting from 1 instead * of vtotal-1, so we have to subtract one (or rather add vtotal-1 * to keep the value positive), instead of adding one. * * On HSW+ the behaviour of the scanline counter depends on the output * type. For DP ports it behaves like most other platforms, but on HDMI * there's an extra 1 line difference. So we need to add two instead of * one to the value. * * On VLV/CHV DSI the scanline counter would appear to increment * approx. 1/3 of a scanline before start of vblank. Unfortunately * that means we can't tell whether we're in vblank or not while * we're on that particular line. We must still set scanline_offset * to 1 so that the vblank timestamps come out correct when we query * the scanline counter from within the vblank interrupt handler. * However if queried just before the start of vblank we'll get an * answer that's slightly in the future. */ if (IS_GEN(dev_priv, 2)) { const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int vtotal; vtotal = adjusted_mode->crtc_vtotal; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; crtc->scanline_offset = vtotal - 1; } else if (HAS_DDI(dev_priv) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { crtc->scanline_offset = 2; } else crtc->scanline_offset = 1; } static void intel_modeset_clear_plls(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; if (!dev_priv->display.crtc_compute_clock) return; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!needs_modeset(new_crtc_state)) continue; intel_release_shared_dplls(state, crtc); } } /* * This implements the workaround described in the "notes" section of the mode * set sequence documentation. When going from no pipes or single pipe to * multiple pipes, and planes are enabled after the pipe, we need to wait at * least 2 vblanks on the first pipe before enabling planes on the second pipe. */ static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; struct intel_crtc_state *first_crtc_state = NULL; struct intel_crtc_state *other_crtc_state = NULL; enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; int i; /* look at all crtc's that are going to be enabled in during modeset */ for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->base.active || !needs_modeset(crtc_state)) continue; if (first_crtc_state) { other_crtc_state = crtc_state; break; } else { first_crtc_state = crtc_state; first_pipe = crtc->pipe; } } /* No workaround needed? */ if (!first_crtc_state) return 0; /* w/a possibly needed, check how many crtc's are already enabled. */ for_each_intel_crtc(state->base.dev, crtc) { crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->hsw_workaround_pipe = INVALID_PIPE; if (!crtc_state->base.active || needs_modeset(crtc_state)) continue; /* 2 or more enabled crtcs means no need for w/a */ if (enabled_pipe != INVALID_PIPE) return 0; enabled_pipe = crtc->pipe; } if (enabled_pipe != INVALID_PIPE) first_crtc_state->hsw_workaround_pipe = enabled_pipe; else if (other_crtc_state) other_crtc_state->hsw_workaround_pipe = first_pipe; return 0; } static int intel_lock_all_pipes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; /* Add all pipes to the state */ for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); } return 0; } static int intel_modeset_all_pipes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; /* * Add all pipes to the state, and force * a modeset on all the active ones. */ for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; int ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->base.active || needs_modeset(crtc_state)) continue; crtc_state->base.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; } return 0; } static int intel_modeset_checks(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int ret = 0, i; if (!check_digital_port_conflicts(state)) { DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); return -EINVAL; } /* keep the current setting */ if (!state->cdclk.force_min_cdclk_changed) state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk; state->modeset = true; state->active_crtcs = dev_priv->active_crtcs; state->cdclk.logical = dev_priv->cdclk.logical; state->cdclk.actual = dev_priv->cdclk.actual; state->cdclk.pipe = INVALID_PIPE; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->base.active) state->active_crtcs |= 1 << i; else state->active_crtcs &= ~(1 << i); if (old_crtc_state->base.active != new_crtc_state->base.active) state->active_pipe_changes |= drm_crtc_mask(&crtc->base); } /* * See if the config requires any additional preparation, e.g. * to adjust global state with pipes off. We need to do this * here so we can get the modeset_pipe updated config for the new * mode set on this crtc. For other crtcs we need to use the * adjusted_mode bits in the crtc directly. */ if (dev_priv->display.modeset_calc_cdclk) { enum pipe pipe; ret = dev_priv->display.modeset_calc_cdclk(state); if (ret < 0) return ret; /* * Writes to dev_priv->cdclk.logical must protected by * holding all the crtc locks, even if we don't end up * touching the hardware */ if (intel_cdclk_changed(&dev_priv->cdclk.logical, &state->cdclk.logical)) { ret = intel_lock_all_pipes(state); if (ret < 0) return ret; } if (is_power_of_2(state->active_crtcs)) { struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; pipe = ilog2(state->active_crtcs); crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (crtc_state && needs_modeset(crtc_state)) pipe = INVALID_PIPE; } else { pipe = INVALID_PIPE; } /* All pipes must be switched off while we change the cdclk. */ if (pipe != INVALID_PIPE && intel_cdclk_needs_cd2x_update(dev_priv, &dev_priv->cdclk.actual, &state->cdclk.actual)) { ret = intel_lock_all_pipes(state); if (ret < 0) return ret; state->cdclk.pipe = pipe; } else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual, &state->cdclk.actual)) { ret = intel_modeset_all_pipes(state); if (ret < 0) return ret; state->cdclk.pipe = INVALID_PIPE; } DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n", state->cdclk.logical.cdclk, state->cdclk.actual.cdclk); DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n", state->cdclk.logical.voltage_level, state->cdclk.actual.voltage_level); } intel_modeset_clear_plls(state); if (IS_HASWELL(dev_priv)) return haswell_mode_set_planes_workaround(state); return 0; } /* * Handle calculation of various watermark data at the end of the atomic check * phase. The code here should be run after the per-crtc and per-plane 'check' * handlers to ensure that all derived state has been updated. */ static int calc_watermark_data(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* Is there platform-specific watermark information to calculate? */ if (dev_priv->display.compute_global_watermarks) return dev_priv->display.compute_global_watermarks(state); return 0; } static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) return; new_crtc_state->base.mode_changed = false; new_crtc_state->update_pipe = true; /* * If we're not doing the full modeset we want to * keep the current M/N values as they may be * sufficiently different to the computed values * to cause problems. * * FIXME: should really copy more fuzzy state here */ new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; new_crtc_state->has_drrs = old_crtc_state->has_drrs; } /** * intel_atomic_check - validate state object * @dev: drm device * @_state: state to validate */ static int intel_atomic_check(struct drm_device *dev, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int ret, i; bool any_ms = state->cdclk.force_min_cdclk_changed; /* Catch I915_MODE_FLAG_INHERITED */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->base.mode.private_flags != old_crtc_state->base.mode.private_flags) new_crtc_state->base.mode_changed = true; } ret = drm_atomic_helper_check_modeset(dev, &state->base); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!needs_modeset(new_crtc_state)) continue; if (!new_crtc_state->base.enable) { any_ms = true; continue; } ret = intel_modeset_pipe_config(new_crtc_state); if (ret) goto fail; intel_crtc_check_fastset(old_crtc_state, new_crtc_state); if (needs_modeset(new_crtc_state)) any_ms = true; } ret = drm_dp_mst_atomic_check(&state->base); if (ret) goto fail; if (any_ms) { ret = intel_modeset_checks(state); if (ret) goto fail; } else { state->cdclk.logical = dev_priv->cdclk.logical; } ret = icl_add_linked_planes(state); if (ret) goto fail; ret = drm_atomic_helper_check_planes(dev, &state->base); if (ret) goto fail; intel_fbc_choose_crtc(dev_priv, state); ret = calc_watermark_data(state); if (ret) goto fail; ret = intel_bw_atomic_check(state); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) continue; intel_dump_pipe_config(new_crtc_state, state, needs_modeset(new_crtc_state) ? "[modeset]" : "[fastset]"); } return 0; fail: if (ret == -EDEADLK) return ret; /* * FIXME would probably be nice to know which crtc specifically * caused the failure, in cases where we can pinpoint it. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) intel_dump_pipe_config(new_crtc_state, state, "[failed]"); return ret; } static int intel_atomic_prepare_commit(struct intel_atomic_state *state) { return drm_atomic_helper_prepare_planes(state->base.dev, &state->base); } u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; if (!vblank->max_vblank_count) return (u32)drm_crtc_accurate_vblank_count(&crtc->base); return crtc->base.funcs->get_vblank_counter(&crtc->base); } static void intel_update_crtc(struct intel_crtc *crtc, struct intel_atomic_state *state, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); bool modeset = needs_modeset(new_crtc_state); struct intel_plane_state *new_plane_state = intel_atomic_get_new_plane_state(state, to_intel_plane(crtc->base.primary)); if (modeset) { update_scanline_offset(new_crtc_state); dev_priv->display.crtc_enable(new_crtc_state, state); /* vblanks work again, re-enable pipe CRC. */ intel_crtc_enable_pipe_crc(crtc); } else { if (new_crtc_state->preload_luts && (new_crtc_state->base.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_load_luts(new_crtc_state); intel_pre_plane_update(old_crtc_state, new_crtc_state); if (new_crtc_state->update_pipe) intel_encoders_update_pipe(crtc, new_crtc_state, state); } if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) intel_fbc_disable(crtc); else if (new_plane_state) intel_fbc_enable(crtc, new_crtc_state, new_plane_state); intel_begin_crtc_commit(state, crtc); if (INTEL_GEN(dev_priv) >= 9) skl_update_planes_on_crtc(state, crtc); else i9xx_update_planes_on_crtc(state, crtc); intel_finish_crtc_commit(state, crtc); } static void intel_update_crtcs(struct intel_atomic_state *state) { struct intel_crtc *crtc; struct intel_crtc_state *old_crtc_state, *new_crtc_state; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!new_crtc_state->base.active) continue; intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state); } } static void skl_update_crtcs(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *old_crtc_state, *new_crtc_state; unsigned int updated = 0; bool progress; enum pipe pipe; int i; u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices; u8 required_slices = state->wm_results.ddb.enabled_slices; struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) /* ignore allocations for crtc's that have been turned off. */ if (new_crtc_state->base.active) entries[i] = old_crtc_state->wm.skl.ddb; /* If 2nd DBuf slice required, enable it here */ if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices) icl_dbuf_slices_update(dev_priv, required_slices); /* * Whenever the number of active pipes changes, we need to make sure we * update the pipes in the right order so that their ddb allocations * never overlap with eachother inbetween CRTC updates. Otherwise we'll * cause pipe underruns and other bad stuff. */ do { progress = false; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { