Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paulo Zanoni | 3377 | 62.55% | 66 | 52.80% |
Rodrigo Vivi | 832 | 15.41% | 4 | 3.20% |
Chris Wilson | 368 | 6.82% | 10 | 8.00% |
Maarten Lankhorst | 362 | 6.70% | 7 | 5.60% |
Ville Syrjälä | 93 | 1.72% | 12 | 9.60% |
Praveen Paneri | 93 | 1.72% | 1 | 0.80% |
Juha-Pekka Heikkila | 63 | 1.17% | 2 | 1.60% |
Matthew Auld | 54 | 1.00% | 1 | 0.80% |
Lucas De Marchi | 37 | 0.69% | 2 | 1.60% |
Imre Deak | 34 | 0.63% | 1 | 0.80% |
José Roberto de Souza | 27 | 0.50% | 2 | 1.60% |
Matt Roper | 17 | 0.31% | 1 | 0.80% |
Daniel Drake | 11 | 0.20% | 1 | 0.80% |
Jani Nikula | 10 | 0.19% | 5 | 4.00% |
Daniel Vetter | 10 | 0.19% | 4 | 3.20% |
Michal Wajdeczko | 5 | 0.09% | 1 | 0.80% |
Ander Conselvan de Oliveira | 3 | 0.06% | 2 | 1.60% |
Joonas Lahtinen | 1 | 0.02% | 1 | 0.80% |
Daniele Ceraolo Spurio | 1 | 0.02% | 1 | 0.80% |
Robert Foss | 1 | 0.02% | 1 | 0.80% |
Total | 5399 | 125 |
/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Frame Buffer Compression (FBC) * * FBC tries to save memory bandwidth (and so power consumption) by * compressing the amount of memory used by the display. It is total * transparent to user space and completely handled in the kernel. * * The benefits of FBC are mostly visible with solid backgrounds and * variation-less patterns. It comes from keeping the memory footprint small * and having fewer memory pages opened and accessed for refreshing the display. * * i915 is responsible to reserve stolen memory for FBC and configure its * offset on proper registers. The hardware takes care of all * compress/decompress. However there are many known cases where we have to * forcibly disable it to allow proper screen updates. */ #include <drm/drm_fourcc.h> #include "i915_drv.h" #include "intel_display_types.h" #include "intel_fbc.h" #include "intel_frontbuffer.h" static inline bool fbc_supported(struct drm_i915_private *dev_priv) { return HAS_FBC(dev_priv); } static inline bool no_fbc_on_multiple_pipes(struct drm_i915_private *dev_priv) { return INTEL_GEN(dev_priv) <= 3; } /* * In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the * frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's * origin so the x and y offsets can actually fit the registers. As a * consequence, the fence doesn't really start exactly at the display plane * address we program because it starts at the real start of the buffer, so we * have to take this into consideration here. */ static unsigned int get_crtc_fence_y_offset(struct intel_fbc *fbc) { return fbc->state_cache.plane.y - fbc->state_cache.plane.adjusted_y; } /* * For SKL+, the plane source size used by the hardware is based on the value we * write to the PLANE_SIZE register. For BDW-, the hardware looks at the value * we wrote to PIPESRC. */ static void intel_fbc_get_plane_source_size(struct intel_fbc_state_cache *cache, int *width, int *height) { if (width) *width = cache->plane.src_w; if (height) *height = cache->plane.src_h; } static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv, struct intel_fbc_state_cache *cache) { int lines; intel_fbc_get_plane_source_size(cache, NULL, &lines); if (IS_GEN(dev_priv, 7)) lines = min(lines, 2048); else if (INTEL_GEN(dev_priv) >= 8) lines = min(lines, 2560); /* Hardware needs the full buffer stride, not just the active area. */ return lines * cache->fb.stride; } static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 fbc_ctl; /* Disable compression */ fbc_ctl = I915_READ(FBC_CONTROL); if ((fbc_ctl & FBC_CTL_EN) == 0) return; fbc_ctl &= ~FBC_CTL_EN; I915_WRITE(FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (intel_de_wait_for_clear(dev_priv, FBC_STATUS, FBC_STAT_COMPRESSING, 10)) { DRM_DEBUG_KMS("FBC idle timed out\n"); return; } } static void i8xx_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; int cfb_pitch; int i; u32 fbc_ctl; /* Note: fbc.threshold == 1 for i8xx */ cfb_pitch = params->cfb_size / FBC_LL_SIZE; if (params->fb.stride < cfb_pitch) cfb_pitch = params->fb.stride; /* FBC_CTL wants 32B or 64B units */ if (IS_GEN(dev_priv, 2)) cfb_pitch = (cfb_pitch / 32) - 1; else cfb_pitch = (cfb_pitch / 64) - 1; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) I915_WRITE(FBC_TAG(i), 0); if (IS_GEN(dev_priv, 4)) { u32 fbc_ctl2; /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.i9xx_plane); I915_WRITE(FBC_CONTROL2, fbc_ctl2); I915_WRITE(FBC_FENCE_OFF, params->crtc.fence_y_offset); } /* enable it... */ fbc_ctl = I915_READ(FBC_CONTROL); fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT; fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev_priv)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; fbc_ctl |= params->vma->fence->id; I915_WRITE(FBC_CONTROL, fbc_ctl); } static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(FBC_CONTROL) & FBC_CTL_EN; } static void g4x_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; dpfc_ctl = DPFC_CTL_PLANE(params->crtc.i9xx_plane) | DPFC_SR_EN; if (params->fb.format->cpp[0] == 2) dpfc_ctl |= DPFC_CTL_LIMIT_2X; else dpfc_ctl |= DPFC_CTL_LIMIT_1X; if (params->flags & PLANE_HAS_FENCE) { dpfc_ctl |= DPFC_CTL_FENCE_EN | params->vma->fence->id; I915_WRITE(DPFC_FENCE_YOFF, params->crtc.fence_y_offset); } else { I915_WRITE(DPFC_FENCE_YOFF, 0); } /* enable it... */ I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); } static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(DPFC_CONTROL, dpfc_ctl); } } static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; } /* This function forces a CFB recompression through the nuke operation. */ static void intel_fbc_recompress(struct drm_i915_private *dev_priv) { I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE); POSTING_READ(MSG_FBC_REND_STATE); } static void ilk_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; int threshold = dev_priv->fbc.threshold; dpfc_ctl = DPFC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fb.format->cpp[0] == 2) threshold++; switch (threshold) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } if (params->flags & PLANE_HAS_FENCE) { dpfc_ctl |= DPFC_CTL_FENCE_EN; if (IS_GEN(dev_priv, 5)) dpfc_ctl |= params->vma->fence->id; if (IS_GEN(dev_priv, 6)) { I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | params->vma->fence->id); I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset); } } else { if (IS_GEN(dev_priv, 6)) { I915_WRITE(SNB_DPFC_CTL_SA, 0); I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0); } } I915_WRITE(ILK_DPFC_FENCE_YOFF, params->crtc.fence_y_offset); I915_WRITE(ILK_FBC_RT_BASE, i915_ggtt_offset(params->vma) | ILK_FBC_RT_VALID); /* enable it... */ I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); intel_fbc_recompress(dev_priv); } static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv) { u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); } } static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv) { return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; } static void gen7_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; int threshold = dev_priv->fbc.threshold; /* Display WA #0529: skl, kbl, bxt. */ if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) { u32 val = I915_READ(CHICKEN_MISC_4); val &= ~(FBC_STRIDE_OVERRIDE | FBC_STRIDE_MASK); if (i915_gem_object_get_tiling(params->vma->obj) != I915_TILING_X) val |= FBC_STRIDE_OVERRIDE | params->gen9_wa_cfb_stride; I915_WRITE(CHICKEN_MISC_4, val); } dpfc_ctl = 0; if (IS_IVYBRIDGE(dev_priv)) dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fb.format->cpp[0] == 2) threshold++; switch (threshold) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } if (params->flags & PLANE_HAS_FENCE) { dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN; I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | params->vma->fence->id); I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset); } else { I915_WRITE(SNB_DPFC_CTL_SA,0); I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0); } if (dev_priv->fbc.false_color) dpfc_ctl |= FBC_CTL_FALSE_COLOR; if (IS_IVYBRIDGE(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:ivb */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe), I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) | HSW_FBCQ_DIS); } if (IS_GEN(dev_priv, 11)) /* Wa_1409120013:icl,ehl */ I915_WRITE(ILK_DPFC_CHICKEN, ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL); I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); intel_fbc_recompress(dev_priv); } static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 5) return ilk_fbc_is_active(dev_priv); else if (IS_GM45(dev_priv)) return g4x_fbc_is_active(dev_priv); else return i8xx_fbc_is_active(dev_priv); } static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; fbc->active = true; if (INTEL_GEN(dev_priv) >= 7) gen7_fbc_activate(dev_priv); else if (INTEL_GEN(dev_priv) >= 5) ilk_fbc_activate(dev_priv); else if (IS_GM45(dev_priv)) g4x_fbc_activate(dev_priv); else i8xx_fbc_activate(dev_priv); } static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; fbc->active = false; if (INTEL_GEN(dev_priv) >= 5) ilk_fbc_deactivate(dev_priv); else if (IS_GM45(dev_priv)) g4x_fbc_deactivate(dev_priv); else i8xx_fbc_deactivate(dev_priv); } /** * intel_fbc_is_active - Is FBC active? * @dev_priv: i915 device instance * * This function is used to verify the current state of FBC. * * FIXME: This should be tracked in the plane config eventually * instead of queried at runtime for most callers. */ bool intel_fbc_is_active(struct drm_i915_private *dev_priv) { return dev_priv->fbc.active; } static void intel_fbc_deactivate(struct drm_i915_private *dev_priv, const char *reason) { struct intel_fbc *fbc = &dev_priv->fbc; WARN_ON(!mutex_is_locked(&fbc->lock)); if (fbc->active) intel_fbc_hw_deactivate(dev_priv); fbc->no_fbc_reason = reason; } static bool multiple_pipes_ok(struct intel_crtc *crtc, struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; enum pipe pipe = crtc->pipe; /* Don't even bother tracking anything we don't need. */ if (!no_fbc_on_multiple_pipes(dev_priv)) return true; if (plane_state->base.visible) fbc->visible_pipes_mask |= (1 << pipe); else fbc->visible_pipes_mask &= ~(1 << pipe); return (fbc->visible_pipes_mask & ~(1 << pipe)) != 0; } static int find_compression_threshold(struct drm_i915_private *dev_priv, struct drm_mm_node *node, int size, int fb_cpp) { int compression_threshold = 1; int ret; u64 end; /* The FBC hardware for BDW/SKL doesn't have access to the stolen * reserved range size, so it always assumes the maximum (8mb) is used. * If we enable FBC using a CFB on that memory range we'll get FIFO * underruns, even if that range is not reserved by the BIOS. */ if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv)) end = resource_size(&dev_priv->dsm) - 8 * 1024 * 1024; else end = U64_MAX; /* HACK: This code depends on what we will do in *_enable_fbc. If that * code changes, this code needs to change as well. * * The enable_fbc code will attempt to use one of our 2 compression * thresholds, therefore, in that case, we only have 1 resort. */ /* Try to over-allocate to reduce reallocations and fragmentation. */ ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1, 4096, 0, end); if (ret == 0) return compression_threshold; again: /* HW's ability to limit the CFB is 1:4 */ if (compression_threshold > 4 || (fb_cpp == 2 && compression_threshold == 2)) return 0; ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1, 4096, 0, end); if (ret && INTEL_GEN(dev_priv) <= 4) { return 0; } else if (ret) { compression_threshold <<= 1; goto again; } else { return compression_threshold; } } static int intel_fbc_alloc_cfb(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct drm_mm_node *uninitialized_var(compressed_llb); int size, fb_cpp, ret; WARN_ON(drm_mm_node_allocated(&fbc->compressed_fb)); size = intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache); fb_cpp = fbc->state_cache.fb.format->cpp[0]; ret = find_compression_threshold(dev_priv, &fbc->compressed_fb, size, fb_cpp); if (!ret) goto err_llb; else if (ret > 1) { DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n"); } fbc->threshold = ret; if (INTEL_GEN(dev_priv) >= 5) I915_WRITE(ILK_DPFC_CB_BASE, fbc->compressed_fb.start); else if (IS_GM45(dev_priv)) { I915_WRITE(DPFC_CB_BASE, fbc->compressed_fb.start); } else { compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL); if (!compressed_llb) goto err_fb; ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb, 4096, 4096); if (ret) goto err_fb; fbc->compressed_llb = compressed_llb; GEM_BUG_ON(range_overflows_t(u64, dev_priv->dsm.start, fbc->compressed_fb.start, U32_MAX)); GEM_BUG_ON(range_overflows_t(u64, dev_priv->dsm.start, fbc->compressed_llb->start, U32_MAX)); I915_WRITE(FBC_CFB_BASE, dev_priv->dsm.start + fbc->compressed_fb.start); I915_WRITE(FBC_LL_BASE, dev_priv->dsm.start + compressed_llb->start); } DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n", fbc->compressed_fb.size, fbc->threshold); return 0; err_fb: kfree(compressed_llb); i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb); err_llb: if (drm_mm_initialized(&dev_priv->mm.stolen)) pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size); return -ENOSPC; } static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (drm_mm_node_allocated(&fbc->compressed_fb)) i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb); if (fbc->compressed_llb) { i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb); kfree(fbc->compressed_llb); } } void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); __intel_fbc_cleanup_cfb(dev_priv); mutex_unlock(&fbc->lock); } static bool stride_is_valid(struct drm_i915_private *dev_priv, unsigned int stride) { /* This should have been caught earlier. */ if (WARN_ON_ONCE((stride & (64 - 1)) != 0)) return false; /* Below are the additional FBC restrictions. */ if (stride < 512) return false; if (IS_GEN(dev_priv, 2) || IS_GEN(dev_priv, 3)) return stride == 4096 || stride == 8192; if (IS_GEN(dev_priv, 4) && !IS_G4X(dev_priv) && stride < 2048) return false; if (stride > 16384) return false; return true; } static bool pixel_format_is_valid(struct drm_i915_private *dev_priv, u32 pixel_format) { switch (pixel_format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: return true; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_RGB565: /* 16bpp not supported on gen2 */ if (IS_GEN(dev_priv, 2)) return false; /* WaFbcOnly1to1Ratio:ctg */ if (IS_G4X(dev_priv)) return false; return true; default: return false; } } /* * For some reason, the hardware tracking starts looking at whatever we * programmed as the display plane base address register. It does not look at * the X and Y offset registers. That's why we look at the crtc->adjusted{x,y} * variables instead of just looking at the pipe/plane size. */ static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; unsigned int effective_w, effective_h, max_w, max_h; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { max_w = 5120; max_h = 4096; } else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) { max_w = 4096; max_h = 4096; } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { max_w = 4096; max_h = 2048; } else { max_w = 2048; max_h = 1536; } intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w, &effective_h); effective_w += fbc->state_cache.plane.adjusted_x; effective_h += fbc->state_cache.plane.adjusted_y; return effective_w <= max_w && effective_h <= max_h; } static void intel_fbc_update_state_cache(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; struct drm_framebuffer *fb = plane_state->base.fb; cache->vma = NULL; cache->flags = 0; cache->crtc.mode_flags = crtc_state->base.adjusted_mode.flags; if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) cache->crtc.hsw_bdw_pixel_rate = crtc_state->pixel_rate; cache->plane.rotation = plane_state->base.rotation; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ cache->plane.src_w = drm_rect_width(&plane_state->base.src) >> 16; cache->plane.src_h = drm_rect_height(&plane_state->base.src) >> 16; cache->plane.visible = plane_state->base.visible; cache->plane.adjusted_x = plane_state->color_plane[0].x; cache->plane.adjusted_y = plane_state->color_plane[0].y; cache->plane.y = plane_state->base.src.y1 >> 16; cache->plane.pixel_blend_mode = plane_state->base.pixel_blend_mode; if (!cache->plane.visible) return; cache->fb.format = fb->format; cache->fb.stride = fb->pitches[0]; cache->vma = plane_state->vma; cache->flags = plane_state->flags; if (WARN_ON(cache->flags & PLANE_HAS_FENCE && !cache->vma->fence)) cache->flags &= ~PLANE_HAS_FENCE; } static bool intel_fbc_can_activate(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; /* We don't need to use a state cache here since this information is * global for all CRTC. */ if (fbc->underrun_detected) { fbc->no_fbc_reason = "underrun detected"; return false; } if (!cache->vma) { fbc->no_fbc_reason = "primary plane not visible"; return false; } if (cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) { fbc->no_fbc_reason = "incompatible mode"; return false; } if (!intel_fbc_hw_tracking_covers_screen(crtc)) { fbc->no_fbc_reason = "mode too large for compression"; return false; } /* The use of a CPU fence is mandatory in order to detect writes * by the CPU to the scanout and trigger updates to the FBC. * * Note that is possible for a tiled surface to be unmappable (and * so have no fence associated with it) due to aperture constaints * at the time of pinning. * * FIXME with 90/270 degree rotation we should use the fence on * the normal GTT view (the rotated view doesn't even have a * fence). Would need changes to the FBC fence Y offset as well. * For now this will effecively disable FBC with 90/270 degree * rotation. */ if (!(cache->flags & PLANE_HAS_FENCE)) { fbc->no_fbc_reason = "framebuffer not tiled or fenced"; return false; } if (INTEL_GEN(dev_priv) <= 4 && !IS_G4X(dev_priv) && cache->plane.rotation != DRM_MODE_ROTATE_0) { fbc->no_fbc_reason = "rotation unsupported"; return false; } if (!stride_is_valid(dev_priv, cache->fb.stride)) { fbc->no_fbc_reason = "framebuffer stride not supported"; return false; } if (!pixel_format_is_valid(dev_priv, cache->fb.format->format)) { fbc->no_fbc_reason = "pixel format is invalid"; return false; } if (cache->plane.pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE && cache->fb.format->has_alpha) { fbc->no_fbc_reason = "per-pixel alpha blending is incompatible with FBC"; return false; } /* WaFbcExceedCdClockThreshold:hsw,bdw */ if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) && cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk.hw.cdclk * 95 / 100) { fbc->no_fbc_reason = "pixel rate is too big"; return false; } /* It is possible for the required CFB size change without a * crtc->disable + crtc->enable since it is possible to change the * stride without triggering a full modeset. Since we try to * over-allocate the CFB, there's a chance we may keep FBC enabled even * if this happens, but if we exceed the current CFB size we'll have to * disable FBC. Notice that it would be possible to disable FBC, wait * for a frame, free the stolen node, then try to reenable FBC in case * we didn't get any invalidate/deactivate calls, but this would require * a lot of tracking just for a specific case. If we conclude it's an * important case, we can implement it later. */ if (intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) > fbc->compressed_fb.size * fbc->threshold) { fbc->no_fbc_reason = "CFB requirements changed"; return false; } /* * Work around a problem on GEN9+ HW, where enabling FBC on a plane * having a Y offset that isn't divisible by 4 causes FIFO underrun * and screen flicker. */ if (IS_GEN_RANGE(dev_priv, 9, 10) && (fbc->state_cache.plane.adjusted_y & 3)) { fbc->no_fbc_reason = "plane Y offset is misaligned"; return false; } return true; } static bool intel_fbc_can_enable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (intel_vgpu_active(dev_priv)) { fbc->no_fbc_reason = "VGPU is active"; return false; } if (!i915_modparams.enable_fbc) { fbc->no_fbc_reason = "disabled per module param or by default"; return false; } if (fbc->underrun_detected) { fbc->no_fbc_reason = "underrun detected"; return