Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jani Nikula | 1425 | 49.62% | 29 | 58.00% |
Hans de Goede | 636 | 22.14% | 7 | 14.00% |
Shobhit Kumar | 493 | 17.17% | 1 | 2.00% |
Madhav Chauhan | 201 | 7.00% | 4 | 8.00% |
Gaurav K Singh | 52 | 1.81% | 2 | 4.00% |
Chris Wilson | 39 | 1.36% | 3 | 6.00% |
Ville Syrjälä | 15 | 0.52% | 1 | 2.00% |
Rodrigo Vivi | 6 | 0.21% | 1 | 2.00% |
Deepak M | 4 | 0.14% | 1 | 2.00% |
Andy Shevchenko | 1 | 0.03% | 1 | 2.00% |
Total | 2872 | 50 |
/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Shobhit Kumar <shobhit.kumar@intel.com> * */ #include <linux/gpio/consumer.h> #include <linux/mfd/intel_soc_pmic.h> #include <linux/slab.h> #include <asm/intel-mid.h> #include <asm/unaligned.h> #include <drm/drm_crtc.h> #include <drm/drm_edid.h> #include <drm/i915_drm.h> #include <video/mipi_display.h> #include "i915_drv.h" #include "intel_display_types.h" #include "intel_dsi.h" #include "intel_sideband.h" #define MIPI_TRANSFER_MODE_SHIFT 0 #define MIPI_VIRTUAL_CHANNEL_SHIFT 1 #define MIPI_PORT_SHIFT 3 /* base offsets for gpio pads */ #define VLV_GPIO_NC_0_HV_DDI0_HPD 0x4130 #define VLV_GPIO_NC_1_HV_DDI0_DDC_SDA 0x4120 #define VLV_GPIO_NC_2_HV_DDI0_DDC_SCL 0x4110 #define VLV_GPIO_NC_3_PANEL0_VDDEN 0x4140 #define VLV_GPIO_NC_4_PANEL0_BKLTEN 0x4150 #define VLV_GPIO_NC_5_PANEL0_BKLTCTL 0x4160 #define VLV_GPIO_NC_6_HV_DDI1_HPD 0x4180 #define VLV_GPIO_NC_7_HV_DDI1_DDC_SDA 0x4190 #define VLV_GPIO_NC_8_HV_DDI1_DDC_SCL 0x4170 #define VLV_GPIO_NC_9_PANEL1_VDDEN 0x4100 #define VLV_GPIO_NC_10_PANEL1_BKLTEN 0x40E0 #define VLV_GPIO_NC_11_PANEL1_BKLTCTL 0x40F0 #define VLV_GPIO_PCONF0(base_offset) (base_offset) #define VLV_GPIO_PAD_VAL(base_offset) ((base_offset) + 8) struct gpio_map { u16 base_offset; bool init; }; static struct gpio_map vlv_gpio_table[] = { { VLV_GPIO_NC_0_HV_DDI0_HPD }, { VLV_GPIO_NC_1_HV_DDI0_DDC_SDA }, { VLV_GPIO_NC_2_HV_DDI0_DDC_SCL }, { VLV_GPIO_NC_3_PANEL0_VDDEN }, { VLV_GPIO_NC_4_PANEL0_BKLTEN }, { VLV_GPIO_NC_5_PANEL0_BKLTCTL }, { VLV_GPIO_NC_6_HV_DDI1_HPD }, { VLV_GPIO_NC_7_HV_DDI1_DDC_SDA }, { VLV_GPIO_NC_8_HV_DDI1_DDC_SCL }, { VLV_GPIO_NC_9_PANEL1_VDDEN }, { VLV_GPIO_NC_10_PANEL1_BKLTEN }, { VLV_GPIO_NC_11_PANEL1_BKLTCTL }, }; #define CHV_GPIO_IDX_START_N 0 #define CHV_GPIO_IDX_START_E 73 #define CHV_GPIO_IDX_START_SW 100 #define CHV_GPIO_IDX_START_SE 198 #define CHV_VBT_MAX_PINS_PER_FMLY 15 #define CHV_GPIO_PAD_CFG0(f, i) (0x4400 + (f) * 0x400 + (i) * 8) #define CHV_GPIO_GPIOEN (1 << 15) #define CHV_GPIO_GPIOCFG_GPIO (0 << 8) #define CHV_GPIO_GPIOCFG_GPO (1 << 8) #define CHV_GPIO_GPIOCFG_GPI (2 << 8) #define CHV_GPIO_GPIOCFG_HIZ (3 << 8) #define CHV_GPIO_GPIOTXSTATE(state) ((!!(state)) << 1) #define CHV_GPIO_PAD_CFG1(f, i) (0x4400 + (f) * 0x400 + (i) * 8 + 4) #define CHV_GPIO_CFGLOCK (1 << 31) /* ICL DSI Display GPIO Pins */ #define ICL_GPIO_DDSP_HPD_A 0 #define ICL_GPIO_L_VDDEN_1 1 #define ICL_GPIO_L_BKLTEN_1 2 #define ICL_GPIO_DDPA_CTRLCLK_1 3 #define ICL_GPIO_DDPA_CTRLDATA_1 4 #define ICL_GPIO_DDSP_HPD_B 5 #define ICL_GPIO_L_VDDEN_2 6 #define ICL_GPIO_L_BKLTEN_2 7 #define ICL_GPIO_DDPA_CTRLCLK_2 8 #define ICL_GPIO_DDPA_CTRLDATA_2 9 static inline enum port intel_dsi_seq_port_to_port(u8 