bool vbl_wait = false; unsigned int cmask = drm_crtc_mask(&crtc->base); pipe = crtc->pipe; if (updated & cmask || !new_crtc_state->base.active) continue; if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, entries, INTEL_INFO(dev_priv)->num_pipes, i)) continue; updated |= cmask; entries[i] = new_crtc_state->wm.skl.ddb; /* * If this is an already active pipe, it's DDB changed, * and this isn't the last pipe that needs updating * then we need to wait for a vblank to pass for the * new ddb allocation to take effect. */ if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, &old_crtc_state->wm.skl.ddb) && !new_crtc_state->base.active_changed && state->wm_results.dirty_pipes != updated) vbl_wait = true; intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state); if (vbl_wait) intel_wait_for_vblank(dev_priv, pipe); progress = true; } } while (progress); /* If 2nd DBuf slice is no more required disable it */ if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices) icl_dbuf_slices_update(dev_priv, required_slices); } static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) { struct intel_atomic_state *state, *next; struct llist_node *freed; freed = llist_del_all(&dev_priv->atomic_helper.free_list); llist_for_each_entry_safe(state, next, freed, freed) drm_atomic_state_put(&state->base); } static void intel_atomic_helper_free_state_worker(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), atomic_helper.free_work); intel_atomic_helper_free_state(dev_priv); } static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) { struct wait_queue_entry wait_fence, wait_reset; struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); init_wait_entry(&wait_fence, 0); init_wait_entry(&wait_reset, 0); for (;;) { prepare_to_wait(&intel_state->commit_ready.wait, &wait_fence, TASK_UNINTERRUPTIBLE); prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, I915_RESET_MODESET), &wait_reset, TASK_UNINTERRUPTIBLE); if (i915_sw_fence_done(&intel_state->commit_ready) || test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) break; schedule(); } finish_wait(&intel_state->commit_ready.wait, &wait_fence); finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, I915_RESET_MODESET), &wait_reset); } static void intel_atomic_cleanup_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, struct drm_atomic_state, commit_work); struct drm_i915_private *i915 = to_i915(state->dev); drm_atomic_helper_cleanup_planes(&i915->drm, state); drm_atomic_helper_commit_cleanup_done(state); drm_atomic_state_put(state); intel_atomic_helper_free_state(i915); } static void intel_atomic_commit_tail(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; u64 put_domains[I915_MAX_PIPES] = {}; intel_wakeref_t wakeref = 0; int i; intel_atomic_commit_fence_wait(state); drm_atomic_helper_wait_for_dependencies(&state->base); if (state->modeset) wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (needs_modeset(new_crtc_state) || new_crtc_state->update_pipe) { put_domains[crtc->pipe] = modeset_get_crtc_power_domains(new_crtc_state); } if (!needs_modeset(new_crtc_state)) continue; intel_pre_plane_update(old_crtc_state, new_crtc_state); if (old_crtc_state->base.active) { intel_crtc_disable_planes(state, crtc); /* * We need to disable pipe CRC before disabling the pipe, * or we race against vblank off. */ intel_crtc_disable_pipe_crc(crtc); dev_priv->display.crtc_disable(old_crtc_state, state); crtc->active = false; intel_fbc_disable(crtc); intel_disable_shared_dpll(old_crtc_state); /* * Underruns don't always raise * interrupts, so check manually. */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); /* FIXME unify this for all platforms */ if (!new_crtc_state->base.active && !HAS_GMCH(dev_priv) && dev_priv->display.initial_watermarks) dev_priv->display.initial_watermarks(state, new_crtc_state); } } /* FIXME: Eventually get rid of our crtc->config pointer */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) crtc->config = new_crtc_state; if (state->modeset) { drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); intel_set_cdclk_pre_plane_update(dev_priv, &state->cdclk.actual, &dev_priv->cdclk.actual, state->cdclk.pipe); /* * SKL workaround: bspec recommends we disable the SAGV when we * have more then one pipe enabled */ if (!intel_can_enable_sagv(state)) intel_disable_sagv(dev_priv); intel_modeset_verify_disabled(dev_priv, state); } /* Complete the events for pipes that have now been disabled */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { bool modeset = needs_modeset(new_crtc_state); /* Complete events for now disable pipes here. */ if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) { spin_lock_irq(&dev->event_lock); drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event); spin_unlock_irq(&dev->event_lock); new_crtc_state->base.event = NULL; } } if (state->modeset) intel_encoders_update_prepare(state); /* Now enable the clocks, plane, pipe, and connectors that we set up. */ dev_priv->display.update_crtcs(state); if (state->modeset) { intel_encoders_update_complete(state); intel_set_cdclk_post_plane_update(dev_priv, &state->cdclk.actual, &dev_priv->cdclk.actual, state->cdclk.pipe); } /* FIXME: We should call drm_atomic_helper_commit_hw_done() here * already, but still need the state for the delayed optimization. To * fix this: * - wrap the optimization/post_plane_update stuff into a per-crtc work. * - schedule that vblank worker _before_ calling hw_done * - at the start of commit_tail, cancel it _synchrously * - switch over to the vblank wait helper in the core after that since * we don't need out special handling any more. */ drm_atomic_helper_wait_for_flip_done(dev, &state->base); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->base.active && !needs_modeset(new_crtc_state) && !new_crtc_state->preload_luts && (new_crtc_state->base.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_load_luts(new_crtc_state); } /* * Now that the vblank has passed, we can go ahead and program the * optimal watermarks on platforms that need two-step watermark * programming. * * TODO: Move this (and other cleanup) to an async worker eventually. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (dev_priv->display.optimize_watermarks) dev_priv->display.optimize_watermarks(state, new_crtc_state); } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { intel_post_plane_update(old_crtc_state); if (put_domains[i]) modeset_put_power_domains(dev_priv, put_domains[i]); intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); } if (state->modeset) intel_verify_planes(state); if (state->modeset && intel_can_enable_sagv(state)) intel_enable_sagv(dev_priv); drm_atomic_helper_commit_hw_done(&state->base); if (state->modeset) { /* As one of the primary mmio accessors, KMS has a high * likelihood of triggering bugs in unclaimed access. After we * finish modesetting, see if an error has been flagged, and if * so enable debugging for the next modeset - and hope we catch * the culprit. */ intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); } intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); /* * Defer the cleanup of the old state to a separate worker to not * impede the current task (userspace for blocking modesets) that * are executed inline. For out-of-line asynchronous modesets/flips, * deferring to a new worker seems overkill, but we would place a * schedule point (cond_resched()) here anyway to keep latencies * down. */ INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); queue_work(system_highpri_wq, &state->base.commit_work); } static void intel_atomic_commit_work(struct work_struct *work) { struct intel_atomic_state *state = container_of(work, struct intel_atomic_state, base.commit_work); intel_atomic_commit_tail(state); } static int __i915_sw_fence_call intel_atomic_commit_ready(struct i915_sw_fence *fence, enum i915_sw_fence_notify notify) { struct intel_atomic_state *state = container_of(fence, struct intel_atomic_state, commit_ready); switch (notify) { case FENCE_COMPLETE: /* we do blocking waits in the worker, nothing to do here */ break; case FENCE_FREE: { struct intel_atomic_helper *helper = &to_i915(state->base.dev)->atomic_helper; if (llist_add(&state->freed, &helper->free_list)) schedule_work(&helper->free_work); break; } } return NOTIFY_DONE; } static void intel_atomic_track_fbs(struct intel_atomic_state *state) { struct intel_plane_state *old_plane_state, *new_plane_state; struct intel_plane *plane; int i; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), to_intel_frontbuffer(new_plane_state->base.fb), plane->frontbuffer_bit); } static int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state, bool nonblock) { struct intel_atomic_state *state = to_intel_atomic_state(_state); struct drm_i915_private *dev_priv = to_i915(dev); int ret = 0; state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); drm_atomic_state_get(&state->base); i915_sw_fence_init(&state->commit_ready, intel_atomic_commit_ready); /* * The intel_legacy_cursor_update() fast path takes care * of avoiding the vblank waits for simple cursor * movement and flips. For cursor on/off and size changes, * we want to perform the vblank waits so that watermark * updates happen during the correct frames. Gen9+ have * double buffered watermarks and so shouldn't need this. * * Unset state->legacy_cursor_update before the call to * drm_atomic_helper_setup_commit() because otherwise * drm_atomic_helper_wait_for_flip_done() is a noop and * we get FIFO underruns because we didn't wait * for vblank. * * FIXME doing watermarks and fb cleanup from a vblank worker * (assuming we had any) would solve these problems. */ if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) if (new_crtc_state->wm.need_postvbl_update || new_crtc_state->update_wm_post) state->base.legacy_cursor_update = false; } ret = intel_atomic_prepare_commit(state); if (ret) { DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); i915_sw_fence_commit(&state->commit_ready); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } ret = drm_atomic_helper_setup_commit(&state->base, nonblock); if (!ret) ret = drm_atomic_helper_swap_state(&state->base, true); if (ret) { i915_sw_fence_commit(&state->commit_ready); drm_atomic_helper_cleanup_planes(dev, &state->base); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } dev_priv->wm.distrust_bios_wm = false; intel_shared_dpll_swap_state(state); intel_atomic_track_fbs(state); if (state->modeset) { memcpy(dev_priv->min_cdclk, state->min_cdclk, sizeof(state->min_cdclk)); memcpy(dev_priv->min_voltage_level, state->min_voltage_level, sizeof(state->min_voltage_level)); dev_priv->active_crtcs = state->active_crtcs; dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk; intel_cdclk_swap_state(state); } drm_atomic_state_get(&state->base); INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); i915_sw_fence_commit(&state->commit_ready); if (nonblock && state->modeset) { queue_work(dev_priv->modeset_wq, &state->base.commit_work); } else if (nonblock) { queue_work(system_unbound_wq, &state->base.commit_work); } else { if (state->modeset) flush_workqueue(dev_priv->modeset_wq); intel_atomic_commit_tail(state); } return 0; } struct wait_rps_boost { struct wait_queue_entry wait; struct drm_crtc *crtc; struct i915_request *request; }; static int do_rps_boost(struct wait_queue_entry *_wait, unsigned mode, int sync, void *key) { struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); struct i915_request *rq = wait->request; /* * If we missed the vblank, but the request is already running it * is reasonable to assume that it will complete before the next * vblank without our intervention, so leave RPS alone. */ if (!i915_request_started(rq)) gen6_rps_boost(rq); i915_request_put(rq); drm_crtc_vblank_put(wait->crtc); list_del(&wait->wait.entry); kfree(wait); return 1; } static void add_rps_boost_after_vblank(struct drm_crtc *crtc, struct dma_fence *fence) { struct wait_rps_boost *wait; if (!dma_fence_is_i915(fence)) return; if (INTEL_GEN(to_i915(crtc->dev)) < 6) return; if (drm_crtc_vblank_get(crtc)) return; wait = kmalloc(sizeof(*wait), GFP_KERNEL); if (!wait) { drm_crtc_vblank_put(crtc); return; } wait->request = to_request(dma_fence_get(fence)); wait->crtc = crtc; wait->wait.func = do_rps_boost; wait->wait.flags = 0; add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); } static int intel_plane_pin_fb(struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->base.