false; } return true; } static void intel_fbc_get_reg_params(struct intel_crtc *crtc, struct intel_fbc_reg_params *params) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; /* Since all our fields are integer types, use memset here so the * comparison function can rely on memcmp because the padding will be * zero. */ memset(params, 0, sizeof(*params)); params->vma = cache->vma; params->flags = cache->flags; params->crtc.pipe = crtc->pipe; params->crtc.i9xx_plane = to_intel_plane(crtc->base.primary)->i9xx_plane; params->crtc.fence_y_offset = get_crtc_fence_y_offset(fbc); params->fb.format = cache->fb.format; params->fb.stride = cache->fb.stride; params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache); if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) params->gen9_wa_cfb_stride = DIV_ROUND_UP(cache->plane.src_w, 32 * fbc->threshold) * 8; } void intel_fbc_pre_update(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; const char *reason = "update pending"; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); if (!multiple_pipes_ok(crtc, plane_state)) { reason = "more than one pipe active"; goto deactivate; } if (!fbc->enabled || fbc->crtc != crtc) goto unlock; intel_fbc_update_state_cache(crtc, crtc_state, plane_state); fbc->flip_pending = true; deactivate: intel_fbc_deactivate(dev_priv, reason); unlock: mutex_unlock(&fbc->lock); } /** * __intel_fbc_disable - disable FBC * @dev_priv: i915 device instance * * This is the low level function that actually disables FBC. Callers should * grab the FBC lock. */ static void __intel_fbc_disable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; struct intel_crtc *crtc = fbc->crtc; WARN_ON(!mutex_is_locked(&fbc->lock)); WARN_ON(!fbc->enabled); WARN_ON(fbc->active); DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe)); __intel_fbc_cleanup_cfb(dev_priv); fbc->enabled = false; fbc->crtc = NULL; } static void __intel_fbc_post_update(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; WARN_ON(!mutex_is_locked(&fbc->lock)); if (!fbc->enabled || fbc->crtc != crtc) return; fbc->flip_pending = false; WARN_ON(fbc->active); if (!i915_modparams.enable_fbc) { intel_fbc_deactivate(dev_priv, "disabled at runtime per module param"); __intel_fbc_disable(dev_priv); return; } intel_fbc_get_reg_params(crtc, &fbc->params); if (!intel_fbc_can_activate(crtc)) return; if (!fbc->busy_bits) { intel_fbc_deactivate(dev_priv, "FBC enabled (active or scheduled)"); intel_fbc_hw_activate(dev_priv); } else intel_fbc_deactivate(dev_priv, "frontbuffer write"); } void intel_fbc_post_update(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); __intel_fbc_post_update(crtc); mutex_unlock(&fbc->lock); } static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc) { if (fbc->enabled) return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit; else return fbc->possible_framebuffer_bits; } void intel_fbc_invalidate(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP) return; mutex_lock(&fbc->lock); fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits; if (fbc->enabled && fbc->busy_bits) intel_fbc_deactivate(dev_priv, "frontbuffer write"); mutex_unlock(&fbc->lock); } void intel_fbc_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); fbc->busy_bits &= ~frontbuffer_bits; if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP) goto out; if (!fbc->busy_bits && fbc->enabled && (frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) { if (fbc->active) intel_fbc_recompress(dev_priv); else if (!fbc->flip_pending) __intel_fbc_post_update(fbc->crtc); } out: mutex_unlock(&fbc->lock); } /** * intel_fbc_choose_crtc - select a CRTC to enable FBC on * @dev_priv: i915 device instance * @state: the atomic state structure * * This function looks at the proposed state for CRTCs and planes, then chooses * which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to * true. * * Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe * enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc. */ void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) { struct