port) { return port ? PORT_C : PORT_A; } static const u8 *mipi_exec_send_packet(struct intel_dsi *intel_dsi, const u8 *data) { struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev); struct mipi_dsi_device *dsi_device; u8 type, flags, seq_port; u16 len; enum port port; DRM_DEBUG_KMS("\n"); flags = *data++; type = *data++; len = *((u16 *) data); data += 2; seq_port = (flags >> MIPI_PORT_SHIFT) & 3; /* For DSI single link on Port A & C, the seq_port value which is * parsed from Sequence Block#53 of VBT has been set to 0 * Now, read/write of packets for the DSI single link on Port A and * Port C will based on the DVO port from VBT block 2. */ if (intel_dsi->ports == (1 << PORT_C)) port = PORT_C; else port = intel_dsi_seq_port_to_port(seq_port); dsi_device = intel_dsi->dsi_hosts[port]->device; if (!dsi_device) { DRM_DEBUG_KMS("no dsi device for port %c\n", port_name(port)); goto out; } if ((flags >> MIPI_TRANSFER_MODE_SHIFT) & 1) dsi_device->mode_flags &= ~MIPI_DSI_MODE_LPM; else dsi_device->mode_flags |= MIPI_DSI_MODE_LPM; dsi_device->channel = (flags >> MIPI_VIRTUAL_CHANNEL_SHIFT) & 3; switch (type) { case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM: mipi_dsi_generic_write(dsi_device, NULL, 0); break; case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM: mipi_dsi_generic_write(dsi_device, data, 1); break; case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM: mipi_dsi_generic_write(dsi_device, data, 2); break; case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM: DRM_DEBUG_DRIVER("Generic Read not yet implemented or used\n"); break; case MIPI_DSI_GENERIC_LONG_WRITE: mipi_dsi_generic_write(dsi_device, data, len); break; case MIPI_DSI_DCS_SHORT_WRITE: mipi_dsi_dcs_write_buffer(dsi_device, data, 1); break; case MIPI_DSI_DCS_SHORT_WRITE_PARAM: mipi_dsi_dcs_write_buffer(dsi_device, data, 2); break; case MIPI_DSI_DCS_READ: DRM_DEBUG_DRIVER("DCS Read not yet implemented or used\n"); break; case MIPI_DSI_DCS_LONG_WRITE: mipi_dsi_dcs_write_buffer(dsi_device, data, len); break; } if (INTEL_GEN(dev_priv) < 11) vlv_dsi_wait_for_fifo_empty(intel_dsi, port); out: data += len; return data; } static const u8 *mipi_exec_delay(struct intel_dsi *intel_dsi, const u8 *data) { u32 delay = *((const u32 *) data); DRM_DEBUG_KMS("\n"); usleep_range(delay, delay + 10); data += 4; return data; } static void vlv_exec_gpio(struct drm_i915_private *dev_priv, u8 gpio_source, u8 gpio_index, bool value) { struct gpio_map *map; u16 pconf0, padval; u32 tmp; u8 port; if (gpio_index >= ARRAY_SIZE(vlv_gpio_table)) { DRM_DEBUG_KMS("unknown gpio index %u\n", gpio_index); return; } map = &vlv_gpio_table[gpio_index]; if (dev_priv->vbt.dsi.seq_version >= 3) { /* XXX: this assumes vlv_gpio_table only has NC GPIOs. */ port = IOSF_PORT_GPIO_NC; } else { if (gpio_source == 0) { port = IOSF_PORT_GPIO_NC; } else if (gpio_source == 1) { DRM_DEBUG_KMS("SC gpio not supported\n"); return; } else { DRM_DEBUG_KMS("unknown gpio source %u\n", gpio_source); return; } } pconf0 = VLV_GPIO_PCONF0(map->base_offset); padval = VLV_GPIO_PAD_VAL(map->base_offset); vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_GPIO)); if (!map->init) { /* FIXME: remove constant below */ vlv_iosf_sb_write(dev_priv, port, pconf0, 0x2000CC00); map->init = true; } tmp = 0x4 | value; vlv_iosf_sb_write(dev_priv, port, padval, tmp); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_GPIO)); } static void chv_exec_gpio(struct drm_i915_private *dev_priv, u8 gpio_source, u8 gpio_index, bool value) { u16 cfg0, cfg1; u16 family_num; u8 port; if (dev_priv->vbt.dsi.seq_version >= 3) { if (gpio_index >= CHV_GPIO_IDX_START_SE) { /* XXX: it's unclear whether 255->57 is part of SE. */ gpio_index -= CHV_GPIO_IDX_START_SE; port = CHV_IOSF_PORT_GPIO_SE; } else if (gpio_index >= CHV_GPIO_IDX_START_SW) { gpio_index -= CHV_GPIO_IDX_START_SW; port = CHV_IOSF_PORT_GPIO_SW; } else if (gpio_index >= CHV_GPIO_IDX_START_E) { gpio_index -= CHV_GPIO_IDX_START_E; port = CHV_IOSF_PORT_GPIO_E; } else { port = CHV_IOSF_PORT_GPIO_N; } } else { /* XXX: The spec is unclear about CHV GPIO on seq v2 */ if (gpio_source != 0) { DRM_DEBUG_KMS("unknown gpio source %u\n", gpio_source); return; } if (gpio_index >= CHV_GPIO_IDX_START_E) { DRM_DEBUG_KMS("invalid gpio index %u for GPIO N\n", gpio_index); return; } port = CHV_IOSF_PORT_GPIO_N; } family_num = gpio_index / CHV_VBT_MAX_PINS_PER_FMLY; gpio_index = gpio_index % CHV_VBT_MAX_PINS_PER_FMLY; cfg0 = CHV_GPIO_PAD_CFG0(family_num, gpio_index); cfg1 = CHV_GPIO_PAD_CFG1(family_num, gpio_index); vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_GPIO)); vlv_iosf_sb_write(dev_priv, port, cfg1, 0); vlv_iosf_sb_write(dev_priv, port, cfg0, CHV_GPIO_GPIOEN | CHV_GPIO_GPIOCFG_GPO | CHV_GPIO_GPIOTXSTATE(value)); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_GPIO)); } static void bxt_exec_gpio(struct drm_i915_private *dev_priv, u8 gpio_source, u8 gpio_index, bool value) { /* XXX: this table is a quick ugly hack. */ static struct gpio_desc *bxt_gpio_table[U8_MAX + 1]; struct gpio_desc *gpio_desc = bxt_gpio_table[gpio_index]; if (!gpio_desc) { gpio_desc = devm_gpiod_get_index(dev_priv->drm.dev, NULL, gpio_index, value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH); if (IS_ERR_OR_NULL(gpio_desc)) { DRM_ERROR("GPIO index %u request failed (%ld)\n", gpio_index, PTR_ERR(gpio_desc)); return; } bxt_gpio_table[gpio_index] = gpio_desc; } gpiod_set_value(gpio_desc, value); } static void icl_exec_gpio(struct drm_i915_private *dev_priv, u8 gpio_source, u8 gpio_index, bool value) { DRM_DEBUG_KMS("Skipping ICL GPIO element execution\n"); } static const u8 *mipi_exec_gpio(struct intel_dsi *intel_dsi, const u8 *data) { struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u8 gpio_source, gpio_index = 0, gpio_number; bool value; DRM_DEBUG_KMS("\n"); if (dev_priv->vbt.dsi.seq_version >= 3) gpio_index = *data++; gpio_number = *data++; /* gpio source in sequence v2 only */ if (dev_priv->vbt.dsi.seq_version == 2) gpio_source = (*data >> 1) & 3; else gpio_source = 0; /* pull up/down */ value = *data++ & 1; if (INTEL_GEN(dev_priv) >= 11) icl_exec_gpio(dev_priv, gpio_source, gpio_index, value); else if (IS_VALLEYVIEW(dev_priv)) vlv_exec_gpio(dev_priv, gpio_source, gpio_number, value); else if (IS_CHERRYVIEW(dev_priv)) chv_exec_gpio(dev_priv, gpio_source, gpio_number, value); else