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); struct drm_framebuffer *fb = plane_state->base.fb; struct i915_vma *vma; if (plane->id == PLANE_CURSOR && INTEL_INFO(dev_priv)->display.cursor_needs_physical) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); const int align = intel_cursor_alignment(dev_priv); int err; err = i915_gem_object_attach_phys(obj, align); if (err) return err; } vma = intel_pin_and_fence_fb_obj(fb, &plane_state->view, intel_plane_uses_fence(plane_state), &plane_state->flags); if (IS_ERR(vma)) return PTR_ERR(vma); plane_state->vma = vma; return 0; } static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) { struct i915_vma *vma; vma = fetch_and_zero(&old_plane_state->vma); if (vma) intel_unpin_fb_vma(vma, old_plane_state->flags); } static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) { struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY, }; i915_gem_object_wait_priority(obj, 0, &attr); } /** * intel_prepare_plane_fb - Prepare fb for usage on plane * @plane: drm plane to prepare for * @new_state: the plane state being prepared * * Prepares a framebuffer for usage on a display plane. Generally this * involves pinning the underlying object and updating the frontbuffer tracking * bits. Some older platforms need special physical address handling for * cursor planes. * * Must be called with struct_mutex held. * * Returns 0 on success, negative error code on failure. */ int intel_prepare_plane_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(new_state->state); struct drm_i915_private *dev_priv = to_i915(plane->dev); struct drm_framebuffer *fb = new_state->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); int ret; if (old_obj) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(intel_state, to_intel_crtc(plane->state->crtc)); /* Big Hammer, we also need to ensure that any pending * MI_WAIT_FOR_EVENT inside a user batch buffer on the * current scanout is retired before unpinning the old * framebuffer. Note that we rely on userspace rendering * into the buffer attached to the pipe they are waiting * on. If not, userspace generates a GPU hang with IPEHR * point to the MI_WAIT_FOR_EVENT. * * This should only fail upon a hung GPU, in which case we * can safely continue. */ if (needs_modeset(crtc_state)) { ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, old_obj->base.resv, NULL, false, 0, GFP_KERNEL); if (ret < 0) return ret; } } if (new_state->fence) { /* explicit fencing */ ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready, new_state->fence, I915_FENCE_TIMEOUT, GFP_KERNEL); if (ret < 0) return ret; } if (!obj) return 0; ret = i915_gem_object_pin_pages(obj); if (ret) return ret; ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex); if (ret) { i915_gem_object_unpin_pages(obj); return ret; } ret = intel_plane_pin_fb(to_intel_plane_state(new_state)); mutex_unlock(&dev_priv->drm.struct_mutex); i915_gem_object_unpin_pages(obj); if (ret) return ret; fb_obj_bump_render_priority(obj); intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB); if (!new_state->fence) { /* implicit fencing */ struct dma_fence *fence; ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, obj->base.resv, NULL, false, I915_FENCE_TIMEOUT, GFP_KERNEL); if (ret < 0) return ret; fence = dma_resv_get_excl_rcu(obj->base.resv); if (fence) { add_rps_boost_after_vblank(new_state->crtc, fence); dma_fence_put(fence); } } else { add_rps_boost_after_vblank(new_state->crtc, new_state->fence); } /* * We declare pageflips to be interactive and so merit a small bias * towards upclocking to deliver the frame on time. By only changing * the RPS thresholds to sample more regularly and aim for higher * clocks we can hopefully deliver low power workloads (like kodi) * that are not quite steady state without resorting to forcing * maximum clocks following a vblank miss (see do_rps_boost()). */ if (!intel_state->rps_interactive) { intel_rps_mark_interactive(dev_priv, true); intel_state->rps_interactive = true; } return 0; } /** * intel_cleanup_plane_fb - Cleans up an fb after plane use * @plane: drm plane to clean up for * @old_state: the state from the previous modeset * * Cleans up a framebuffer that has just been removed from a plane. * * Must be called with struct_mutex held. */ void intel_cleanup_plane_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state->state); struct drm_i915_private *dev_priv = to_i915(plane->dev); if (intel_state->rps_interactive) { intel_rps_mark_interactive(dev_priv, false); intel_state->rps_interactive = false; } /* Should only be called after a successful intel_prepare_plane_fb()! */ mutex_lock(&dev_priv->drm.struct_mutex); intel_plane_unpin_fb(to_intel_plane_state(old_state)); mutex_unlock(&dev_priv->drm.struct_mutex); } int skl_max_scale(const struct intel_crtc_state *crtc_state, u32 pixel_format) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int max_scale, mult; int crtc_clock, max_dotclk, tmpclk1, tmpclk2; if (!crtc_state->base.enable) return DRM_PLANE_HELPER_NO_SCALING; crtc_clock = crtc_state->base.adjusted_mode.crtc_clock; max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk; if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) max_dotclk *= 2; if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock)) return DRM_PLANE_HELPER_NO_SCALING; /* * skl max scale is lower of: * close to 3 but not 3, -1 is for that purpose * or * cdclk/crtc_clock */ mult = is_planar_yuv_format(pixel_format) ? 2 : 3; tmpclk1 = (1 << 16) * mult - 1; tmpclk2 = (1 << 8) * ((max_dotclk << 8) / crtc_clock); max_scale = min(tmpclk1, tmpclk2); return max_scale; } static void intel_begin_crtc_commit(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool modeset = needs_modeset(new_crtc_state); /* Perform vblank evasion around commit operation */ intel_pipe_update_start(new_crtc_state); if (modeset) goto out; if (new_crtc_state->base.color_mgmt_changed || new_crtc_state->update_pipe) intel_color_commit(new_crtc_state); if (new_crtc_state->update_pipe) intel_update_pipe_config(old_crtc_state, new_crtc_state); else if (INTEL_GEN(dev_priv) >= 9) skl_detach_scalers(new_crtc_state); if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(new_crtc_state); out: if (dev_priv->display.atomic_update_watermarks) dev_priv->display.atomic_update_watermarks(state, new_crtc_state); } void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!IS_GEN(dev_priv, 2)) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) { enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); } } static void intel_finish_crtc_commit(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); intel_pipe_update_end(new_crtc_state); if (new_crtc_state->update_pipe && !needs_modeset(new_crtc_state) && old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); } /** * intel_plane_destroy - destroy a plane * @plane: plane to destroy * * Common destruction function for all types of planes (primary, cursor, * sprite). */ void intel_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); kfree(to_intel_plane(plane)); } static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, u32 format, u64 modifier) { switch (modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: break; default: return false; } switch (format) { case DRM_FORMAT_C8: case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB1555: case DRM_FORMAT_XRGB8888: return modifier == DRM_FORMAT_MOD_LINEAR || modifier == I915_FORMAT_MOD_X_TILED; default: return false; } } static bool i965_plane_format_mod_supported(struct drm_plane *_plane, u32 format, u64 modifier) { switch (modifier) { case DRM_FORMAT_MOD_LINEAR: case I915_FORMAT_MOD_X_TILED: break; default: return false; } switch (format) { case DRM_FORMAT_C8: case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_XBGR2101010: return modifier == DRM_FORMAT_MOD_LINEAR || modifier == I915_FORMAT_MOD_X_TILED; default: return false; } } static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, u32 format, u64 modifier) { return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888; } static const struct drm_plane_funcs i965_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = intel_plane_destroy, .atomic_duplicate_state = intel_plane_duplicate_state, .atomic_destroy_state = intel_plane_destroy_state, .format_mod_supported = i965_plane_format_mod_supported, }; static const struct drm_plane_funcs i8xx_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = intel_plane_destroy, .atomic_duplicate_state = intel_plane_duplicate_state, .atomic_destroy_state = intel_plane_destroy_state, .format_mod_supported = i8xx_plane_format_mod_supported, }; static int intel_legacy_cursor_update(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, u32 src_x, u32 src_y, u32 src_w, u32 src_h, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(crtc->dev); struct drm_plane_state *old_plane_state, *new_plane_state; struct intel_plane *intel_plane = to_intel_plane(plane); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->state); struct intel_crtc_state *new_crtc_state; int ret; /* * When crtc is inactive or there is a modeset pending, * wait for it to complete in the slowpath */ if (!crtc_state->base.active || needs_modeset(crtc_state) || crtc_state->update_pipe) goto slow; old_plane_state = plane->state; /* * Don't do an async update if there is an outstanding commit modifying * the plane. This prevents our async update's changes from getting * overridden by a previous synchronous update's state. */ if (old_plane_state->commit && !try_wait_for_completion(&old_plane_state->commit->hw_done)) goto slow; /* * If any parameters change that may affect watermarks, * take the slowpath. Only changing fb or position should be * in the fastpath. */ if (old_plane_state->crtc != crtc || old_plane_state->src_w != src_w || old_plane_state->src_h != src_h || old_plane_state->crtc_w != crtc_w || old_plane_state->crtc_h != crtc_h || !old_plane_state->fb != !fb) goto slow; new_plane_state = intel_plane_duplicate_state(plane); if (!new_plane_state) return -ENOMEM; new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(crtc)); if (!new_crtc_state) { ret = -ENOMEM; goto out_free; } drm_atomic_set_fb_for_plane(new_plane_state, fb); new_plane_state->src_x = src_x; new_plane_state->src_y = src_y; new_plane_state->src_w = src_w; new_plane_state->src_h = src_h; new_plane_state->crtc_x = crtc_x; new_plane_state->crtc_y = crtc_y; new_plane_state->crtc_w = crtc_w; new_plane_state->crtc_h = crtc_h; ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, to_intel_plane_state(old_plane_state), to_intel_plane_state(new_plane_state)); if (ret) goto out_free; ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex); if (ret) goto out_free; ret = intel_plane_pin_fb(to_intel_plane_state(new_plane_state)); if (ret) goto out_unlock; intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_FLIP); intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->fb), to_intel_frontbuffer(fb), intel_plane->frontbuffer_bit); /* Swap plane state */ plane->state = new_plane_state; /* * We cannot swap crtc_state as it may be in use by an atomic commit or * page flip that's running simultaneously. If we swap crtc_state and * destroy the old