intel_fbc *fbc = &dev_priv->fbc; struct intel_plane *plane; struct intel_plane_state *plane_state; bool crtc_chosen = false; int i; mutex_lock(&fbc->lock); /* Does this atomic commit involve the CRTC currently tied to FBC? */ if (fbc->crtc && !intel_atomic_get_new_crtc_state(state, fbc->crtc)) goto out; if (!intel_fbc_can_enable(dev_priv)) goto out; /* Simply choose the first CRTC that is compatible and has a visible * plane. We could go for fancier schemes such as checking the plane * size, but this would just affect the few platforms that don't tie FBC * to pipe or plane A. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc); if (!plane->has_fbc) continue; if (!plane_state->base.visible) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->enable_fbc = true; crtc_chosen = true; break; } if (!crtc_chosen) fbc->no_fbc_reason = "no suitable CRTC for FBC"; out: mutex_unlock(&fbc->lock); } /** * intel_fbc_enable: tries to enable FBC on the CRTC * @crtc: the CRTC * @crtc_state: corresponding &drm_crtc_state for @crtc * @plane_state: corresponding &drm_plane_state for the primary plane of @crtc * * This function checks if the given CRTC was chosen for FBC, then enables it if * possible. Notice that it doesn't activate FBC. It is valid to call * intel_fbc_enable multiple times for the same pipe without an * intel_fbc_disable in the middle, as long as it is deactivated. */ void intel_fbc_enable(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); if (fbc->enabled) { WARN_ON(fbc->crtc == NULL); if (fbc->crtc == crtc) { WARN_ON(!crtc_state->enable_fbc); WARN_ON(fbc->active); } goto out; } if (!crtc_state->enable_fbc) goto out; WARN_ON(fbc->active); WARN_ON(fbc->crtc != NULL); intel_fbc_update_state_cache(crtc, crtc_state, plane_state); if (intel_fbc_alloc_cfb(crtc)) { fbc->no_fbc_reason = "not enough stolen memory"; goto out; } DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe)); fbc->no_fbc_reason = "FBC enabled but not active yet\n"; fbc->enabled = true; fbc->crtc = crtc; out: mutex_unlock(&fbc->lock); } /** * intel_fbc_disable - disable FBC if it's associated with crtc * @crtc: the CRTC * * This function disables FBC if it's associated with the provided CRTC. */ void intel_fbc_disable(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); if (fbc->crtc == crtc) __intel_fbc_disable(dev_priv); mutex_unlock(&fbc->lock); } /** * intel_fbc_global_disable - globally disable FBC * @dev_priv: i915 device instance * * This function disables FBC regardless of which CRTC is associated with it. */ void intel_fbc_global_disable(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; mutex_lock(&fbc->lock); if (fbc->enabled) { WARN_ON(fbc->crtc->active); __intel_fbc_disable(dev_priv); } mutex_unlock(&fbc->lock); } static void intel_fbc_underrun_work_fn(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, fbc.underrun_work); struct intel_fbc *fbc = &dev_priv->fbc; mutex_lock(&fbc->lock); /* Maybe we were scheduled twice. */ if (fbc->underrun_detected || !fbc->enabled) goto out; DRM_DEBUG_KMS("Disabling FBC due to FIFO underrun.\n"); fbc->underrun_detected = true; intel_fbc_deactivate(dev_priv, "FIFO underrun"); out: mutex_unlock(&fbc->lock); } /* * intel_fbc_reset_underrun - reset FBC fifo underrun status. * @dev_priv: i915 device instance * * See intel_fbc_handle_fifo_underrun_irq(). For automated testing we * want to re-enable FBC after an underrun to increase test coverage. */ int intel_fbc_reset_underrun(struct drm_i915_private *dev_priv) { int ret; cancel_work_sync(&dev_priv->fbc.underrun_work); ret = mutex_lock_interruptible(&dev_priv->fbc.lock); if (ret) return ret; if (dev_priv->fbc.underrun_detected) { DRM_DEBUG_KMS("Re-allowing FBC after fifo underrun\n"); dev_priv->fbc.no_fbc_reason = "FIFO underrun cleared"; } dev_priv->fbc.underrun_detected = false; mutex_unlock(&dev_priv->fbc.lock); return 0; } /** * intel_fbc_handle_fifo_underrun_irq - disable FBC when we get a FIFO underrun * @dev_priv: i915 device instance * * Without