bxt_exec_gpio(dev_priv, gpio_source, gpio_index, value); return data; } static const u8 *mipi_exec_i2c(struct intel_dsi *intel_dsi, const u8 *data) { DRM_DEBUG_KMS("Skipping I2C element execution\n"); return data + *(data + 6) + 7; } static const u8 *mipi_exec_spi(struct intel_dsi *intel_dsi, const u8 *data) { DRM_DEBUG_KMS("Skipping SPI element execution\n"); return data + *(data + 5) + 6; } static const u8 *mipi_exec_pmic(struct intel_dsi *intel_dsi, const u8 *data) { #ifdef CONFIG_PMIC_OPREGION u32 value, mask, reg_address; u16 i2c_address; int ret; /* byte 0 aka PMIC Flag is reserved */ i2c_address = get_unaligned_le16(data + 1); reg_address = get_unaligned_le32(data + 3); value = get_unaligned_le32(data + 7); mask = get_unaligned_le32(data + 11); ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_address, reg_address, value, mask); if (ret) DRM_ERROR("%s failed, error: %d\n", __func__, ret); #else DRM_ERROR("Your hardware requires CONFIG_PMIC_OPREGION and it is not set\n"); #endif return data + 15; } typedef const u8 * (*fn_mipi_elem_exec)(struct intel_dsi *intel_dsi, const u8 *data); static const fn_mipi_elem_exec exec_elem[] = { [MIPI_SEQ_ELEM_SEND_PKT] = mipi_exec_send_packet, [MIPI_SEQ_ELEM_DELAY] = mipi_exec_delay, [MIPI_SEQ_ELEM_GPIO] = mipi_exec_gpio, [MIPI_SEQ_ELEM_I2C] = mipi_exec_i2c, [MIPI_SEQ_ELEM_SPI] = mipi_exec_spi, [MIPI_SEQ_ELEM_PMIC] = mipi_exec_pmic, }; /* * MIPI Sequence from VBT #53 parsing logic * We have already separated each seqence during bios parsing * Following is generic execution function for any sequence */ static const char * const seq_name[] = { [MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET", [MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP", [MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON", [MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF", [MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET", [MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON", [MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF", [MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON", [MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF", [MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON", [MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF", }; static const char *sequence_name(enum mipi_seq seq_id) { if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id]) return seq_name[seq_id]; else return "(unknown)"; } void intel_dsi_vbt_exec_sequence(struct intel_dsi *intel_dsi, enum mipi_seq seq_id) { struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev); const u8 *data; fn_mipi_elem_exec mipi_elem_exec; if (WARN_ON(seq_id >= ARRAY_SIZE(dev_priv->vbt.dsi.sequence))) return; data = dev_priv->vbt.dsi.sequence[seq_id]; if (!data) return; WARN_ON(*data != seq_id); DRM_DEBUG_KMS("Starting MIPI sequence %d - %s\n", seq_id, sequence_name(seq_id)); /* Skip Sequence Byte. */ data++; /* Skip Size of Sequence. */ if (dev_priv->vbt.dsi.seq_version >= 3) data += 4; while (1) { u8 operation_byte = *data++; u8 operation_size = 0; if (operation_byte == MIPI_SEQ_ELEM_END) break; if (operation_byte < ARRAY_SIZE(exec_elem)) mipi_elem_exec = exec_elem[operation_byte]; else