state, we will cause a use-after-free there. * * Only update active_planes, which is needed for our internal * bookkeeping. Either value will do the right thing when updating * planes atomically. If the cursor was part of the atomic update then * we would have taken the slowpath. */ crtc_state->active_planes = new_crtc_state->active_planes; if (plane->state->visible) intel_update_plane(intel_plane, crtc_state, to_intel_plane_state(plane->state)); else intel_disable_plane(intel_plane, crtc_state); intel_plane_unpin_fb(to_intel_plane_state(old_plane_state)); out_unlock: mutex_unlock(&dev_priv->drm.struct_mutex); out_free: if (new_crtc_state) intel_crtc_destroy_state(crtc, &new_crtc_state->base); if (ret) intel_plane_destroy_state(plane, new_plane_state); else intel_plane_destroy_state(plane, old_plane_state); return ret; slow: return drm_atomic_helper_update_plane(plane, crtc, fb, crtc_x, crtc_y, crtc_w, crtc_h, src_x, src_y, src_w, src_h, ctx); } static const struct drm_plane_funcs intel_cursor_plane_funcs = { .update_plane = intel_legacy_cursor_update, .disable_plane = drm_atomic_helper_disable_plane, .destroy = intel_plane_destroy, .atomic_duplicate_state = intel_plane_duplicate_state, .atomic_destroy_state = intel_plane_destroy_state, .format_mod_supported = intel_cursor_format_mod_supported, }; static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { if (!HAS_FBC(dev_priv)) return false; if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return i9xx_plane == PLANE_A; /* tied to pipe A */ else if (IS_IVYBRIDGE(dev_priv)) return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || i9xx_plane == PLANE_C; else if (INTEL_GEN(dev_priv) >= 4) return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; else return i9xx_plane == PLANE_A; } static struct intel_plane * intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_plane *plane; const struct drm_plane_funcs *plane_funcs; unsigned int supported_rotations; unsigned int possible_crtcs; const u64 *modifiers; const u32 *formats; int num_formats; int ret; if (INTEL_GEN(dev_priv) >= 9) return skl_universal_plane_create(dev_priv, pipe, PLANE_PRIMARY); plane = intel_plane_alloc(); if (IS_ERR(plane)) return plane; plane->pipe = pipe; /* * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS * port is hooked to pipe B. Hence we want plane A feeding pipe B. */ if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) plane->i9xx_plane = (enum i9xx_plane_id) !pipe; else plane->i9xx_plane = (enum i9xx_plane_id) pipe; plane->id = PLANE_PRIMARY; plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); if (plane->has_fbc) { struct intel_fbc *fbc = &dev_priv->fbc; fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; } if (INTEL_GEN(dev_priv) >= 4) { formats = i965_primary_formats; num_formats = ARRAY_SIZE(i965_primary_formats); modifiers = i9xx_format_modifiers; plane->max_stride = i9xx_plane_max_stride; plane->update_plane = i9xx_update_plane; plane->disable_plane = i9xx_disable_plane; plane->get_hw_state = i9xx_plane_get_hw_state; plane->check_plane = i9xx_plane_check; plane_funcs = &i965_plane_funcs; } else { formats = i8xx_primary_formats; num_formats = ARRAY_SIZE(i8xx_primary_formats); modifiers = i9xx_format_modifiers; plane->max_stride = i9xx_plane_max_stride; plane->update_plane = i9xx_update_plane; plane->disable_plane = i9xx_disable_plane; plane->get_hw_state = i9xx_plane_get_hw_state; plane->check_plane = i9xx_plane_check; plane_funcs = &i8xx_plane_funcs; } possible_crtcs = BIT(pipe); if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, possible_crtcs, plane_funcs, formats, num_formats, modifiers, DRM_PLANE_TYPE_PRIMARY, "primary %c", pipe_name(pipe)); else ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, possible_crtcs, plane_funcs, formats, num_formats, modifiers, DRM_PLANE_TYPE_PRIMARY, "plane %c", plane_name(plane->i9xx_plane)); if (ret) goto fail; if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { supported_rotations = DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | DRM_MODE_REFLECT_X; } else if (INTEL_GEN(dev_priv) >= 4) { supported_rotations = DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; } else { supported_rotations = DRM_MODE_ROTATE_0; } if (INTEL_GEN(dev_priv) >= 4) drm_plane_create_rotation_property(&plane->base, DRM_MODE_ROTATE_0, supported_rotations); drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); return plane; fail: intel_plane_free(plane); return ERR_PTR(ret); } static struct intel_plane * intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) { unsigned int possible_crtcs; struct intel_plane *cursor; int ret; cursor = intel_plane_alloc(); if (IS_ERR(cursor)) return cursor; cursor->pipe = pipe; cursor->i9xx_plane = (enum i9xx_plane_id) pipe; cursor->id = PLANE_CURSOR; cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { cursor->max_stride = i845_cursor_max_stride; cursor->update_plane = i845_update_cursor; cursor->disable_plane = i845_disable_cursor; cursor->get_hw_state = i845_cursor_get_hw_state; cursor->check_plane = i845_check_cursor; } else { cursor->max_stride = i9xx_cursor_max_stride; cursor->update_plane = i9xx_update_cursor; cursor->disable_plane = i9xx_disable_cursor; cursor->get_hw_state = i9xx_cursor_get_hw_state; cursor->check_plane = i9xx_check_cursor; } cursor->cursor.base = ~0; cursor->cursor.cntl = ~0; if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) cursor->cursor.size = ~0; possible_crtcs = BIT(pipe); ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, possible_crtcs, &intel_cursor_plane_funcs, intel_cursor_formats, ARRAY_SIZE(intel_cursor_formats), cursor_format_modifiers, DRM_PLANE_TYPE_CURSOR, "cursor %c", pipe_name(pipe)); if (ret) goto fail; if (INTEL_GEN(dev_priv) >= 4) drm_plane_create_rotation_property(&cursor->base, DRM_MODE_ROTATE_0, DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180); drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); return cursor; fail: intel_plane_free(cursor); return ERR_PTR(ret); } static void intel_crtc_init_scalers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i; crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe]; if (!crtc->num_scalers) return; for (i = 0; i < crtc->num_scalers; i++) { struct intel_scaler *scaler = &scaler_state->scalers[i]; scaler->in_use = 0; scaler->mode = 0; } scaler_state->scaler_id = -1; } #define INTEL_CRTC_FUNCS \ .gamma_set = drm_atomic_helper_legacy_gamma_set, \ .set_config = drm_atomic_helper_set_config, \ .destroy = intel_crtc_destroy, \ .page_flip = drm_atomic_helper_page_flip, \ .atomic_duplicate_state = intel_crtc_duplicate_state, \ .atomic_destroy_state = intel_crtc_destroy_state, \ .set_crc_source = intel_crtc_set_crc_source, \ .verify_crc_source = intel_crtc_verify_crc_source, \ .get_crc_sources = intel_crtc_get_crc_sources static const struct drm_crtc_funcs bdw_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = bdw_enable_vblank, .disable_vblank = bdw_disable_vblank, }; static const struct drm_crtc_funcs ilk_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = ilk_enable_vblank, .disable_vblank = ilk_disable_vblank, }; static const struct drm_crtc_funcs g4x_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = i965_enable_vblank, .disable_vblank = i965_disable_vblank, }; static const struct drm_crtc_funcs i965_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i965_enable_vblank, .disable_vblank = i965_disable_vblank, }; static const struct drm_crtc_funcs i945gm_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i945gm_enable_vblank, .disable_vblank = i945gm_disable_vblank, }; static const struct drm_crtc_funcs i915_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i8xx_enable_vblank, .disable_vblank = i8xx_disable_vblank, }; static const struct drm_crtc_funcs i8xx_crtc_funcs = { INTEL_CRTC_FUNCS, /* no hw vblank counter */ .enable_vblank = i8xx_enable_vblank, .disable_vblank = i8xx_disable_vblank, }; static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) { const struct drm_crtc_funcs *funcs; struct intel_crtc *intel_crtc; struct intel_crtc_state *crtc_state = NULL; struct intel_plane *primary = NULL; struct intel_plane *cursor = NULL; int sprite, ret; intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); if (!intel_crtc) return -ENOMEM; crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); if (!crtc_state) { ret = -ENOMEM; goto fail; } __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base); intel_crtc->config = crtc_state; primary = intel_primary_plane_create(dev_priv, pipe); if (IS_ERR(primary)) { ret = PTR_ERR(primary); goto fail; } intel_crtc->plane_ids_mask |= BIT(primary->id); for_each_sprite(dev_priv, pipe, sprite) { struct intel_plane *plane; plane = intel_sprite_plane_create(dev_priv, pipe, sprite); if (IS_ERR(plane)) { ret = PTR_ERR(plane); goto fail; } intel_crtc->plane_ids_mask |= BIT(plane->id); } cursor = intel_cursor_plane_create(dev_priv, pipe); if (IS_ERR(cursor)) { ret = PTR_ERR(cursor); goto fail; } intel_crtc->plane_ids_mask |= BIT(cursor->id); if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) funcs = &g4x_crtc_funcs; else if (IS_GEN(dev_priv, 4)) funcs = &i965_crtc_funcs; else if (IS_I945GM(dev_priv)) funcs = &i945gm_crtc_funcs; else if (IS_GEN(dev_priv, 3)) funcs = &i915_crtc_funcs; else funcs = &i8xx_crtc_funcs; } else { if (INTEL_GEN(dev_priv) >= 8) funcs = &bdw_crtc_funcs; else funcs = &ilk_crtc_funcs; } ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base, &primary->base, &cursor->base, funcs, "pipe %c", pipe_name(pipe)); if (ret) goto fail; intel_crtc->pipe = pipe; /* initialize shared scalers */ intel_crtc_init_scalers(intel_crtc, crtc_state); BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || dev_priv->pipe_to_crtc_mapping[pipe] != NULL); dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc; if (INTEL_GEN(dev_priv) < 9) { enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc; } drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); intel_color_init(intel_crtc); WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); return 0; fail: /* * drm_mode_config_cleanup() will free up any * crtcs/planes already initialized. */ kfree(crtc_state); kfree(intel_crtc); return ret; } int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_crtc *drmmode_crtc; struct intel_crtc *crtc; drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); if (!drmmode_crtc) return -ENOENT; crtc = to_intel_crtc(drmmode_crtc); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static int intel_encoder_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; int index_mask = 0; int entry = 0; for_each_intel_encoder(dev, source_encoder) { if (encoders_cloneable(encoder, source_encoder)) index_mask |= (1 << entry); entry++; } return index_mask; } static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) { if (!IS_MOBILE(dev_priv)) return false; if ((I915_READ(DP_A) & DP_DETECTED) == 0) return false; if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) return false; return true; } static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) return false; if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) return false; if (HAS_PCH_LPT_H(dev_priv) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) return false; /* DDI E can't be used if DDI A requires 4 lanes */ if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) return false; if (!dev_priv->vbt.int_crt_support) return false; return true; } void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) { int pps_num; int pps_idx; if (HAS_DDI(dev_priv)) return; /* * This w/a is needed at least on CPT/PPT, but to be sure apply it * everywhere where registers can be write protected. */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) pps_num = 2; else pps_num = 1; for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { u32 val = I915_READ(PP_CONTROL(pps_idx)); val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; I915_WRITE(PP_CONTROL(pps_idx), val); } } static void intel_pps_init(struct drm_i915_private *dev_priv) { if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) dev_priv->pps_mmio_base = PCH_PPS_BASE; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->pps_mmio_base = VLV_PPS_BASE; else dev_priv->pps_mmio_base = PPS_BASE; intel_pps_unlock_regs_wa(dev_priv); } static void intel_setup_outputs(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; bool dpd_is_edp = false; intel_pps_init(dev_priv); if (!HAS_DISPLAY(dev_priv)) return; if (INTEL_GEN(dev_priv) >= 12) { /* TODO: initialize TC ports as well */ intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); icl_dsi_init(dev_priv); } else if (IS_ELKHARTLAKE(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); icl_dsi_init(dev_priv); } else if (IS_GEN(dev_priv, 11)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); intel_ddi_init(dev_priv, PORT_E); /* * On some ICL SKUs port F is not present. No strap bits for * this, so rely on VBT. * Work around broken VBTs on SKUs known to have no port F. */ if (IS_ICL_WITH_PORT_F(dev_priv) && intel_bios_is_port_present(dev_priv, PORT_F)) intel_ddi_init(dev_priv, PORT_F); icl_dsi_init(dev_priv); } else if (IS_GEN9_LP(dev_priv)) { /* * FIXME: Broxton doesn't support port detection via the * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to * detect the ports. */ intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); vlv_dsi_init(dev_priv); } else if (HAS_DDI(dev_priv)) { int found; if (intel_ddi_crt_present(dev_priv)) intel_crt_init(dev_priv); /* * Haswell uses DDI functions to detect digital outputs. * On SKL pre-D0 the strap isn't connected, so we assume * it's there. */ found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; /* WaIgnoreDDIAStrap: skl */ if (found || IS_GEN9_BC(dev_priv)) intel_ddi_init(dev_priv, PORT_A); /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP * register */ found = I915_READ(SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev_priv, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev_priv, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev_priv, PORT_D); if (found & SFUSE_STRAP_DDIF_DETECTED) intel_ddi_init(dev_priv, PORT_F); /* * On SKL we don't have a way to detect DDI-E so we rely on VBT. */ if (IS_GEN9_BC(dev_priv) && intel_bios_is_port_present(dev_priv, PORT_E)) intel_ddi_init(dev_priv, PORT_E); } else if (HAS_PCH_SPLIT(dev_priv)) { int found; /* * intel_edp_init_connector() depends on this completing first, * to prevent the registration of both eDP and LVDS and the * incorrect sharing of the PPS. */ intel_lvds_init(dev_priv); intel_crt_init(dev_priv); dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); if (ilk_has_edp_a(dev_priv)) intel_dp_init(dev_priv, DP_A, PORT_A); if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); if (!found) intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev_priv, PCH_DP_B, PORT_B); } if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); if (I915_READ(PCH_DP_C) & DP_DETECTED) intel_dp_init(dev_priv, PCH_DP_C, PORT_C); if (I915_READ(PCH_DP_D) & DP_DETECTED) intel_dp_init(dev_priv, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { bool has_edp, has_port; if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) intel_crt_init(dev_priv); /* * The DP_DETECTED bit is the latched state of the DDC * SDA pin at boot. However since eDP doesn't require DDC * (no way to plug in a DP->HDMI dongle) the DDC pins for * eDP ports may have been muxed to an alternate function. * Thus we can't rely on the DP_DETECTED bit alone to detect * eDP ports. Consult the VBT as well as DP_DETECTED to * detect eDP ports. * * Sadly the straps seem to be missing sometimes even for HDMI * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap * and VBT for the presence of the port. Additionally we can't * trust the port type the VBT declares as we've seen at least * HDMI ports that the VBT claim are DP or eDP. */ has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); has_port = intel_bios_is_port_present(dev_priv, PORT_B); if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); has_port = intel_bios_is_port_present(dev_priv, PORT_C); if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); if (IS_CHERRYVIEW(dev_priv)) { /* * eDP not supported on port D, * so no need to worry about it */ has_port = intel_bios_is_port_present(dev_priv, PORT_D); if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) intel_dp_init(dev_priv, CHV_DP_D, PORT_D); if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); } vlv_dsi_init(dev_priv); } else if (IS_PINEVIEW(dev_priv)) { intel_lvds_init(dev_priv); intel_crt_init(dev_priv); } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { bool found = false; if (IS_MOBILE(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOB\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); if (!found && IS_G4X(dev_priv)) { DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); } if (!found && IS_G4X(dev_priv)) intel_dp_init(dev_priv, DP_B, PORT_B); } /* Before G4X SDVOC doesn't have its own detect register */ if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOC\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); } if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { if (IS_G4X(dev_priv)) { DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); } if (IS_G4X(dev_priv)) intel_dp_init(dev_priv, DP_C, PORT_C); } if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED)) intel_dp_init(dev_priv, DP_D, PORT_D); if (SUPPORTS_TV(dev_priv)) intel_tv_init(dev_priv); } else if (IS_GEN(dev_priv, 2)) { if (IS_I85X(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); intel_dvo_init(dev_priv); } intel_psr_init(dev_priv); for_each_intel_encoder(&dev_priv->drm, encoder) { encoder->base.possible_crtcs = encoder->crtc_mask; encoder->base.possible_clones = intel_encoder_clones(encoder); } intel_init_pch_refclk(dev_priv); drm_helper_move_panel_connectors_to_head(&dev_priv->drm); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); intel_frontbuffer_put(intel_fb->frontbuffer); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); if (obj->userptr.mm) { DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); return -EINVAL; } return drm_gem_handle_create(file, &obj->base, handle); } static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, struct drm_file *file, unsigned flags, unsigned color, struct drm_clip_rect *clips, unsigned num_clips) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); i915_gem_object_flush_if_display(obj); intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); return 0; } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, .dirty = intel_user_framebuffer_dirty, }; static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct drm_framebuffer *fb = &intel_fb->base; u32 max_stride; unsigned int tiling, stride; int ret = -EINVAL; int i; intel_fb->frontbuffer = intel_frontbuffer_get(obj); if (!intel_fb->frontbuffer) return -ENOMEM; i915_gem_object_lock(obj); tiling = i915_gem_object_get_tiling(obj); stride = i915_gem_object_get_stride(obj); i915_gem_object_unlock(obj); if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { /* * If there's a fence, enforce that * the fb modifier and tiling mode match. */ if (tiling != I915_TILING_NONE && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n"); goto err; } } else { if (tiling == I915_TILING_X) { mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; } else if (tiling == I915_TILING_Y) { DRM_DEBUG_KMS("No Y tiling for legacy addfb\n"); goto err; } } if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { struct drm_format_name_buf format_name; DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n", drm_get_format_name(mode_cmd->pixel_format, &format_name), mode_cmd->modifier[0]); goto err; } /* * gen2/3 display engine uses the fence if present, * so the tiling mode must match the fb modifier exactly. */ if (INTEL_GEN(dev_priv) < 4 && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n"); goto err; } max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, mode_cmd->modifier[0]); if (mode_cmd->pitches[0] > max_stride) { DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n", mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? "tiled" : "linear", mode_cmd->pitches[0], max_stride); goto err; } /* * If there's a fence, enforce that * the fb pitch and fence stride match. */ if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n", mode_cmd->pitches[0], stride); goto err; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) goto err; drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); for (i = 0; i < fb->format->num_planes; i++) { u32 stride_alignment; if (mode_cmd->handles[i] != mode_cmd->handles[0]) { DRM_DEBUG_KMS("bad plane %d handle\n", i); goto err; } stride_alignment = intel_fb_stride_alignment(fb, i); /* * Display WA #0531: skl,bxt,kbl,glk * * Render decompression and plane width > 3840 * combined with horizontal panning requires the * plane stride to be a multiple of 4. We'll just * require the entire fb to accommodate that to avoid * potential runtime errors at plane configuration time. */ if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 && is_ccs_modifier(fb->modifier)) stride_alignment *= 4; if (fb->pitches[i] & (stride_alignment - 1)) { DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n", i, fb->pitches[i], stride_alignment); goto err; } fb->obj[i] = &obj->base; } ret = intel_fill_fb_info(dev_priv, fb); if (ret) goto err; ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); if (ret) { DRM_ERROR("framebuffer init failed %d\n", ret); goto err; } return 0; err: intel_frontbuffer_put(intel_fb->frontbuffer); return ret; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, const struct drm_mode_fb_cmd2 *user_mode_cmd) { struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); if (!obj) return ERR_PTR(-ENOENT); fb = intel_framebuffer_create(obj, &mode_cmd); i915_gem_object_put(obj); return fb; } static void intel_atomic_state_free(struct drm_atomic_state *state) { struct intel_atomic_state *intel_state = to_intel_atomic_state(state); drm_atomic_state_default_release(state); i915_sw_fence_fini(&intel_state->commit_ready); kfree(state); } static enum drm_mode_status intel_mode_valid(struct drm_device *dev, const struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = to_i915(dev); int hdisplay_max, htotal_max; int vdisplay_max, vtotal_max; /* * Can't reject DBLSCAN here because Xorg ddxen can add piles * of DBLSCAN modes to the output's mode list when they detect * the scaling mode property on the connector. And they don't * ask the kernel to validate those modes in any way until * modeset time at which point the client gets a protocol error. * So in order to not upset those clients we silently ignore the * DBLSCAN flag on such connectors. For other connectors we will * reject modes with the DBLSCAN flag in encoder->compute_config(). * And we always reject DBLSCAN modes in connector->mode_valid() * as we never want such modes on the connector's mode list. */ if (mode->vscan > 1) return MODE_NO_VSCAN; if (mode->flags & DRM_MODE_FLAG_HSKEW) return MODE_H_ILLEGAL; if (mode->flags & (DRM_MODE_FLAG_CSYNC | DRM_MODE_FLAG_NCSYNC | DRM_MODE_FLAG_PCSYNC)) return MODE_HSYNC; if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX | DRM_MODE_FLAG_CLKDIV2)) return MODE_BAD; if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else if (INTEL_GEN(dev_priv) >= 3) { hdisplay_max = 4096; vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else { hdisplay_max = 2048; vdisplay_max = 2048; htotal_max = 4096; vtotal_max = 4096; } if (mode->hdisplay > hdisplay_max || mode->hsync_start > htotal_max || mode->hsync_end > htotal_max || mode->htotal > htotal_max) return MODE_H_ILLEGAL; if (mode->vdisplay > vdisplay_max || mode->vsync_start > vtotal_max || mode->vsync_end > vtotal_max || mode->vtotal > vtotal_max) return MODE_V_ILLEGAL; return MODE_OK; } static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .get_format_info = intel_get_format_info, .output_poll_changed = intel_fbdev_output_poll_changed, .mode_valid = intel_mode_valid, .atomic_check = intel_atomic_check, .atomic_commit = intel_atomic_commit, .atomic_state_alloc = intel_atomic_state_alloc, .atomic_state_clear = intel_atomic_state_clear, .atomic_state_free = intel_atomic_state_free, }; /** * intel_init_display_hooks - initialize the display modesetting hooks * @dev_priv: device private */ void intel_init_display_hooks(struct drm_i915_private *dev_priv) { intel_init_cdclk_hooks(dev_priv); if (INTEL_GEN(dev_priv) >= 9) { dev_priv->display.get_pipe_config = haswell_get_pipe_config; dev_priv->display.get_initial_plane_config = skylake_get_initial_plane_config; dev_priv->display.crtc_compute_clock = haswell_crtc_compute_clock; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; } else if (HAS_DDI(dev_priv)) { dev_priv->display.get_pipe_config = haswell_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = haswell_crtc_compute_clock; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; } else if (HAS_PCH_SPLIT(dev_priv)) { dev_priv->display.get_pipe_config = ironlake_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = ironlake_crtc_compute_clock; dev_priv->display.crtc_enable = ironlake_crtc_enable; dev_priv->display.crtc_disable = ironlake_crtc_disable; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_G4X(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (IS_PINEVIEW(dev_priv)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else if (!IS_GEN(dev_priv, 2)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } else { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; } if (IS_GEN(dev_priv, 5)) { dev_priv->display.fdi_link_train = ironlake_fdi_link_train; } else if (IS_GEN(dev_priv, 6)) { dev_priv->display.fdi_link_train = gen6_fdi_link_train; } else if (IS_IVYBRIDGE(dev_priv)) { /* FIXME: detect B0+ stepping and use auto training */ dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { dev_priv->display.fdi_link_train = hsw_fdi_link_train; } if (INTEL_GEN(dev_priv) >= 9) dev_priv->display.update_crtcs = skl_update_crtcs; else dev_priv->display.update_crtcs = intel_update_crtcs; } static i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return VLV_VGACNTRL; else if (INTEL_GEN(dev_priv) >= 5) return CPU_VGACNTRL; else return VGACNTRL; } /* Disable the VGA plane that we never use */ static void i915_disable_vga(struct drm_i915_private *dev_priv) { struct pci_dev *pdev = dev_priv->drm.pdev; u8 sr1; i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv); /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO); outb(SR01, VGA_SR_INDEX); sr1 = inb(VGA_SR_DATA); outb(sr1 | 1<<5, VGA_SR_DATA); vga_put(pdev, VGA_RSRC_LEGACY_IO); udelay(300); I915_WRITE(vga_reg, VGA_DISP_DISABLE); POSTING_READ(vga_reg); } void intel_modeset_init_hw(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); intel_update_cdclk(dev_priv); intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw; } /* * Calculate what we think the watermarks should be for the state we've read * out of the hardware and then immediately program those watermarks so that * we ensure the hardware settings match our internal state. * * We can calculate what we think WM's should be by creating a duplicate of the * current state (which was constructed during hardware readout) and running it * through the atomic check code to calculate new watermark values in the * state object. */ static void sanitize_watermarks(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; struct intel_atomic_state *intel_state; struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; struct drm_modeset_acquire_ctx ctx; int ret; int i; /* Only supported on platforms that use atomic watermark design */ if (!dev_priv->display.optimize_watermarks) return; /* * We need to hold connection_mutex before calling duplicate_state so * that the connector loop is protected. */ drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } else if (WARN_ON(ret)) { goto fail; } state = drm_atomic_helper_duplicate_state(dev, &ctx); if (WARN_ON(IS_ERR(state))) goto fail; intel_state = to_intel_atomic_state(state); /* * Hardware readout is the only time we don't want to calculate * intermediate watermarks (since we don't trust the current * watermarks). */ if (!HAS_GMCH(dev_priv)) intel_state->skip_intermediate_wm = true; ret = intel_atomic_check(dev, state); if (ret) { /* * If we fail here, it means that the hardware appears to be * programmed in a way that shouldn't be possible, given our * understanding of watermark requirements. This might mean a * mistake in the hardware readout code or a mistake in the * watermark calculations for a given platform. Raise a WARN * so that this is noticeable. * * If this actually happens, we'll have to just leave the * BIOS-programmed watermarks untouched and hope for the best. */ WARN(true, "Could not determine valid watermarks for inherited state\n"); goto put_state; } /* Write calculated watermark values back */ for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { crtc_state->wm.need_postvbl_update = true; dev_priv->display.optimize_watermarks(intel_state, crtc_state); to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; } put_state: drm_atomic_state_put(state); fail: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) { if (IS_GEN(dev_priv, 5)) { u32 fdi_pll_clk = I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { dev_priv->fdi_pll_freq = 270000; } else { return; } DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); } static int intel_initial_commit(struct drm_device *dev) { struct drm_atomic_state *state = NULL; struct drm_modeset_acquire_ctx ctx; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int ret = 0; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, 0); retry: state->acquire_ctx = &ctx; drm_for_each_crtc(crtc, dev) { crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } if (crtc_state->active) { ret = drm_atomic_add_affected_planes(state, crtc); if (ret) goto out; /* * FIXME hack to force a LUT update to avoid the * plane update forcing the pipe gamma on without * having a proper LUT loaded. Remove once we * have readout for pipe gamma enable. */ crtc_state->color_mgmt_changed = true; } } ret = drm_atomic_commit(state); out: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } int intel_modeset_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe; struct intel_crtc *crtc; int ret; dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); drm_mode_config_init(dev); ret = intel_bw_init(dev_priv); if (ret) return ret; dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.preferred_depth = 24; dev->mode_config.prefer_shadow = 1; dev->mode_config.allow_fb_modifiers = true; dev->mode_config.funcs = &intel_mode_funcs; init_llist_head(&dev_priv->atomic_helper.free_list); INIT_WORK(&dev_priv->atomic_helper.free_work, intel_atomic_helper_free_state_worker); intel_init_quirks(dev_priv); intel_fbc_init(dev_priv); intel_init_pm(dev_priv); /* * There may be no VBT; and if the BIOS enabled SSC we can * just keep using it to avoid unnecessary flicker. Whereas if the * BIOS isn't using it, don't assume it will work even if the VBT * indicates as much. */ if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & DREF_SSC1_ENABLE); if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n", bios_lvds_use_ssc ? "en" : "dis", dev_priv->vbt.lvds_use_ssc ? "en" : "dis"); dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; } } /* * Maximum framebuffer dimensions, chosen to match * the maximum render engine surface size on gen4+. */ if (INTEL_GEN(dev_priv) >= 7) { dev->mode_config.max_width = 16384; dev->mode_config.max_height = 16384; } else if (INTEL_GEN(dev_priv) >= 4) { dev->mode_config.max_width = 8192; dev->mode_config.max_height = 8192; } else if (IS_GEN(dev_priv, 3)) { dev->mode_config.max_width = 4096; dev->mode_config.max_height = 4096; } else { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512; dev->mode_config.cursor_height = 1023; } else if (IS_GEN(dev_priv, 2)) { dev->mode_config.cursor_width = 64; dev->mode_config.cursor_height = 64; } else { dev->mode_config.cursor_width = 256; dev->mode_config.cursor_height = 256; } DRM_DEBUG_KMS("%d display pipe%s available.\n", INTEL_INFO(dev_priv)->num_pipes, INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : ""); for_each_pipe(dev_priv, pipe) { ret = intel_crtc_init(dev_priv, pipe); if (ret) { drm_mode_config_cleanup(dev); return ret; } } intel_shared_dpll_init(dev); intel_update_fdi_pll_freq(dev_priv); intel_update_czclk(dev_priv); intel_modeset_init_hw(dev); intel_hdcp_component_init(dev_priv); if (dev_priv->max_cdclk_freq == 0) intel_update_max_cdclk(dev_priv); /* Just disable it once at startup */ i915_disable_vga(dev_priv); intel_setup_outputs(dev_priv); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); drm_modeset_unlock_all(dev); for_each_intel_crtc(dev, crtc) { struct intel_initial_plane_config plane_config = {}; if (!crtc->active) continue; /* * Note that reserving the BIOS fb up front prevents us * from stuffing other stolen allocations like the ring * on top. This prevents some ugliness at boot time, and * can even allow for smooth boot transitions if the BIOS * fb is large enough for the active pipe configuration. */ dev_priv->display.get_initial_plane_config(crtc, &plane_config); /* * If the fb is shared between multiple heads, we'll * just get the first one. */ intel_find_initial_plane_obj(crtc, &plane_config); } /* * Make sure hardware watermarks really match the state we read out. * Note that we need to do this after reconstructing the BIOS fb's * since the watermark calculation done here will use pstate->fb. */ if (!HAS_GMCH(dev_priv)) sanitize_watermarks(dev); /* * Force all active planes to recompute their states. So that on * mode_setcrtc after probe, all the intel_plane_state variables * are already calculated and there is no assert_plane warnings * during bootup. */ ret = intel_initial_commit(dev); if (ret) DRM_DEBUG_KMS("Initial commit in probe failed.