FBC, most underruns are harmless and don't really cause too many * problems, except for an annoying message on dmesg. With FBC, underruns can * become black screens or even worse, especially when paired with bad * watermarks. So in order for us to be on the safe side, completely disable FBC * in case we ever detect a FIFO underrun on any pipe. An underrun on any pipe * already suggests that watermarks may be bad, so try to be as safe as * possible. * * This function is called from the IRQ handler. */ void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; if (!fbc_supported(dev_priv)) return; /* There's no guarantee that underrun_detected won't be set to true * right after this check and before the work is scheduled, but that's * not a problem since we'll check it again under the work function * while FBC is locked. This check here is just to prevent us from * unnecessarily scheduling the work, and it relies on the fact that we * never switch underrun_detect back to false after it's true. */ if (READ_ONCE(fbc->underrun_detected)) return; schedule_work(&fbc->underrun_work); } /** * intel_fbc_init_pipe_state - initialize FBC's CRTC visibility tracking * @dev_priv: i915 device instance * * The FBC code needs to track CRTC visibility since the older platforms can't * have FBC enabled while multiple pipes are used. This function does the * initial setup at driver load to make sure FBC is matching the real hardware. */ void intel_fbc_init_pipe_state(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; /* Don't even bother tracking anything if we don't need. */ if (!no_fbc_on_multiple_pipes(dev_priv)) return; for_each_intel_crtc(&dev_priv->drm, crtc) if (intel_crtc_active(crtc) && crtc->base.primary->state->visible) dev_priv->fbc.visible_pipes_mask |= (1 << crtc->pipe); } /* * The DDX driver changes its behavior depending on the value it reads from * i915.enable_fbc, so sanitize it by translating the default value into either * 0 or 1 in order to allow it to know what's going on. * * Notice that this is done at driver initialization and we still allow user * space to change the value during runtime without sanitizing it again. IGT * relies on being able to change i915.enable_fbc at runtime. */ static int intel_sanitize_fbc_option(struct drm_i915_private *dev_priv) { if (i915_modparams.enable_fbc >= 0) return !!i915_modparams.enable_fbc; if (!HAS_FBC(dev_priv)) return 0; /* https://bugs.freedesktop.org/show_bug.cgi?id=108085 */ if (IS_GEMINILAKE(dev_priv)) return 0; if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) return 1; return 0; } static bool need_fbc_vtd_wa(struct drm_i915_private *dev_priv) { /* WaFbcTurnOffFbcWhenHyperVisorIsUsed:skl,bxt */ if (intel_vtd_active() && (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv))) { DRM_INFO("Disabling framebuffer compression (FBC) to prevent screen flicker with VT-d enabled\n"); return true; } return false; } /** * intel_fbc_init - Initialize FBC * @dev_priv: the i915 device * * This function might be called during PM init process. */ void intel_fbc_init(struct drm_i915_private *dev_priv) { struct intel_fbc *fbc = &dev_priv->fbc; INIT_WORK(&fbc->underrun_work, intel_fbc_underrun_work_fn); mutex_init(&fbc->lock); fbc->enabled = false; fbc->active = false; if (need_fbc_vtd_wa(dev_priv)) mkwrite_device_info(dev_priv)->display.has_fbc = false; i915_modparams.enable_fbc = intel_sanitize_fbc_option(dev_priv); DRM_DEBUG_KMS("Sanitized enable_fbc value: %d\n", i915_modparams.enable_fbc); if (!HAS_FBC(dev_priv)) { fbc->no_fbc_reason = "unsupported by this chipset"; return; } /* This value was pulled out of someone's hat */ if (INTEL_GEN(dev_priv) <= 4 && !IS_GM45(dev_priv)) I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT); /* We still don't have any sort of hardware state readout for FBC, so * deactivate it in case the BIOS activated it to make sure software * matches the hardware state. */ if (intel_fbc_hw_is_active(dev_priv)) intel_fbc_hw_deactivate(dev_priv); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1