mipi_elem_exec = NULL; /* Size of Operation. */ if (dev_priv->vbt.dsi.seq_version >= 3) operation_size = *data++; if (mipi_elem_exec) { const u8 *next = data + operation_size; data = mipi_elem_exec(intel_dsi, data); /* Consistency check if we have size. */ if (operation_size && data != next) { DRM_ERROR("Inconsistent operation size\n"); return; } } else if (operation_size) { /* We have size, skip. */ DRM_DEBUG_KMS("Unsupported MIPI operation byte %u\n", operation_byte); data += operation_size; } else { /* No size, can't skip without parsing. */ DRM_ERROR("Unsupported MIPI operation byte %u\n", operation_byte); return; } } } void intel_dsi_msleep(struct intel_dsi *intel_dsi, int msec) { struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev); /* For v3 VBTs in vid-mode the delays are part of the VBT sequences */ if (is_vid_mode(intel_dsi) && dev_priv->vbt.dsi.seq_version >= 3) return; msleep(msec); } void intel_dsi_log_params(struct intel_dsi *intel_dsi) { DRM_DEBUG_KMS("Pclk %d\n", intel_dsi->pclk); DRM_DEBUG_KMS("Pixel overlap %d\n", intel_dsi->pixel_overlap); DRM_DEBUG_KMS("Lane count %d\n", intel_dsi->lane_count); DRM_DEBUG_KMS("DPHY param reg 0x%x\n", intel_dsi->dphy_reg); DRM_DEBUG_KMS("Video mode format %s\n", intel_dsi->video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE ? "non-burst with sync pulse" : intel_dsi->video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS ? "non-burst with sync events" : intel_dsi->video_mode_format == VIDEO_MODE_BURST ? "burst" : "<unknown>"); DRM_DEBUG_KMS("Burst mode ratio %d\n", intel_dsi->burst_mode_ratio); DRM_DEBUG_KMS("Reset timer %d\n", intel_dsi->rst_timer_val); DRM_DEBUG_KMS("Eot %s\n", enableddisabled(intel_dsi->eotp_pkt)); DRM_DEBUG_KMS("Clockstop %s\n", enableddisabled(!intel_dsi->clock_stop)); DRM_DEBUG_KMS("Mode %s\n", intel_dsi->operation_mode ? "command" : "video"); if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_FRONT_BACK\n"); else if (intel_dsi->dual_link == DSI_DUAL_LINK_PIXEL_ALT) DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_PIXEL_ALT\n"); else DRM_DEBUG_KMS("Dual link: NONE\n"); DRM_DEBUG_KMS("Pixel Format %d\n", intel_dsi->pixel_format); DRM_DEBUG_KMS("TLPX %d\n", intel_dsi->escape_clk_div); DRM_DEBUG_KMS("LP RX Timeout 0x%x\n", intel_dsi->lp_rx_timeout); DRM_DEBUG_KMS("Turnaround Timeout 0x%x\n", intel_dsi->turn_arnd_val); DRM_DEBUG_KMS("Init Count 0x%x\n", intel_dsi->init_count); DRM_DEBUG_KMS("HS to LP Count 0x%x\n", intel_dsi->hs_to_lp_count); DRM_DEBUG_KMS("LP Byte Clock %d\n", intel_dsi->lp_byte_clk); DRM_DEBUG_KMS("DBI BW Timer 0x%x\n", intel_dsi->bw_timer); DRM_DEBUG_KMS("LP to HS Clock Count 0x%x\n", intel_dsi->clk_lp_to_hs_count); DRM_DEBUG_KMS("HS to LP Clock Count 0x%x\n", intel_dsi->clk_hs_to_lp_count); DRM_DEBUG_KMS("BTA %s\n", enableddisabled(!(intel_dsi->video_frmt_cfg_bits & DISABLE_VIDEO_BTA))); } bool intel_dsi_vbt_init(struct intel_dsi *intel_dsi, u16 panel_id) { struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct mipi_config *mipi_config = dev_priv->vbt.dsi.config; struct mipi_pps_data *pps = dev_priv->vbt.dsi.pps; struct drm_display_mode *mode = dev_priv->vbt.lfp_lvds_vbt_mode; u16 burst_mode_ratio; enum port port; DRM_DEBUG_KMS("\n"); intel_dsi->eotp_pkt = mipi_config->eot_pkt_disabled ? 