\n"); return 0; } void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); /* 640x480@60Hz, ~25175 kHz */ struct dpll clock = { .m1 = 18, .m2 = 7, .p1 = 13, .p2 = 4, .n = 2, }; u32 dpll, fp; int i; WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154); DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n", pipe_name(pipe), clock.vco, clock.dot); fp = i9xx_dpll_compute_fp(&clock); dpll = DPLL_DVO_2X_MODE | DPLL_VGA_MODE_DIS | ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | PLL_P2_DIVIDE_BY_4 | PLL_REF_INPUT_DREFCLK | DPLL_VCO_ENABLE; I915_WRITE(FP0(pipe), fp); I915_WRITE(FP1(pipe), fp); I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); I915_WRITE(DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(DPLL(pipe)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(DPLL(pipe), dpll); /* We do this three times for luck */ for (i = 0; i < 3 ; i++) { I915_WRITE(DPLL(pipe), dpll); POSTING_READ(DPLL(pipe)); udelay(150); /* wait for warmup */ } I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); POSTING_READ(PIPECONF(pipe)); intel_wait_for_pipe_scanline_moving(crtc); } void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n", pipe_name(pipe)); WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE); WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE); WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE); WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE); WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE); I915_WRITE(PIPECONF(pipe), 0); POSTING_READ(PIPECONF(pipe)); intel_wait_for_pipe_scanline_stopped(crtc); I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); POSTING_READ(DPLL(pipe)); } static void intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; if (INTEL_GEN(dev_priv) >= 4) return; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct intel_crtc *plane_crtc; enum pipe pipe; if (!plane->get_hw_state(plane, &pipe)) continue; if (pipe == crtc->pipe) continue; DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", plane->base.base.id, plane->base.name); plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); intel_plane_disable_noatomic(plane_crtc, plane); } } static bool intel_crtc_has_encoders(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, &crtc->base, encoder) return true; return false; } static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_connector *connector; for_each_connector_on_encoder(dev, &encoder->base, connector) return connector; return NULL; } static bool has_pch_trancoder(struct drm_i915_private *dev_priv, enum pipe pch_transcoder) { return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); } static void intel_sanitize_crtc(struct intel_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; /* Clear any frame start delays used for debugging left by the BIOS */ if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) { i915_reg_t reg = PIPECONF(cpu_transcoder); I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); } if (crtc_state->base.active) { struct intel_plane *plane; /* Disable everything but the primary plane */ for_each_intel_plane_on_crtc(dev, crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); if (plane_state->base.visible && plane->base.type != DRM_PLANE_TYPE_PRIMARY) intel_plane_disable_noatomic(crtc, plane); } /* * Disable any background color set by the BIOS, but enable the * gamma and CSC to match how we program our planes. */ if (INTEL_GEN(dev_priv) >= 9) I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe), SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); } /* Adjust the state of the output pipe according to whether we * have active connectors/encoders. */ if (crtc_state->base.active && !intel_crtc_has_encoders(crtc)) intel_crtc_disable_noatomic(&crtc->base, ctx); if (crtc_state->base.active || HAS_GMCH(dev_priv)) { /* * We start out with underrun reporting disabled to avoid races. * For correct bookkeeping mark this on active crtcs. * * Also on gmch platforms we dont have any hardware bits to * disable the underrun reporting. Which means we need to start * out with underrun reporting disabled also on inactive pipes, * since otherwise we'll complain about the garbage we read when * e.g. coming up after runtime pm. * * No protection against concurrent access is required - at * worst a fifo underrun happens which also sets this to false. */ crtc->cpu_fifo_underrun_disabled = true; /* * We track the PCH trancoder underrun reporting state * within the crtc. With crtc for pipe A housing the underrun * reporting state for PCH transcoder A, crtc for pipe B housing * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, * and marking underrun reporting as disabled for the non-existing * PCH transcoders B and C would prevent enabling the south * error interrupt (see cpt_can_enable_serr_int()). */ if (has_pch_trancoder(dev_priv, crtc->pipe)) crtc->pch_fifo_underrun_disabled = true; } } static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); /* * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram * the hardware when a high res displays plugged in. DPLL P * divider is zero, and the pipe timings are bonkers. We'll * try to disable everything in that case. * * FIXME would be nice to be able to sanitize this state * without several WARNs, but for now let's take the easy * road. */ return IS_GEN(dev_priv, 6) && crtc_state->base.active && crtc_state->shared_dpll && crtc_state->port_clock == 0; } static void intel_sanitize_encoder(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_connector *connector; struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); struct intel_crtc_state *crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; /* We need to check both for a crtc link (meaning that the * encoder is active and trying to read from a pipe) and the * pipe itself being active. */ bool has_active_crtc = crtc_state && crtc_state->base.active; if (crtc_state && has_bogus_dpll_config(crtc_state)) { DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n", pipe_name(crtc->pipe)); has_active_crtc = false; } connector = intel_encoder_find_connector(encoder); if (connector && !has_active_crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", encoder->base.base.id, encoder->base.name); /* Connector is active, but has no active pipe. This is * fallout from our resume register restoring. Disable * the encoder manually again. */ if (crtc_state) { struct drm_encoder *best_encoder; DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", encoder->base.base.id, encoder->base.name); /* avoid oopsing in case the hooks consult best_encoder */ best_encoder = connector->base.state->best_encoder; connector->base.state->best_encoder = &encoder->base; if (encoder->disable) encoder->disable(encoder, crtc_state, connector->base.state); if (encoder->post_disable) encoder->post_disable(encoder, crtc_state, connector->base.state); connector->base.state->best_encoder = best_encoder; } encoder->base.crtc = NULL; /* Inconsistent output/port/pipe state happens presumably due to * a bug in one of the get_hw_state functions. Or someplace else * in our code, like the register restore mess on resume. Clamp * things to off as a safer default. */ connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } /* notify opregion of the sanitized encoder state */ intel_opregion_notify_encoder(encoder, connector && has_active_crtc); if (INTEL_GEN(dev_priv) >= 11) icl_sanitize_encoder_pll_mapping(encoder); } void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv) { i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv); if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); i915_disable_vga(dev_priv); } } void i915_redisable_vga(struct drm_i915_private *dev_priv) { intel_wakeref_t wakeref; /* * This function can be called both from intel_modeset_setup_hw_state or * at a very early point in our resume sequence, where the power well * structures are not yet restored. Since this function is at a very * paranoid "someone might have enabled VGA while we were not looking" * level, just check if the power well is enabled instead of trying to * follow the "don't touch the power well if we don't need it" policy * the rest of the driver uses. */ wakeref = intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA); if (!wakeref) return; i915_redisable_vga_power_on(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_VGA, wakeref); } /* FIXME read out full plane state for all planes */ static void readout_plane_state(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; for_each_intel_plane(&dev_priv->drm, plane) { struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct intel_crtc_state *crtc_state; enum pipe pipe = PIPE_A; bool visible; visible = plane->get_hw_state(plane, &pipe); crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = to_intel_crtc_state(crtc->base.state); intel_set_plane_visible(crtc_state, plane_state, visible); DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n", plane->base.base.id, plane->base.name, enableddisabled(visible), pipe_name(pipe)); } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); fixup_active_planes(crtc_state); } } static void intel_modeset_readout_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; struct drm_connector_list_iter conn_iter; int i; dev_priv->active_crtcs = 0; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); memset(crtc_state, 0, sizeof(*crtc_state)); __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base); crtc_state->base.active = crtc_state->base.enable = dev_priv->display.get_pipe_config(crtc, crtc_state); crtc->base.enabled = crtc_state->base.enable; crtc->active = crtc_state->base.active; if (crtc_state->base.active) dev_priv->active_crtcs |= 1 << crtc->pipe; DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n", crtc->base.base.id, crtc->base.name, enableddisabled(crtc_state->base.active)); } readout_plane_state(dev_priv); for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; pll->on = pll->info->funcs->get_hw_state(dev_priv, pll, &pll->state.hw_state); if (IS_ELKHARTLAKE(dev_priv) && pll->on && pll->info->id == DPLL_ID_EHL_DPLL4) { pll->wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DPLL_DC_OFF); } pll->state.crtc_mask = 0; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); if (crtc_state->base.active && crtc_state->shared_dpll == pll) pll->state.crtc_mask |= 1 << crtc->pipe; } pll->active_mask = pll->state.crtc_mask; DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", pll->info->name, pll->state.crtc_mask, pll->on); } for_each_intel_encoder(dev, encoder) { pipe = 0; if (encoder->get_hw_state(encoder, &pipe)) { struct intel_crtc_state *crtc_state; crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = to_intel_crtc_state(crtc->base.state); encoder->base.crtc = &crtc->base; encoder->get_config(encoder, crtc_state); } else { encoder->base.crtc = NULL; } DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", encoder->base.base.id, encoder->base.name, enableddisabled(encoder->base.crtc), pipe_name(pipe)); } drm_connector_list_iter_begin(dev, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->get_hw_state(connector)) { connector->base.dpms = DRM_MODE_DPMS_ON; encoder = connector->encoder; connector->base.encoder = &encoder->base; if (encoder->base.crtc && encoder->base.crtc->state->active) { /* * This has to be done during hardware readout * because anything calling .crtc_disable may * rely on the connector_mask being accurate. */ encoder->base.crtc->state->connector_mask |= drm_connector_mask(&connector->base); encoder->base.crtc->state->encoder_mask |= drm_encoder_mask(&encoder->base); } } else { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", connector->base.base.id, connector->base.name, enableddisabled(connector->base.encoder)); } drm_connector_list_iter_end(&conn_iter); for_each_intel_crtc(dev, crtc) { struct intel_bw_state *bw_state = to_intel_bw_state(dev_priv->bw_obj.state); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane *plane; int min_cdclk = 0; memset(&crtc->base.mode, 0, sizeof(crtc->base.mode)); if (crtc_state->base.active) { intel_mode_from_pipe_config(&crtc->base.mode, crtc_state); crtc->base.mode.hdisplay = crtc_state->pipe_src_w; crtc->base.mode.vdisplay = crtc_state->pipe_src_h; intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state); WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode)); /* * The initial mode needs to be set in order to keep * the atomic core happy. It wants a valid mode if the * crtc's enabled, so we do the above call. * * But we don't set all the derived state fully, hence * set a flag to indicate that a full recalculation is * needed on the next commit. */ crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED; intel_crtc_compute_pixel_rate(crtc_state); if (dev_priv->display.modeset_calc_cdclk) { min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); if (WARN_ON(min_cdclk < 0)) min_cdclk = 0; } drm_calc_timestamping_constants(&crtc->base, &crtc_state->base.adjusted_mode); update_scanline_offset(crtc_state); } dev_priv->min_cdclk[crtc->pipe] = min_cdclk; dev_priv->min_voltage_level[crtc->pipe] = crtc_state->min_voltage_level; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { const struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); /* * FIXME don't have the fb yet, so can't * use intel_plane_data_rate() :( */ if (plane_state->base.visible) crtc_state->data_rate[plane->id] = 4 * crtc_state->pixel_rate; } intel_bw_crtc_update(bw_state, crtc_state); intel_pipe_config_sanity_check(dev_priv, crtc_state); } } static void get_encoder_power_domains(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_crtc_state *crtc_state; if (!encoder->get_power_domains) continue; /* * MST-primary and inactive encoders don't have a crtc state * and neither of these require any power domain references. */ if (!encoder->base.crtc) continue; crtc_state = to_intel_crtc_state(encoder->base.crtc->state); encoder->get_power_domains(encoder, crtc_state); } } static void intel_early_display_was(struct drm_i915_private *dev_priv) { /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */ if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); if (IS_HASWELL(dev_priv)) { /* * WaRsPkgCStateDisplayPMReq:hsw * System hang if this isn't done before disabling all planes! */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); } } static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, enum port port, i915_reg_t hdmi_reg) { u32 val = I915_READ(hdmi_reg); if (val & SDVO_ENABLE || (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) return; DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n", port_name(port)); val &= ~SDVO_PIPE_SEL_MASK; val |= SDVO_PIPE_SEL(PIPE_A); I915_WRITE(hdmi_reg, val); } static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, enum port port, i915_reg_t dp_reg) { u32 val = I915_READ(dp_reg); if (val & DP_PORT_EN || (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) return; DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n", port_name(port)); val &= ~DP_PIPE_SEL_MASK; val |= DP_PIPE_SEL(PIPE_A); I915_WRITE(dp_reg, val); } static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) { /* * The BIOS may select transcoder B on some of the PCH * ports even it doesn't enable the port. This would trip * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). * Sanitize the transcoder select bits to prevent that. We * assume that the BIOS never actually enabled the port, * because if it did we'd actually have to toggle the port * on and back off to make the transcoder A select stick * (see. intel_dp_link_down(), intel_disable_hdmi(), * intel_disable_sdvo()). */ ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); /* PCH SDVOB multiplex with HDMIB */ ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); } /* Scan out the current hw modeset state, * and sanitizes it to the current state */ static void intel_modeset_setup_hw_state(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *crtc_state; struct intel_encoder *encoder; struct intel_crtc *crtc; intel_wakeref_t wakeref; int i; wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); intel_early_display_was(dev_priv); intel_modeset_readout_hw_state(dev); /* HW state is read out, now we need to sanitize this mess. */ /* Sanitize the TypeC port mode upfront, encoders depend on this */ for_each_intel_encoder(dev, encoder) { enum phy phy = intel_port_to_phy(dev_priv, encoder->port); /* We need to sanitize only the MST primary port. */ if (encoder->type != INTEL_OUTPUT_DP_MST && intel_phy_is_tc(dev_priv, phy)) intel_tc_port_sanitize(enc_to_dig_port(&encoder->base)); } get_encoder_power_domains(dev_priv); if (HAS_PCH_IBX(dev_priv)) ibx_sanitize_pch_ports(dev_priv); /* * intel_sanitize_plane_mapping() may need to do vblank * waits, so we need vblank interrupts restored beforehand. */ for_each_intel_crtc(&dev_priv->drm, crtc) { crtc_state = to_intel_crtc_state(crtc->base.state); drm_crtc_vblank_reset(&crtc->base); if (crtc_state->base.active) intel_crtc_vblank_on(crtc_state); } intel_sanitize_plane_mapping(dev_priv); for_each_intel_encoder(dev, encoder) intel_sanitize_encoder(encoder); for_each_intel_crtc(&dev_priv->drm, crtc) { crtc_state = to_intel_crtc_state(crtc->base.state); intel_sanitize_crtc(crtc, ctx); intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); } intel_modeset_update_connector_atomic_state(dev); for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; if (!pll->on || pll->active_mask) continue; DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->info->name); pll->info->funcs->disable(dev_priv, pll); pll->on = false; } if (IS_G4X(dev_priv)) { g4x_wm_get_hw_state(dev_priv); g4x_wm_sanitize(dev_priv); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_wm_get_hw_state(dev_priv); vlv_wm_sanitize(dev_priv); } else if (INTEL_GEN(dev_priv) >= 9) { skl_wm_get_hw_state(dev_priv); } else if (HAS_PCH_SPLIT(dev_priv)) { ilk_wm_get_hw_state(dev_priv); } for_each_intel_crtc(dev, crtc) { u64 put_domains; crtc_state = to_intel_crtc_state(crtc->base.state); put_domains = modeset_get_crtc_power_domains(crtc_state); if (WARN_ON(put_domains)) modeset_put_power_domains(dev_priv, put_domains); } intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); intel_fbc_init_pipe_state(dev_priv); } void intel_display_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state = dev_priv->modeset_restore_state; struct drm_modeset_acquire_ctx ctx; int ret; dev_priv->modeset_restore_state = NULL; if (state) state->acquire_ctx = &ctx; drm_modeset_acquire_init(&ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(&ctx); } if (!ret) ret = __intel_display_resume(dev, state, &ctx); intel_enable_ipc(dev_priv); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); if (ret) DRM_ERROR("Restoring old state failed with %i\n", ret); if (state) drm_atomic_state_put(state); } static void intel_hpd_poll_fini(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector_list_iter conn_iter; /* Kill all the work that may have been queued by hpd. */ drm_connector_list_iter_begin(dev, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->modeset_retry_work.func) cancel_work_sync(&connector->modeset_retry_work); if (connector->hdcp.shim) { cancel_delayed_work_sync(&connector->hdcp.check_work); cancel_work_sync(&connector->hdcp.prop_work); } } drm_connector_list_iter_end(&conn_iter); } void intel_modeset_driver_remove(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); flush_workqueue(dev_priv->modeset_wq); flush_work(&dev_priv->atomic_helper.free_work); WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list)); /* * Interrupts and polling as the first thing to avoid creating havoc. * Too much stuff here (turning of connectors, ...) would * experience fancy races otherwise. */ intel_irq_uninstall(dev_priv); /* * Due to the hpd irq storm handling the hotplug work can re-arm the * poll handlers. Hence disable polling after hpd handling is shut down. */ intel_hpd_poll_fini(dev); /* poll work can call into fbdev, hence clean that up afterwards */ intel_fbdev_fini(dev_priv); intel_unregister_dsm_handler(); intel_fbc_global_disable(dev_priv); /* flush any delayed tasks or pending work */ flush_scheduled_work(); intel_hdcp_component_fini(dev_priv); drm_mode_config_cleanup(dev); intel_overlay_cleanup(dev_priv); intel_gmbus_teardown(dev_priv); destroy_workqueue(dev_priv->modeset_wq); intel_fbc_cleanup_cfb(dev_priv); } /* * set vga decode state - true == enable VGA decode */ int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state) { unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; u16 gmch_ctrl; if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { DRM_ERROR("failed to read control word\n"); return -EIO; } if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) return 0; if (state) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { DRM_ERROR("failed to write control word\n"); return -EIO; } return 0; } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) struct intel_display_error_state { u32 power_well_driver; struct intel_cursor_error_state { u32 control; u32 position; u32 base; u32 size; } cursor[I915_MAX_PIPES]; struct intel_pipe_error_state { bool power_domain_on; u32 source; u32 stat; } pipe[I915_MAX_PIPES]; struct intel_plane_error_state { u32 control; u32 stride; u32 size; u32 pos; u32 addr; u32 surface; u32 tile_offset; } plane[I915_MAX_PIPES]; struct intel_transcoder_error_state { bool available; bool power_domain_on; enum transcoder cpu_transcoder; u32 conf; u32 htotal; u32 hblank; u32 hsync; u32 vtotal; u32 vblank; u32 vsync; } transcoder[5]; }; struct intel_display_error_state * intel_display_capture_error_state(struct drm_i915_private *dev_priv) { struct intel_display_error_state *error; int transcoders[] = { TRANSCODER_A, TRANSCODER_B, TRANSCODER_C, TRANSCODER_D, TRANSCODER_EDP, }; int i; BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); if (!HAS_DISPLAY(dev_priv)) return NULL; error = kzalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2); for_each_pipe(dev_priv, i) { error->pipe[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(i)); if (!error->pipe[i].power_domain_on) continue; error->cursor[i].control = I915_READ(CURCNTR(i)); error->cursor[i].position = I915_READ(CURPOS(i)); error->cursor[i].base = I915_READ(CURBASE(i)); error->plane[i].control = I915_READ(DSPCNTR(i)); error->plane[i].stride = I915_READ(DSPSTRIDE(i)); if (INTEL_GEN(dev_priv) <= 3) { error->plane[i].size = I915_READ(DSPSIZE(i)); error->plane[i].pos = I915_READ(DSPPOS(i)); } if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) error->plane[i].addr = I915_READ(DSPADDR(i)); if (INTEL_GEN(dev_priv) >= 4) { error->plane[i].surface = I915_READ(DSPSURF(i)); error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); } error->pipe[i].source = I915_READ(PIPESRC(i)); if (HAS_GMCH(dev_priv)) error->pipe[i].stat = I915_READ(PIPESTAT(i)); } for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { enum transcoder cpu_transcoder = transcoders[i]; if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder]) continue; error->transcoder[i].available = true; error->transcoder[i].power_domain_on = __intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder)); if (!error->transcoder[i].power_domain_on) continue; error->transcoder[i].cpu_transcoder = cpu_transcoder; error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); } return error; } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) void intel_display_print_error_state(struct drm_i915_error_state_buf *m, struct intel_display_error_state *error) { struct drm_i915_private *dev_priv = m->i915; int i; if (!error) return; err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) err_printf(m, "PWR_WELL_CTL2: %08x\n", error->power_well_driver); for_each_pipe(dev_priv, i) { err_printf(m, "Pipe [%d]:\n", i); err_printf(m, " Power: %s\n", onoff(error->pipe[i].power_domain_on)); err_printf(m, " SRC: %08x\n", error->pipe[i].source); err_printf(m, " STAT: %08x\n", error->pipe[i].stat); err_printf(m, "Plane [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->plane[i].control); err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); if (INTEL_GEN(dev_priv) <= 3) { err_printf(m, " SIZE: %08x\n", error->plane[i].size); err_printf(m, " POS: %08x\n", error->plane[i].pos); } if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) err_printf(m, " ADDR: %08x\n", error->plane[i].addr); if (INTEL_GEN(dev_priv) >= 4) { err_printf(m, " SURF: %08x\n", error->plane[i].surface); err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); } err_printf(m, "Cursor [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->cursor[i].control); err_printf(m, " POS: %08x\n", error->cursor[i].position); err_printf(m, " BASE: %08x\n", error->cursor[i].base); } for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { if (!error->transcoder[i].available) continue; err_printf(m, "CPU transcoder: %s\n", transcoder_name(error->transcoder[i].cpu_transcoder)); err_printf(m, " Power: %s\n", onoff(error->transcoder[i].power_domain_on)); err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); } } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1