0 : 1; intel_dsi->clock_stop = mipi_config->enable_clk_stop ? 1 : 0; intel_dsi->lane_count = mipi_config->lane_cnt + 1; intel_dsi->pixel_format = pixel_format_from_register_bits( mipi_config->videomode_color_format << 7); intel_dsi->dual_link = mipi_config->dual_link; intel_dsi->pixel_overlap = mipi_config->pixel_overlap; intel_dsi->operation_mode = mipi_config->is_cmd_mode; intel_dsi->video_mode_format = mipi_config->video_transfer_mode; intel_dsi->escape_clk_div = mipi_config->byte_clk_sel; intel_dsi->lp_rx_timeout = mipi_config->lp_rx_timeout; intel_dsi->hs_tx_timeout = mipi_config->hs_tx_timeout; intel_dsi->turn_arnd_val = mipi_config->turn_around_timeout; intel_dsi->rst_timer_val = mipi_config->device_reset_timer; intel_dsi->init_count = mipi_config->master_init_timer; intel_dsi->bw_timer = mipi_config->dbi_bw_timer; intel_dsi->video_frmt_cfg_bits = mipi_config->bta_enabled ? DISABLE_VIDEO_BTA : 0; intel_dsi->bgr_enabled = mipi_config->rgb_flip; /* Starting point, adjusted depending on dual link and burst mode */ intel_dsi->pclk = mode->clock; /* In dual link mode each port needs half of pixel clock */ if (intel_dsi->dual_link) { intel_dsi->pclk /= 2; /* we can enable pixel_overlap if needed by panel. In this * case we need to increase the pixelclock for extra pixels */ if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) { intel_dsi->pclk += DIV_ROUND_UP(mode->vtotal * intel_dsi->pixel_overlap * 60, 1000); } } /* Burst Mode Ratio * Target ddr frequency from VBT / non burst ddr freq * multiply by 100 to preserve remainder */ if (intel_dsi->video_mode_format == VIDEO_MODE_BURST) { if (mipi_config->target_burst_mode_freq) { u32 bitrate = intel_dsi_bitrate(intel_dsi); /* * Sometimes the VBT contains a slightly lower clock, * then the bitrate we have calculated, in this case * just replace it with the calculated bitrate. */ if (mipi_config->target_burst_mode_freq < bitrate && intel_fuzzy_clock_check( mipi_config->target_burst_mode_freq, bitrate)) mipi_config->target_burst_mode_freq = bitrate; if (mipi_config->target_burst_mode_freq < bitrate) { DRM_ERROR("Burst mode freq is less than computed\n"); return false; } burst_mode_ratio = DIV_ROUND_UP( mipi_config->target_burst_mode_freq * 100, bitrate); intel_dsi->pclk = DIV_ROUND_UP(intel_dsi->pclk * burst_mode_ratio, 100); } else { DRM_ERROR("Burst mode target is not set\n"); return false; } } else burst_mode_ratio = 100; intel_dsi->burst_mode_ratio = burst_mode_ratio; /* delays in VBT are in unit of 100us, so need to convert * here in ms * Delay (100us) * 100 /1000 = Delay / 10 (ms) */ intel_dsi->backlight_off_delay = pps->bl_disable_delay / 10; intel_dsi->backlight_on_delay = pps->bl_enable_delay / 10; intel_dsi->panel_on_delay = pps->panel_on_delay / 10; intel_dsi->panel_off_delay = pps->panel_off_delay / 10; intel_dsi->panel_pwr_cycle_delay = pps->panel_power_cycle_delay / 10; /* a regular driver would get the device in probe */ for_each_dsi_port(port, intel_dsi->ports) { mipi_dsi_attach(intel_dsi->dsi_hosts[port]->device); } return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1